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Abstract

In this paper, we revisit the full lattice representation of continuous piecewise affine (PWA) functions and give a formal proof of
its representation ability. Based on this, we derive the irredundant lattice PWA representations through removal of redundant
terms and literals. Necessary and sufficient conditions for irredundancy are proposed. Besides, we explain how to remove terms
and literals in order to ensure irredundancy. An algorithm is given to obtain an irredundant lattice PWA representation. In
the worked examples, the irredundant lattice PWA representations are used to express the optimal solution of explicit model
predictive control problems, and the results turn out to be much more compact than those given by a state-of-the-art algorithm.

Key words: piecewise affine function; irredundant representation; lattice representation.

1 Introduction

A continuous piecewise affine (PWA) function is a
nonlinear function with affine components defined on
polyhedral subregions. It is demonstrated in (Wilkin-
son, 1963) that any continuous PWA function can be
expressed by a min-max or max-min composition of its
affine components,

f = min
i=1,...,N1

{max
j∈Īi

{ℓj}}, (1)

or
f = max

i=1,...,N2

{min
j∈Ĩi

{ℓj}}, (2)
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in which ℓj is an affine function, N1 and N2 are integers,

and Īi and Ĩi are index sets. In (Tarela and Martinez,
1999), formal proofs are given demonstrating that any
continuous PWA function can be described by (1) and
(2), which are then called lattice PWA representations.
They also appeared in (Gunawardena, 1994) and (De
Schutter and van den Boom, 2004). We call (1) the con-
junctive form and (2) disjunctive form. In (Bartels et al.,
1995; Ovchinnikov, 2002) and (Ovchinnikov, 2010), the
representation ability of (1) and (2) is also proved.

Among all these papers (Bartels et al., 1995; De Schutter
and van den Boom, 2004; Gunawardena, 1994; Ovchin-
nikov, 2002, 2010; Tarela and Martinez, 1999; Wilkin-
son, 1963), only (Tarela and Martinez, 1999; Wilkinson,
1963) give methods for determining the parameters N1,

Īi in (1) and N2, Ĩi in (2). However, (Wilkinson, 1963)
only illustrates how to determine the parameters for a
1-dimensional example and does not provide a formal
proof. Moreover, it is demonstrated in (Ovchinnikov,
2010) that an important assumption is not stated in
the proofs in (Tarela and Martinez, 1999), while with-
out that assumption the conclusions do not hold. In this
paper, we mainly focus on the disjunctive lattice PWA
representation (2), and give a proof concerning the rep-
resentation ability as well as the determination of the
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parameters. The results can be easily extended to the
conjunctive case due to duality.

There are also other methods for representing PWA
functions (Breiman, 1993; Julián et al., 1999; Wang
et al., 2008; Wang and Sun, 2005; Xu et al., 2009). The
methods of (Breiman, 1993) can only represent continu-
ous PWA functions in 1 dimension. The representations
of (Julián et al., 1999; Xu et al., 2009) can only rep-
resent continuous PWA functions of which the domain
is partitioned into simplices or the union of simplices.
Although the representations proposed in (Wang et al.,
2008; Wang and Sun, 2005) can represent any contin-
uous PWA function, the parameters in the expression
of (Wang and Sun, 2005) are hard to derive and the
number of parameters in the expression of (Wang et al.,
2008) is large. Conversely, we will show in Section 2 that

the integer N2 and the index set Ĩi in (2) are not hard
to derive.

Lattice PWA representations have been used to express
the solution of explicit model predictive control (MPC)
problems in (Wen et al., 2009). In MPC, the control ac-
tion is obtained by solving a finite-horizon open-loop op-
timal control problem at each sampling instant. At the
next time step, a new optimal control problem based on
new measurements of the state is solved over a shifted
horizon. The optimization relies on a prediction model
for predicting future outputs of the system, can take into
account input and output constraints, and minimizes a
performance criterion (Bemporad et al., 2002a). When
the constraints are affine, a continuous PWA control
law arises if the performance criterion in the optimiza-
tion problem of MPC is convex quadratic or polyhedral.
Then, the optimal solution can be computed offline, and
the cost of online optimization can be reduced to that of
online evaluation of a continuous PWA function. This is
exactly what “explicit” means.

The corresponding continuous PWA optimal solution
can be computed using multi-parametric linear or
quadratic programming through e.g. the MPT Toolbox
(Herceg et al., 2013a) and stored as a collection of local
affine functions and subregions. For online evaluation,
many papers are dedicated to solving a point location
problem, i.e., determining the subregion the present
state is located in, and then finding the corresponding
local affine function (Christophersen et al., 2007; Herceg
et al., 2013b; Tøndel et al., 2003b). The online search
complexity is logarithmic in the number of subregions
(Herceg et al., 2013b; Tøndel et al., 2003b) or linear in
the number of subregions (Christophersen et al., 2007).
For this kind of methods, the online search can be ac-
celerated through storing additional information apart
from the polyhedral partition, such as search tree and
adjacency information.

On the other hand, some papers reduce the offline stor-
age complexity by avoiding the storage of the polyhe-

dral information (Baotic et al., 2008; Jones et al., 2006).
For the case of linear cost function, both methods store
only the optimal value function; the online evaluation
complexity for (Baotic et al., 2008) is linear in the num-
ber of subregions while for the method of (Jones et al.,
2006) it is logarithmic. However, for the quadratic cost
case, the method in (Jones et al., 2006) is not applicable
and the procedure of (Baotic et al., 2008) has to store
the information of the descriptor function as well as the
ordering of local affine functions in neighboring polyhe-
dra. Hence, it is of great value to find a method to re-
duce offline storage complexity for both the linear and
the quadratic case.

For a continuous PWA controller derived in the linear
or the quadratic case, through determining the parame-
ters of (1), the lattice PWA function is used to represent
the controller in (Wen et al., 2009). For online evalua-
tion, the current state is then directly substituted into
expression (1) and the optimal solution results. By re-
moving redundant parameters in the lattice PWA repre-
sentations, both the storage requirements and the online
complexity can be reduced. However, the simplification
lemmas in (Wen et al., 2009) have limitations and the re-
sult cannot guaranteed to be irredundant. Hence, in the
current paper, we aim to give irredundant lattice PWA
representations.

The paper is organized as follows. The next section in-
troduces the full lattice PWA representation, and gives
a proof of its representation ability. The irredundant lat-
tice PWA representations are derived in Section 3, in-
cluding necessary and sufficient conditions for irredun-
dancy and the algorithm for obtaining an irredundant
lattice PWA representation. The offline preprocessing
and online evaluation complexity of the irredundant lat-
tice PWA representations is also analyzed. In Section 4,
two worked examples are given, in which the irredun-
dant lattice PWA representations are applied to express
the solutions of explicit MPC problems. Finally, the pa-
per ends with conclusions in Section 5.

2 Full lattice PWA representation

Definition 1 (Chua and Deng, 1988) A function f :
D → R, where D ⊆ Rn is convex, is said to be contin-
uous PWA if it is continuous on the domain D and the
following conditions are satisfied:

(1) The domain space D can be divided into a fi-
nite number of nonempty convex polyhedra, i.e.,

D = ∪N̂
i=1Ωi, Ωi 6= ∅, the polyhedra are closed and

have non-overlapping interiors, int(Ωi)∩ int(Ωj) =

∅, ∀i, j ∈ {1, . . . , N̂}, i 6= j. These polyhedra are
also called subregions. The boundaries of the poly-
hedra are (n− 1)-dimensional hyperplanes.
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(2) In each subregion Ωi, f equals a local affine function
ℓloc(i),

f(x) = ℓloc(i)(x), ∀x ∈ Ωi.

It is important to note that in Definition 1 some lo-
cal affine function may appear in different subregions,
i.e., ℓloc(i1) = · · · = ℓloc(is) for different i1, . . . , is ∈

{1, . . . , N̂}. We collect all the local affine functions and
select those distinct ones, labeling them as ℓ1, . . . , ℓM .
So loc(i) ∈ {1, . . . ,M} and no two affine functions ℓi and
ℓj with i, j ∈ {1, . . . ,M}, i 6= j, are identical. Therefore,
there can be more subregions than distinct affine func-
tions.

We further partition each subregion Ωi (i = 1, . . . , N̂)
into so called base regions Di,t with t = 1, . . . ,mi, to
make sure that no other affine function intersects with
ℓloc(i) at some point in the interior of Di,t, i.e.,

{x|ℓj(x) = ℓloc(i)(x), j 6= loc(i)} ∩ int(Di,t) = ∅. (3)

The following lemma defines the partition.

Lemma 1 For any i ∈ {1, . . . , N̂}, there is a partition
of the subregion Ωi

Ωi = ∪mi

t=1Di,t (4)

such that the following holds,

(1) The set int(Di,t) is nonempty.
(2) For each Di,t, we have

I≥,i,t ∪ I≤,i,t = {1, . . . ,M}, (5)

in which I≥,i,t = {j|ℓj(x) ≥ ℓloc(i)(x), ∀x ∈ Di,t}
and I≤,i,t = {j|ℓj(x) ≤ ℓloc(i)(x), ∀x ∈ Di,t}.

(3) For all i, j ∈ {1, . . . , N̂}, t̄ ∈ {1, . . . ,mi}, t̂ ∈
{1, . . . ,mj}, t̄ 6= t̂ or i 6= j, the following holds,

int(Di,t̄) ∩ int(Dj,t̂) = ∅. (6)

The proof of Lemma 1 as well as the time complexity of
the partition process is given in Appendix A.

From (5), it follows that in the base region Di,t (3) is
satisfied.

After the partition, there are base regionsD1,1, . . . ,D1,m1
,

. . . ,D
N̂,1, . . . ,DN̂,m

N̂
. We renumber them as D1,D2, . . .,

DN , in which N = m1 + · · ·+m
N̂
.

We denote ℓact(i)(x) as the active affine function in Di,
which is given by

ℓact(i) = ℓloc(j), if Di ⊆ Ωj . (7)

Then we define the index sets

I≥,i = {j|ℓj(x) ≥ ℓact(i)(x), ∀x ∈ Di}

I≤,i = {j|ℓj(x) ≤ ℓact(i)(x), ∀x ∈ Di}.

We also introduce an index set A(ℓi) such that for each
index k ∈ A(ℓi), ℓi is the active affine function in Dk,
i.e., f(x) = ℓi(x), ∀x ∈ Dk. Clearly, i ∈ A(ℓact(i)).

In the base region Di, for an affine function ℓj with j 6=
act(i), either j ∈ I≥,i or j ∈ I≤,i. Then we have

ℓj(x) > ℓact(i)(x), ∀x ∈ int(Di), ∀j ∈ I≥,i, (8)

and

ℓj(x) < ℓact(i)(x), ∀x ∈ int(Di), ∀j ∈ I≤,i. (9)

For a 1-dimensional continuous PWA function f , we have
the following conclusion.

Proposition 1 Let f be a 1-dimensional continuous
PWA function as defined in Definition 1, i.e., n = 1,
then ∀i, k ∈ {1, . . . , N}, we have

min
j∈I≥,k

{ℓj(x)} ≤ min
j∈I≥,i

{ℓj(x)}, ∀x ∈ Di. (10)

The proof of Proposition 1 can be found in Appendix B.

Based on Proposition 1, we propose the full lattice PWA
representation for an n-dimensional continuous PWA
function.

Theorem 1 Let f be a continuous PWA function as
defined in Definition 1. Then f can be represented as

f(x) = max
i=1,...,N

{ min
j∈I≥,i

{ℓj(x)}}, ∀x ∈ D, (11)

and (11) is called full lattice PWA representation.

PROOF. For all i, k ∈ {1, . . . , N}, if we can prove that

min
j∈I≥,k

{ℓj(x)} ≤ min
j∈I≥,i

{ℓj(x)}, ∀x ∈ Di (12)

thenwe have max
k∈{1,...,N}

{ min
j∈I≥,k

{ℓj(x)}} = ℓact(i)(x), ∀x ∈

Di, and then the validity of (11) follows.

Randomly choose ī, k̄ ∈ {1, . . . , N} and an x0 ∈ int(Dī).
Now, we will show (12) is valid, i.e.,

min
j∈I≥,k̄

{ℓj(x0)} ≤ min
j∈I≥,̄i

{ℓj(x0)}. (13)
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In order to prove (13), we randomly choose an x1 ∈
int(Dk̄), and consider the line segment between x0 and
x1,

L(x0, x1) = {x|λx0 + (1− λ)x1, 0 ≤ λ ≤ 1}. (14)

As D is convex, the line segment L(x0, x1) ⊆ D.

Clearly, f is continuous when restricted to the line seg-
ment L(x0, x1). Define the line segments

Bi = Di ∩ L(x0, x1), i = 1, . . . , N. (15)

Then if int(Bi) is nonempty, we have

f(x) = ℓact(i)(x), ∀x ∈ Bi.

Therefore, f is continuous PWA when restricted to the
line segment L(x0, x1).

Denote the set of indices of affine functions appearing in
L(x0, x1) as

NB = {act(k)|k ∈ {1, . . . , N} and int(Bk) 6= ∅}.

As x0 ∈ int(Dī) and x1 ∈ int(Dk̄), the sets int(Bī) and
int(Bk̄) are nonempty. Hence ī, k̄ ∈ NB.

For the line segment Bi with nonempty interior, define
the index set

S≥,i = {j ∈ NB|ℓj(x) ≥ ℓact(i)(x), ∀x ∈ Bi}.

According to (8) and (9), for any j ∈ S≥,i, we have
j ∈ I≥,i, i.e., S≥,i ⊆ I≥,i.

Since both int(Bī) and int(Bk̄) are nonempty, according
to Proposition 1 we have

min
j∈S≥,k̄

{ℓj(x)} ≤ min
j∈S≥,̄i

{ℓj(x)}, ∀x ∈ Bī.

As x0 ∈ Bī and S≥,k̄ ⊆ I≥,k̄, we have

min
j∈I≥,k̄

{ℓj(x0)} ≤ min
j∈S≥,k̄

{ℓj(x0)} ≤ min
j∈S≥,̄i

{ℓj(x0)}

= ℓact(̄i)(x0) = min
j∈I≥,̄i

{ℓj(x0)}.

As ī, k̄, x0 are arbitrarily chosen, and both sides of (13)
are continuous, we have (12).

Therefore, a continuous PWA function defined on a con-
vex set can be expressed as the full lattice PWA repre-
sentation (11).

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

D1 D2 D3 D4 D5 D6 D7

Ω1

Ω2 Ω3 Ω4

Ω5

Fig. 1. A 1-dimensional example of a continuous PWA func-
tion.

In the full lattice PWA representation (11), two binary
operations “min” and “max” are present. They are sim-
ilar to the Boolean AND and OR of Boolean algebra.
Analogously, we call “ min

j∈I≥,i

{ℓj}” a term, denoted by TF
i ,

in which the superscript “F” indicates that the term cor-
responds to the full representation. In each term, the
affine functions ℓj , j ∈ I≥,i are called literals.

We give a simple 1-dimensional example to illustrate
Lemma 1 and Theorem 1.

Example 1 Consider the following 1-dimensional con-
tinuous PWA function defined on [0, 5]:

f(x) =



































ℓ1(x) = 0.5x+ 0.5, x ∈ [0, 1],

ℓ2(x) = 2x− 1, x ∈ [1, 1.5],

ℓ3(x) = 2, x ∈ [1.5, 3.5],

ℓ4(x) = −2x+ 9, x ∈ [3.5, 4],

ℓ5(x) = −0.5x+ 3, x ∈ [4, 5].

Fig. 1 gives the plot of f .

It can be seen from Fig. 1 that there are 5 distinct affine
functions, 5 subregions and 7 base regions, of which Ω1 =
D1, Ω2 = D2,Ω3 = D3∪D4∪D5 and Ω4 = D6,Ω5 = D7.
According to Theorem 1, for all x ∈ [0, 5], we have

f(x) = max
i=1,...,7

{ min
j∈I≥,i

{ℓj(x)}}, (16)

with I≥,1 = {1, 3, 4, 5}, I≥,2 = {2, 3, 4, 5}, I≥,3 =
{2, 3, 4, 5}, I≥,4 = {2, 3, 4}, I≥,5 = {1, 2, 3, 4},
I≥,6 = {1, 2, 3, 4}, and I≥,7 = {1, 2, 3, 5}.

We have 7 terms, which are TF
i = min

j∈I≥,i

{ℓj}. It is obvious

that TF
2 and TF

3 are the same, and one of them can be
removed from (16) without affecting the function value
of f . Besides, a more surprising fact is that ℓ3 and ℓ4
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in TF
1 can also be removed. Therefore, the lattice PWA

representation (16) is redundant.

In the next section, we are dedicated to find an irredun-
dant lattice PWA representation.

3 Irredundant lattice PWA representations

We define the irredundancy of a lattice PWA represen-
tation as follows:

Definition 2 A lattice PWA representation

fL = max
i=1,...,Ñ

{Ti} = max
i=1,...,Ñ

{min
j∈Ii

{ℓj}} (17)

with Ñ ≤ N is irredundant, if no term Ti = min
j∈Ii

{ℓj},

and no literal ℓj, with i ∈ {1, . . . , Ñ} and j ∈ Ii, can be
removed from (17) without affecting the function value
of fL.

To achieve irredundancy, analogous to the Boolean al-
gebra, we define implicants and prime implicants.

3.1 Implicants and prime implicants

Definition 3 For a continuous PWA function as defined
in Definition 1, we say Ti = min

j∈Ii
{ℓj} is an implicant of

f , if
Ti(x) ≤ f(x), ∀x ∈ D,

and there is some base region Dk such that Ti ≡ f in Dk.
The implicant Ti = min

j∈Ii
{ℓj} is a prime implicant of f if

there exists no other implicant Tr = min
j∈Ir

{ℓj} of f such

that Ir ( Ii.

We now describe the implicants and prime implicants in
the context of the lattice PWA representations.

Lemma 2 Every term TF
i = min

j∈I≥,i

{ℓj} in the full lattice

PWA representation (11) is an implicant of f . Moreover,
there exists at least one prime implicant Ti = min

j∈Ii
{ℓj} of

f with Ii ⊆ I≥,i.

The proof of Lemma 2 can be found in (Xu et al., 2014).

For an implicant, we define the base regions it covers.

Definition 4 We say the implicant Ti covers the base
region Dk, if Ti ≡ f in Dk. The indices of all base regions
Ti covers constitute an index set C(Ti).

Following gives a lemma concerning how to identify
C(Ti).

Lemma 3 Given an implicant Ti = min
j∈Ii

{ℓj}, it covers

the base region Dk, i.e., k ∈ C(Ti) if and only if Ii ⊆ I≥,k.

PROOF. Necessity. If the implicant Ti covers the base
region Dk, i.e., Ti ≡ f in Dk, we prove Ii ⊆ I≥,k. Oth-
erwise, there would exist some υ ∈ Ii with υ /∈ I≥,k.
According to (9), then we have

Ti(x) ≤ ℓυ(x) < f(x), ∀x ∈ int(Dk),

which contradicts that k ∈ C(Ti).

Sufficiency. If Ii ⊆ I≥,k, as Ti is an implicant, we have

f(x) = TF
k (x) ≤ Ti(x) ≤ f(x), ∀x ∈ Dk.

Thus, Ti ≡ f in Dk, i.e., k ∈ C(Ti).

For an implicant Ti, if x ∈ int(Dk) with k /∈ C(Ti), from
the above proof, we have Ti(x) < f(x).

We use Example 1 again to illustrate Lemmas 2 and 3.

Example 1 (Continued): According to Lemma 2, the
terms TF

i with i ∈ {1, . . . , 7} are implicants of f defined
in (16). Take TF

2 for example. Fig. 2(a) shows the plot of
TF
2 . It is shown in Fig. 2(a) that TF

2 ≤ f in D. Besides,
TF
2 = f in the base regions D2 and D3. Therefore, T

F
2 is

an implicant of f .

Then Fig. 2(b) shows the plot of T2 = min
j∈I2

{ℓj} with I2 =

{2, 3, 4} ⊆ I≥,2 = {2, 3, 4, 5}. It is clear from Fig. 2(b)
that min{ℓ2, ℓ3, ℓ4} is an implicant of f and that there
are no Ir ( I2 such that min

j∈Ir
{ℓj} is also an implicant of

f . Hence T2 is a prime implicant of f .

Considering the prime implicant T2, we can see from Fig.
2(b) that T2 covers the base regions Dj , j = 2, 3, 4, 5, 6.
According to Lemma 3, the following holds:

I2 ⊆ I≥,j , j = 2, 3, 4, 5, 6. (18)

As I2 = {2, 3, 4}, I≥,2 = I≥,3 = {2, 3, 4, 5}, I≥,4 =
{2, 3, 4}, I≥,5 = I≥,6 = {1, 2, 3, 4}, (18) is clearly true.

3.2 Necessary and sufficient conditions for irredun-
dancy

The irredundancy of a lattice PWA representation can
be verified through the following theorem.

Theorem 2 The lattice PWA representation (17) sat-
isfying fL = f in D is irredundant if and only if the fol-
lowing two conditions hold:

5
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(a) Plot of TF
2 = min{ℓ2, ℓ3, ℓ4, ℓ5}: solid line.
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(b) Plot of T2 = min{ℓ2, ℓ3, ℓ4}: solid line.

Fig. 2. Plot of an implicant and prime implicant of Example
1. The dashed line is the plot of f .

i) Each term Ti = min
j∈Ii

{ℓj} is a prime implicant of f .

ii) For each prime implicant, C(Ti) 6⊆ ∪Ñ
s=1,s 6=iC(Ts),

∀i ∈ {1, . . . , Ñ}.

PROOF. First we prove necessity. Suppose the lattice
PWA representation fL is irredundant.

Condition i) must hold; otherwise if there is some Tî that
is not an implicant of f . As fL = f , we have Tî < f
in int(Di), i = 1, . . . , N . Hence we can delete it without
affecting the function value of fL; or else if Tî is an im-
plicant but not prime implicant, according to Lemma 2,
we can find a prime implicant T̄î = min

j∈Īî

{ℓj} with Īî ( Iî

satisfying

Tî(x) ≤ T̄î(x) ≤ f(x), ∀x ∈ D.

Define g1 = max{T1, . . . , Tî−1, T̄î, Tî+1, . . . , TÑ}, then
in D we have

f = fL ≤ g1 ≤ f,

which means g1 ≡ f in D and then fL is redundant.

Considering condition ii), if it is not satisfied, there

would be an î such that C(Tî) ⊆ ∪Ñ

s=1,s 6=î
C(Ts). Then,

for each k ∈ C(Tî), there is some ik ∈ {1, . . . , î − 1, î +

1, . . . , Ñ} such that k ∈ C(Tik), i.e.,

f(x) = Tik(x), ∀x ∈ Dk with k ∈ C(Tî).

Define g2 = max{T1, . . . , Tî−1, Tî+1, . . . , TÑ}, then we
have

g2(x) ≡ f(x), ∀x ∈ Dk, ∀k ∈ {1, . . . , N},

and then fL is redundant.

Now we prove sufficiency. Condition i) implies that no
literals can be deleted from Ti without affecting the func-
tion value.

We prove that condition ii) indicates that no prime im-
plicant Ti = min

j∈Ii
{ℓj} can be deleted without affecting

the function value of fL in D. Otherwise, if we delete Tî

for some î ∈ {1, . . . , Ñ}, according to condition ii), there
is at least one index kî ∈ {1, . . . , N} satisfying kî ∈ C(Tî)

and kî /∈ ∪Ñ

s=1,s 6=î
C(Ts). Thus, in int(Dkî

), we have

max
s=1,...,̂i−1,̂i+1,...,Ñ

{Ts} < f.

Then max
s=1,...,̂i−1,̂i+1,...,Ñ

{Ts} 6≡ f , meaning that the re-

moval of Tî affects the function value of fL. Therefore,
the two conditions ensure the irredundancy of fL.

3.3 Removing redundant terms and literals

Now a corollary follows concerning removing redundant
terms in a lattice PWA representation.

Corollary 1 In the lattice PWA representation (17), the
implicant Ti = min

j∈Ii
{ℓj} can be removed without affecting

the function value of fL in D if and only if

C(Ti) ⊆ ∪Ñ
s=1,s 6=iC(Ts). (19)

The proof of Corollary 1 can be found in (Xu et al., 2014).

We have to point out that Corollary 1 is different from
the row vector simplification lemma in (Wen et al., 2009),
which states that if

Ik ⊆ Ii, (20)
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then Ti = min
j∈Ii

{ℓj} can be removed without affecting

the function value. In fact, according to Lemma 3, if
(20) holds, we have C(Ti) ⊆ C(Tk), which then indicates
(19). However, there exist situations in which (19) holds
but (20) is not satisfied. We will show this by revisiting
Example 1 at the end of Section 3.3.

Then, according to the proof of Theorem 2, for an impli-
cant TF

i in fL, we can replace it with a prime implicant
Ti with Ii ⊆ I≥,i without affecting the function value of
fL.

Next we explain how to remove redundant literals and
derive prime implicants.

Theorem 3 Given a term TF
i = min

j∈I≥,i

{ℓj} in the full

lattice PWA representation (11). The term Ti = min
j∈Ii

{ℓj}

with Ii ( I≥,i is an implicant of f if and only if ∀t ∈
I≥,i \ Ii, ∀υ ∈ A(ℓt), there exists at least one kt,υ ∈ Ii
such that

ℓkt,υ(x) ≤ f(x) = ℓt(x), ∀x ∈ Dυ. (21)

PROOF. From (8) and (9), (21) is equivalent to the
inequality below

Ti(x) ≤ f(x) = ℓt(x), ∀x ∈ Dυ. (22)

The proof can be divided into two parts, the first includes
necessity and the second sufficiency.

(1) Necessity. As Ti is an implicant of f , we have Ti ≤ f
in D. Thus, (22) should be satisfied, and (21) holds.

(2) Sufficiency. Assuming that (21) holds (or (22) holds)
for all t ∈ I≥,i \ Ii and all υ ∈ A(ℓt), then act(i) ∈ Ii;
otherwise, if act(i) /∈ Ii, there is no kt,υ ∈ Ii such that
(21) holds for t = act(i), υ = i, and x ∈ int(Di).

According to Definition 3, in order to prove that Ti is an
implicant of f , two steps are needed: the first is to prove
Ti ≤ f in D and the second is to prove that there exist
some base regions in which Ti ≡ f .

Step 1: First we prove that Ti ≤ f in D. Suppose this
is not true, i.e., there is a point x0 ∈ D such that

Ti(x0) > f(x0). (23)

Assume x0 ∈ Dβ , then we have

ℓact(β)(x0) < min
j∈Ii

{ℓj(x0)}. (24)

Since both sides of (24) are continuous, such an x0 can
be found in the interior of Dβ , i.e., x0 ∈ int(Dβ). As (22)

x0 x1xi1 xi2

Bβ BiBi1 Bi2 Bil

ℓact(β)

ℓact(i)

ℓact(i1)ℓact(i2) ℓact(il)

xil

· · ·

Fig. 3. The continuous PWA function f when restricted to
L(x0, x1).

holds for all t ∈ I≥,i \ Ii and all υ ∈ A(ℓt), we have
act(β) /∈ I≥,i\Ii. Besides, we have act(β) /∈ Ii according
to (24). Thus act(β) /∈ I≥,i.

Randomly choose a point x1 ∈ int(Di). As act(β) /∈ I≥,i,
we have

ℓact(β)(x1) < ℓact(i)(x1) = min
j∈Ii

{ℓj(x1)}. (25)

Consider the line segment L(x0, x1) (14), and define Bβ

and Bi the same as (15); then we have int(Bβ) 6= ∅ and
int(Bi) 6= ∅. According to the proof of Theorem 1, f is
continuous PWA when restricted to L(x0, x1).

Combining (24) and (25) we have

ℓact(β)(x) < min
j∈Ii

{ℓj(x)} ≤ ℓact(i)(x), ∀x ∈ L(x0, x1).

(26)
Then according to the continuity of f , the line segments
Bβ and Bi are not adjacent. Thus there exists another
line segment Bi1 with nonempty interior adjacent to Bβ .
Define an index set N1 as,

N1 = {1, . . . , N} \ {i, β}, (27)

then i1 ∈ N1.

Assume Bi1 ∩ Bβ = {xi1}. Then Bi1 ⊆ L(xi1 , x1), in
which L(xi1 , x1) is the line segment between xi1 and x1.
We have

f(xi1) = ℓact(β)(xi1) = ℓact(i1)(xi1) < min
j∈Ii

{ℓj(xi1)}.

(28)
Fig. 3 illustrates this.

Similar to the proof concerning act(β), we have act(i1) /∈
I≥,i. Then we have

ℓact(i1)(x) < min
j∈Ii

{ℓj(x)} ≤ ℓact(i)(x), ∀x ∈ L(xi1 , x1).
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Thus, according to the continuity of f , the line segments
Bi1 and Bi are not adjacent. Then there must exist an-
other line segment Bi2 adjacent to Bi1 and int(Bi2) 6= ∅.
Let the index set N2 be defined as

N2 = N1 \ {i1},

then as Bβ is convex, i2 6= β, and further, i2 ∈ N2.

Repeating the above procedure if necessary, as Fig. 3
shows, after l (l < N) iterations, we can reach an empty
index set Nl+1 and a point xil ∈ Bil ⊆ L(xil , x1) such
that

ℓact(il)(x) < min
j∈Ii

{ℓj(x)} ≤ ℓact(i)(x), ∀x ∈ L(xil , x1).

This contradicts the continuity of f . Therefore, Ti(x) ≤
f(x) for all x ∈ D.

Step 2: Now we prove that there exists some base region
in which Ti ≡ f , i.e., C(Ti) 6= ∅. Considering Dk, k ∈
C(TF

i ). As

f(x) = TF
i (x) ≤ Ti(x) ≤ f(x), ∀x ∈ Dk,

we have Ti ≡ TF
i ≡ f in Dk, ∀k ∈ C(TF

i ). Therefore, Ti

is an implicant of f .

Using Theorem 3, we can delete literals in a term TF
i until

further deletion is impossible, and the prime implicants
are obtained. The implicants obtained can replace the
original implicant in the full lattice PWA representation
(11).

It should be noted that Theorem 3 is different from
the column vector simplification lemma in (Wen et al.,
2009), which is proposed for the conjunctive form and
when using duality, it can be rephrased as follows: TF

i can
be replaced by Ti without affecting the function value if
for all t ∈ I≥,i \ Ii, for all α such that loc(α) = t, there
is some kt,α ∈ Ii such that

ℓkt,α
(x) ≤ f(x) = ℓt(x), ∀x ∈ Ωα. (29)

Revisiting Example 1, we will now show that not only
(20) of (Wen et al., 2009) is a sufficient condition for
removing redundant terms, but also (29) of (Wen et al.,
2009) is a sufficient condition for removing redundant
literals.

Example 1 (Continued): Reconsidering Example 1, now
we can use Theorem 3 to explain why ℓ3, ℓ4 can be re-
moved from TF

1 = min{ℓ1, ℓ3, ℓ4, ℓ5} without affecting
the function value.

As A(ℓ3) = {3, 4, 5}, ℓ1(x) ≤ ℓ3(x), ∀x ∈ D3 ∪
D4, ℓ5(x) ≤ ℓ3(x), ∀x ∈ D5; besides, A(ℓ4) = {6} and
ℓ5(x) ≤ ℓ4(x), ∀x ∈ D6. According to Theorem 3, the
term T1 = min{ℓ1, ℓ5} is an implicant of f as defined in
(16). Since neither ℓ1 nor ℓ5 can be further removed, T1

is a prime implicant of f and it can replace TF
1 without

affecting the function value of f .

Similarly, we obtain the prime implicants

T2 = min{ℓ2, ℓ3, ℓ4}, T3 = min{ℓ2, ℓ3, ℓ4},

T4 = min{ℓ2, ℓ3, ℓ4}, T5 = min{ℓ1, ℓ3, ℓ4},

T6 = min{ℓ1, ℓ3, ℓ4}, T7 = min{ℓ1, ℓ5}.

The indices of base regions the prime implicants cover
are C(T1) = C(T7) = {1, 7}, C(T2) = C(T3) = C(T4) =
{2, 3, 4, 5, 6}, C(T5) = C(T6) = {1, 5, 6}.

According to Corollary 1, as C(T3) = C(T4) ⊆
(C(T1) ∪ C(T2)), C(T5) = C(T6) ⊆ (C(T1) ∪ C(T2)) and
C(T7) ⊆ (C(T1) ∪ C(T2)), we can remove the terms
T3, T4, T5, T6, T7 and obtain the following irredundant
lattice PWA representation:

fL = max{min{ℓ1, ℓ5},min{ℓ2, ℓ3, ℓ4}}. (30)

Conversely, if we apply the procedures of (Wen et al.,
2009), first delete redundant rows, we obtain

max{min{ℓ1, ℓ3, ℓ4, ℓ5},min{ℓ2, ℓ3, ℓ4},

min{ℓ1, ℓ2, ℓ3, ℓ5}}.

Then we delete redundant literals. For the first term, as
ℓ5 ≤ ℓ4 in Ω4, the term min{ℓ1, ℓ3, ℓ4, ℓ5} can be reduced
to min{ℓ1, ℓ3, ℓ5}. As neither ℓ1 nor ℓ5 is less than or
equal to ℓ3 in Ω3, according to the column vector sim-
plification lemma of (Wen et al., 2009), no literals can
be further deleted.

For the second term, no literal can be deleted as it is
irredundant. For the third term, as ℓ2 ≤ ℓ1 in Ω1, we
can remove ℓ1 and obtain min{ℓ2, ℓ3, ℓ5}.

Therefore, the procedure of (Wen et al., 2009) will result
in the following lattice PWA representation:

f̃ = max{min{ℓ1, ℓ3, ℓ5},

min{ℓ2, ℓ3, ℓ4},min{ℓ2, ℓ3, ℓ5}}. (31)

Compared with (30), we can see that both the
term min{ℓ2, ℓ3, ℓ5} and the literal ℓ3 in the term
min{ℓ1, ℓ3, ℓ5} are redundant. Therefore, the row and
column vector simplification lemma of (Wen et al., 2009)
are only sufficient conditions for removing redundant
terms and literals.
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An interesting phenomenon is that the lattice PWA rep-
resentation

f2
L = max{min{ℓ1, ℓ3, ℓ4},min{ℓ2, ℓ3, ℓ5},min{ℓ2, ℓ3, ℓ4}}

(32)
is also irredundant and equals f in [0, 5]. Although (32)
is also irredundant, the number of parameters is larger
than that of (30), meaning that there may exist multiple
irredundant lattice PWA representations with different
number of parameters.

It should be also noted that the number of parameters
in the irredundant lattice PWA representation (32) and
the redundant lattice PWA representation (31) are the
same. Hence, we cannot say that all irredundant lattice
PWA representations are more compact than redundant
ones. However, for any redundant lattice PWA represen-
tation, we can use Corollary 1 and Theorem 3 to get a
corresponding irredundant one.

The following section summarizes the steps for obtaining
an irredundant lattice PWA representation.

3.4 Algorithm for obtaining an irredundant lattice
PWA representation

Algorithm 1 Obtaining an irredundant lattice PWA
representation.

Input: Continuous PWA function f with sub-
regions Ω1, . . . ,ΩN̂

and local affine functions
ℓloc(1), . . . , ℓloc(N̂) with loc(i) ∈ {1, . . . ,M}, i ∈

{1, . . . , N̂}.
Output: Irredundant lattice PWA representation

fL = max
i∈Ñ

{min
j∈Ii

{ℓj}}.

1: Divide Ω1, . . . ,ΩN̂
into base regions D1, . . . ,DN .

2: Compute I≥,i and TF
i for i = 1, . . . , N to obtain the

full lattice PWA representation (11) ;
3: for i = 1 : N do
4: Ii = I≥,i;
5: for j ∈ Ii do
6: Īi = Ii \ {j};
7: if min

k∈Īi

{ℓk} is an implicant of f then

8: Ii = Īi;
9: end if

10: end for
11: end for

12: Ñ = {1, . . . , N} ;
13: for i ∈ {1, . . . , N} do
14: if C(min

j∈Ii
{ℓj}) ⊆ ∪υ∈Ñ ,υ 6=iC(min

j∈Iυ
{ℓj}) then

15: Ñ = {1, . . . , N} \ {i};
16: end if
17: end for

In Algorithm 1, the second and third “For” block (line 5
and 13) are for removing redundant literals and terms,
respectively. It should be noted that different search se-
quences in line 5 may generate different implicants Ti;
so in the current algorithm we just choose one particu-
lar sequence and only get one prime implicant. For the
third “For” (line 13) block, different search sequences

may yield different sets Ñ , and we just select one se-
quence. Therefore, Algorithm 1 will result in only one
irredundant lattice PWA representation, although there
may exist multiple ones. We refer the reader to our re-
cent paper (Xu et al., 2016) for the derivation of the
most compact representation.

3.5 Complexity Analysis

3.5.1 Storage requirements of irredundant lattice PWA
representations

For an irredundant lattice PWA representation (17) with

M distinct affine functions and Ñ terms (Ñ ≤ N), we

have to store (n+ 1) ·M real numbers and
Ñ
∑

i=1

|Ii| inte-

ger numbers, in which |Ii| denotes the cardinality of the
index set Ii and |Ii| ≤ M .

If the continuous PWA function is expressed via subre-
gions and affine functions defined on them, as there are N̂

subregions, one has to store (n+1)·N̂+
N̂
∑

i=1

ri ·(n+1) real

numbers, in which ri is the number of linear inequalities
defining the i-th subregion. For an n-dimensional prob-
lem, if the subregion Ωi is bounded, we have ri ≥ n+ 1
and the inequality becomes an equality when Ωi is a sim-
plex. Hence, for the bounded case, the required storage

is greater than or equal to (n+ 1) · N̂ +
N̂
∑

i=1

(n+ 1)2.

In many cases we encountered, we have Ñ < N̂ , and
generally speaking, M < N̂ , so if the size of |Ii| is close
to (n+ 1)2, the storage requirements of an lattice PWA
representation is less than that of the expression with
the subregions and local affine functions. In linear ex-
plicit MPC, which will be considered in the next section,
usually there are many subregions sharing the same lo-
cal affine function, henceM ≪ N̂ . So compared with the
continuous PWA solution given by the MPT Toolbox,
the storage requirements will be decreased significantly
using the lattice PWA representations.

3.5.2 Offline preprocessing

Assume the continuous PWA function is given by the
subregions and local affine functions. And that we use
Algorithm 1 for offline preprocessing, i.e., obtaining an
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irredundant lattice PWA representation. The following
lemma gives the worst-case time complexity of Algo-
rithm 1.

Lemma 4 The worst-case time complexity of Algorithm

1 is O

(

N̂
∑

i=1

2M−1(ri +M − 1)3Li

)

, in which ri is the

number of linear inequalities defining Ωi and Li is the bit
length of the input data of the linear programming (LP)
problem (A.11).

PROOF. According to Appendix A, the time com-
plexity for evaluating Line 1 to 2 of Algorithm 1 is

O

(

N̂
∑

i=1

2M−1(ri +M − 1)3Li

)

.

Then from line 3 to 11, for each i ∈ {1, . . . , N}, line
6 may be evaluated at most |I≥,i| − 1 times. For each
Īi, in order to check line 7, we use Theorem 3 to check
whether there exists some element kt,υ ∈ Īi such that
ℓkt,v

(x) ≤ ℓt(x), ∀x ∈ Dυ for any t ∈ I≥,i \ Īi, and any
υ ∈ A(ℓt). According to (8) and (9), this is equivalent to
check whether kt,v /∈ I≥,υ, which requires |Īi||I≥,υ| com-
parisons in |A(ℓt)| base regions. As |Īi| ≤ M , |I≥,υ| ≤
M , |A(ℓt)| ≤ N , in the worst case, the time complexity

for evaluating line 3 to 11 is O

(

N
∑

i=1

(M − 1)M2N

)

=

O(M3N2).

Thirdly, when evaluating line 13 to 17, we have to first
calculate C(min

j∈Ii
{ℓj}), ∀i ∈ {1, . . . , N}, i.e, we have to

check whether Ii ⊆ I≥,t, t ∈ {1, . . . , N}, which requires
N
∑

i=1

N
∑

t=1
|Ii||I≥,t| comparisons. Then checking the condi-

tion in line 14 N times requires
N
∑

i=1

∑

υ∈Ñ ,υ 6=i

|Ii||Iυ| com-

parisons. Hence, the worst-case complexity for evaluat-
ing line 13 to 17 is O(M2N2).

In general,O(M3N2) < O

(

N̂
∑

i=1

2M−1(ri +M − 1)3Li

)

.

Thus the worst-case time complexity of Algorithm 1 is

O

(

N̂
∑

i=1

2M−1(ri +M − 1)3Li

)

.

3.5.3 Online Evaluation

Assume there are Ñ terms in the irredundant lattice
PWA representation, according to (Wen et al., 2009),

the worst-case online evaluation complexity is O(Ñ2).

4 Application to linear explicit MPC

MPC problem with quadratic cost function for a
discrete-time linear time-invariant system can be cast
as the following optimization problem at time step t:

min
U

{

J(U, xt) = xT
t+Ny

Pxt+Ny
+

Ny−1
∑

k=0

[

xT
t+kQxt+k

+uT
t+kRut+k

]

}

(33a)

s.t. ymin ≤ yt+k ≤ ymax, k = 1, . . . , Ny, (33b)

umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Ny − 1, (33c)

xt+k+1 = Axt+k +But+k, k = 0, 1, . . . , Ny − 1,
(33d)

yt+k = Cxt+k, k = 1, . . . , Ny, (33e)

ut+k = Kxt+k, k = Nu, . . . , Ny − 1, (33f)

in which the optimized variableU = [uT
t , . . . , u

T
t+Ny−1]

T ;

Nu and Ny are the control horizon and prediction
horizon respectively, xt+k, yt+k denote the predicted
state and output vector at time step t + k using
(33d). The matrix K is the feedback gain of a stabi-
lizing controller. We assume Q,P < 0, R ≻ 0. After
solving the optimization problem (33), the optimal

U∗ = [(u∗
t )

T , . . . , (u∗
t+Ny−1)

T
]T is obtained, and only u∗

t

is applied to the system. The optimization problem is
subsequently reformulated and solved at the next time
steps t+ 1, t+ 2, . . . by updating the state vector xt.

It is proved in (Bemporad et al., 2002b) that the solution
u∗
t of (33) is a continuous PWA function of the state xt.

In (Wen et al., 2009), a lattice PWA representation is
used to represent the resulting continuous PWA solu-
tion. The lattice PWA representation is also simplified to
give a more compact expression. However, as pointed out
in Section 3, the irredundancy of the simplification re-
sults in (Wen et al., 2009) cannot be guaranteed. Hence,
we now give the irredundant lattice PWA representa-
tions to simplify the explicit MPC output.

Now we give 2 worked examples, one is 2-dimensional
and the other is 4-dimensional, and apply the irredun-
dant lattice PWA representations to express the optimal
solution in linear explicit MPC problem.

Example 2 Consider the discrete-time double integra-
tor example introduced in (Bemporad et al., 2002b), and
for which the system dynamics can be written as

xk+1 =

[

1 1

0 1

]

xk +

[

0

1

]

uk,

yk =
[

1 0
]

xk.

(34)
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Consider the MPC problem (33) with Q =

[

1 0

0 0

]

, R =

0.01 and P =

[

2.0191 1.0288

1.0288 1.0484

]

. The system constraint

is −1 ≤ uk ≤ 1.

Assume Ny = Nu = 10. First we use the MPT Toolbox
version 3.0.16 (Herceg et al., 2013a) to compute the op-
timal output ut as a function of xt. This yields a continu-
ous PWA function with 303 subregions, in each of which
there is a corresponding local affine function. Among all
the affine functions, there are only 41 unique ones; hence,
several subregions share the same local affine function.
After applying Algorithm 1, only 18 terms are left. If
the procedure of (Wen et al., 2009) is used, there are 24
terms, indicating that the procedure in (Wen et al., 2009)
may result in redundant representations. Hence, the orig-
inal solution calculated by the MPT Toolbox can be repre-
sented by a more compact irredundant lattice PWA rep-
resentation.

For Ny = Nu = 2, 6, 10, 14, 20, Table 1 compares the
complexity of five methods, i.e., the MPT output, the lat-
tice PWA representation in (Wen et al., 2009), denoted
as “LR”, the irredundant lattice PWA representation, de-
noted as “ILR”, the binary search tree (BST) of (Tøndel
et al., 2003a), and the graph traversal (GT) method of
(Herceg et al., 2013b). The complexity includes the stor-
age requirements, the preprocessing time as well as the
online evaluation time. In Table 1, Naff and Nreg repre-
sent the number of distinct affine functions and subre-
gions given by the MPT Toolbox.

It is noted that here the BST is exported from the MPT
Toolbox, and the graph traversal method is also realized
through the MPT Toolbox. The preprocessing time for
MPT output is set to be “—” as the other methods are
based on the MPT output; besides, the adjacency list for
the GT method is included in the MPT output; hence the
preprocessing time for GT is also recorded as “—”. The
online evaluation is carried out for 1000 points and the
recorded time is the mean. For the examples in this paper,
both the offline preprocessing and the online evaluation
are implemented through MATLAB 2012b on a 2.4 GHz
Intel Core i5 computer.

From the table, for all the prediction horizons, we can see
that the number of parameters in the irredundant lattice
PWA representation is the least among the five meth-
ods. According to the analysis in Section 3.5, the storage
requirements for the irredundant lattice PWA represen-
tation are much lower than those of the MPT output.
Besides, in the binary search tree and graph traversal
method, compared with the MPT output, more informa-
tion has to be stored in order to facilitate the point loca-
tion procedure. Thus the storage requirements for these
two methods are even higher. Compared with the lattice

Table 1
Comparison of the complexity of five methods.

NyMethodNaff Nreg
Storage PreprocessingEvaluation

(Numbers) Time (s) Time (ms)

2

MPT

7 13

195 — 1.5

LR 30 0.01 0.06

BST 311 0.85 0.06

GT 247 — 1.3

ILR 30 0.09 0.06

6

MPT

17 87

1305 — 2.0

LR 81 0.32 0.12

BST 2719 45.17 0.12

GT 1653 — 2.2

ILR 81 1.5 0.12

10

MPT

41 303

4545 — 3.9

LR 262 1.7 0.42

BST 10181 600 0.07

GT 5757 — 5

ILR 203 15 0.27

14

MPT

71 747

11205 — 8.3

LR 518 8.99 1.0

BST 26799 4050.2 0.07

GT 14193 — 7.3

ILR 390 89.36 0.62

20

MPT

113 1829

27435 — 18.4

LR 1136 74 2.4

BST 63728 29728 0.09

GT 34751 — 15.4

ILR 754 1022.8 1.3

PWA representation of (Wen et al., 2009), the irredun-
dant lattice PWA representation has a smaller number
of parameters and is faster for online evaluation, which
is more evident when Ny increases.

Of course, the preprocessing time of the irredundant lat-
tice PWA representation is longer than that of the lat-
tice PWA representation of (Wen et al., 2009) because
it takes time to delete all the redundant parameters. For
this example, the number of parameters in the irredun-
dant lattice PWA representation is the least and the on-
line evaluation performance is also excellent. At the same
time, the preprocessing time is not too long.

Example 3 Consider the following linear system taken
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from (Borrelli, 2003):

xk+1 =















4 −1.5 0.5 −0.25

4 0 0 0

0 2 0 0

0 0 0.5 0















xk +















0.5

0

0

0















uk

yk =
[

0.083 0.22 0.11 0.02
]

xk.

The system is subject to input constraints −1 ≤ uk ≤
1, state constraints −10 ≤ xk,i ≤ 10, i = 1, ..., 4, and
output constraints −10 ≤ yk ≤ 10. The MPC controller
is designed with Ny = Nu = 6, Q = diag{1, 1, 1, 1},
R = 0.01, and P = 0. The explicit solution consists of
437 regions.

Table 2 compares the performance of four methods. Note
that the binary search tree is not listed for this example
as its preprocessing time is too long.

Table 2
Comparison of the complexity of four methods.

NyMethodNaff Nreg

Storage PreprocessingEvaluation

(Numbers) Time (s) Time (ms)

10

MPT

93 437

22985 — 5.6

LR 5580 35.64 1.2

GT 27145 — 5.4

ILR 4557 2648 0.93

The notations in Table 2 are the same as those in Table
1. For this example, compared with the other 3 methods,
the irredundant lattice PWA representation also saves
significantly in storage requirements.

Although there are only 437 subregions and 93 distinct
affine functions, compared with Example 2, the prepro-
cessing time for the irredundant lattice PWA represen-
tation is longer. This is due to the increase in dimen-
sion. For higher dimensions, it is more likely that other
affine functions intersect with the local affine functions
in the interior of the subregions, thus yielding more base
regions. Besides, the vertices are hard to derive in higher
dimension and LP problems have to be solved to deter-
mine I≥,i,t, i = 1, . . . , N̂ , t = 1, . . . ,mi. Hence, the of-
fline preprocessing time is increased significantly.

When we set xk to be unbounded, there are 890 sub-
regions and 265 distinct affine functions. In this case,
the offline preprocessing for the irredundant lattice PWA
representation explodes, i.e., the number of base regions
exceeds 300000 and the preprocessing time exceeds 24
hours. Therefore, in this case, we may resort to some
other methods.

5 Conclusions and Future work

In this paper, we have derived the irredundant lattice
PWA representations, which are realized by removing
redundant terms and literals in the full lattice PWA
representation. The full lattice PWA representation is
defined on base regions and we show that by choosing
appropriate parameters it can represent any continu-
ous PWA function. We have proposed the necessary and
sufficient conditions for irredundancy as well as for re-
moving redundant terms and literals. Based on this, an
algorithm has been put forward to obtain an irredun-
dant lattice PWA representation of any given continu-
ous PWA function. The storage requirements of irredun-
dant lattice PWA representations as well as the offline
and online complexity have been analyzed. The irredun-
dant lattice PWA representations have been applied to
express the optimal solution of explicit MPC problem.
The simulation results show that the number of param-
eters needed to describe a continuous PWA functions is
largely reduced by using irredundant lattice PWA rep-
resentations. Besides, the online evaluation speed is also
improved.

For problems with a high dimension, a large number of
subregions and distinct affine functions, when the pre-
processing time for an irredundant lattice PWA repre-
sentation explodes, maybe we can combine the irredun-
dant lattice PWA representation and some other point
location algorithms, like (Bayat et al., 2012), in which
examples are given to combine truncated binary search
tree with lattice PWA representations of (Wen et al.,
2009).
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A Partition the subregions into base regions

A.1 Proof of Lemma 1.

PROOF. Define the following index sets:

K≥,i = {j|ℓj(x) ≥ ℓloc(i)(x), ∀x ∈ Ωi}, (A.1)

K≤,i = {j|ℓj(x) ≤ ℓloc(i)(x), ∀x ∈ Ωi}, (A.2)

Ji = {1, . . . ,M} \ (K≥,i ∪K≤,i). (A.3)

It is clear that if Ji = ∅, we have (3), and then Ωi does
not need to be partitioned. Moreover we have mi = 1,
Di,1 = Ωi, I≥,i,1 = K≥,i and I≤,i,1 = K≤,i.
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If Ji 6= ∅, suppose Ji = {i1, . . . , iNi
}. Then for each

ij ∈ Ji, we consider two sets:

Ω≥,ij = {x|x ∈ Ωi, ℓij (x) ≥ ℓloc(i)(x)}, (A.4)

Ω≤,ij = {x|x ∈ Ωi, ℓij (x) ≤ ℓloc(i)(x)}. (A.5)

Since ij ∈ Ji, we have int(Ω≥,ij ) 6= ∅ and int(Ω≤,ij ) 6=
∅. Besides, according to (A.4) and (A.5), the following
holds,

int(Ω≥,ij ) ∩ int(Ω≤,ij ) = ∅, Ω≥,ij ∪ Ω≤,ij = Ωi. (A.6)

From (A.6), we have

∩ij∈Ji

(

Ω≥,ij ∪ Ω≤,ij

)

= Ωi. (A.7)

If we define the set WNi = {(wi1 , . . . , wiNi
)|wij ∈ {≥,≤

}, j = 1, . . . , Ni}, we can further write (A.7) as

∪(wi1
,...,wiNi

)∈WNi

(

Ωwi1
,i1 ∩ · · · ∩ ΩwiNi

,iNi

)

= Ωi.

(A.8)

According to (A.8), as Ωi is not empty, there exist com-
binations (wi1 , . . . , wiNi

) such that int(Ωwi1
,i1 ∩ · · · ∩

ΩwiNi
,iNi

) is nonempty. Assume the subregion Ωi can be

described as
Eix ≤ ei. (A.9)

For each combination of (wi1 , . . . , wiNi
), we have to

check if there exists some x such that the following holds

Eix ≤ ei,

ℓij (x) ≥ ℓloc(i)(x), ∀ωij =≥, ij ∈ Ji (A.10)

ℓij (x) ≤ ℓloc(i)(x), ∀ωij =≤, ij ∈ Ji

i.e., whether the combination yields an intersection
with a nonempty interior. Suppose the linear inequali-
ties (A.10) can be described as Eix ≤ ǫi. According to
Farkas’ Lemma (Ziegler, 1995), there is no x such that
(A.10) is valid if and only if the optimal value of the
following LP problem

min
z

− ǫTi z,

s.t. ET
i z = 0, (A.11)

z ≥ 0,

is positive. Hence, we can solve (A.11) to judge whether
the resulting intersection has a nonempty interior.

We collect all the intersections with nonempty interior
and denote them as Di,1, . . . ,Di,t, . . . ,Di,mi

. Then

Ωi = Di,1 ∪ · · ·Di,t ∪ · · ·Di,mi
.

For Di,t, define

Γ≥,i,t = {ij |wij =≥}, Γ≤,i,t = {ij |wij =≤}.

Then we have

Di,t = {x|x ∈ Ωi, ℓj(x) ≥ ℓloc(i)(x), ∀j ∈ Γ≥,i,t,

ℓj(x) ≤ ℓloc(i)(x), ∀j ∈ Γ≤,i,t}, (A.12)

where Γ≥,i,t ∩ Γ≤,i,t = ∅, Γ≥,i,t ∪ Γ≤,i,t = Ji.

According to the expression (A.12) for Di,t, we have
I≥,i,t = K≥,i ∪ Γ≥,i,t and I≤,i,t = K≤,i ∪ Γ≤,i,t.

As Γ≥,i,t∪Γ≤,i,t = Ji andK≥,i∪K≤,i∪Ji = {1, . . . ,M},
we have (5).

For two sets Di,t̄ and Di,t̂ with t̄ 6= t̂, the combina-

tions (wi1 , . . . , wiNi
) must be different. Then according

to (A.4) and (A.5), we have

int(Di,t̄) ∩ int(Di,t̂) = ∅. (A.13)

From Definition 1, we have int(Ωi) ∩ int(Ωj) = ∅ for
any i 6= j, which together with (A.13) yields (6). Hence,
D is partitioned into disjoint nonempty base regions
D1,1, . . . ,D1,m1

, . . . ,D
N̂,1, . . . ,DN̂,m

N̂
. Besides, the in-

dex sets I≥,i,j , I≤,i,j , i = 1, . . . , N̂ , j = 1, . . . ,mi are ob-
tained.

A.2 Time complexity of the partition process.

Lemma 5 For the process of partitioning the subre-
gions into base regions, the worst-case time complexity

is O

(

N̂
∑

i=1

2M−1(ri +M − 1)3Li

)

, in which Li is the bit

length of the input data of the LP problem (A.11).

PROOF. First, we have to calculate the index sets
(A.1)-(A.3), i.e., finding the indices of affine functions
that are larger than (less than) or equal to ℓloc(i) in Ωi,

i = 1, . . . , N̂ . This can be done through the evaluation
of the affine functions at the vertices of Ωi (Wen et al.,
2009). However, the vertices of the subregions may not
be readily available. Suppose ℓj(x) = aTj x + bj for all
j ∈ {1, . . . ,M}, in which aj ∈ Rn and bj ∈ R. Accord-
ing to Farkas’ lemma (Ziegler, 1995) and (A.9), we have
j ∈ K≥,i if and only if the optimal value of the LP prob-
lem

min
z

− eTi z + bj − bloc(i),

s.t. ET
i z = aloc(i) − aj , (A.14)

z ≥ 0,
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is nonnegative. Similarly, we have j ∈ K≤,i if and only
if the optimal value of the LP problem

min
z

− eTi z + bloc(i) − bj ,

s.t. ET
i z = aj − aloc(i), (A.15)

z ≥ 0,

is nonnegative. In each subregion Ωi, we then have
to solve at most 2(M − 1) LP problems to determine

the index sets K≥,i,K≤,i, i = 1, . . . , N̂ . According to
(Gonzaga, 1995), the worst-case time complexity for
solving those LP problems using the interior method is

O

(

N̂
∑

i=1

2(M − 1)r3i L̃i

)

, in which L̃i is the bit length of

the input data of the LP problem (A.14) and (A.15),
and ri is the number of rows in Ei. The index sets
Ji, i = 1, . . . , N̂ can be calculated through (A.3),
which requires M(|K≥,i| + |K≤,i|) comparisons. Gen-

erally speaking, O(M2N̂) < O

(

N̂
∑

i=1

2(M − 1)r3i L̃i

)

,

hence the worst-case complexity for this step is

O

(

N̂
∑

i=1

2(M − 1)r3i L̃i

)

.

Then we collect all the intersections with nonempty inte-
rior and obtain the base regionsD1,1, . . . ,D1,m1

, . . . ,D
N̂,1,

. . . ,D
N̂,m

N̂
. As there are M distinct affine functions,

in each subregion Ωi, there are at most M − 1 affine
functions that can intersect with the local affine func-
tion ℓloc(i) at some point in the interior of Ωi. Accord-
ing to the proof of Lemma 1, for each Ωi, the parti-
tion process may generate at most 2M−1 combinations
(ωi1 , . . . , ωiM−1

). For each combination, we solve the
LP problem (A.11) to check whether it has a nonempty
interior. Therefore, if the interior method is used for
the LP problem (A.11), the worst-case time complexity

for this step is O

(

N̂
∑

i=1

2M−1(ri +M − 1)3Li

)

, where

ri +M − 1 is the number of rows in Ei and Li is the bit
length of the input data of the LP problem (A.11).

Generally speaking, we have O

(

N̂
∑

i=1

2(M − 1)r3i L̃i

)

<

O

(

N̂
∑

i=1

2M−1(ri +M − 1)3Li

)

. Hence, the worst-

case time complexity for the partition process is

O

(

N̂
∑

i=1

2M−1(ri +M − 1)3Li

)

.

ℓact(i) ℓact(k)

Di Dk

(a) i = k − 1

ℓact(k) ℓact(i)

Dk Di

(b) i = k + 1

Fig. B.1. Case 1

ℓact(i) ℓact(k)

Di Dk

(a) i = k − 1

ℓact(k) ℓact(i)

Dk Di

(b) i = k + 1

Fig. B.2. Case 2

B Proof of Proposition 1

PROOF. As D ⊆ R1 is convex, the line segment be-
tween two points in D still lies in D. We number the base
regions from the left to the right. Then we prove (10) by
mathematical induction.

Basis: The base regions Dk and Di are adjacent, i.e.,
i = k ± 1. There are two cases:

Case 1: act(k) ∈ I≥,i, act(i) ∈ I≥,k. Fig. B.1 illustrates
this case. In Fig. B.1 (a), k = i+1, while in Fig. B.1(b),
i = k + 1. As act(i) ∈ I≥,k, we have min

j∈I≥,k

{ℓj} ≤ ℓact(i).

Since min
j∈I≥,i

{ℓj} = ℓact(i) in Di, (10) follows.

Case 2: act(k) ∈ I≤,i, act(i) ∈ I≤,k. Fig. B.2 illustrates
this case. As act(k) ∈ I≤,i, we have ℓact(k) ≤ ℓact(i) in
Di. Then for all x ∈ Di,

min
j∈I≥,k

{ℓj(x)} ≤ ℓact(k)(x) ≤ ℓact(i)(x) = min
j∈I≥,i

{ℓj(x)},

and so (10) is valid.

Induction: Assume (10) is valid when there arem base
regions between Dk and Dτ , i.e., τ = k ±m. Then

min
j∈I≥,k

{ℓj(x)} ≤ min
j∈I≥,τ

{ℓj(x)}, ∀x ∈ Dτ . (B.1)

We show that (10) is true when there are m + 1 base
regions between Dk and Di, i.e., i = k ± (m + 1). Fig.
B.3 and B.4 sketches the relative positions of the affine
functions ℓact(i), ℓact(τ), and ℓact(k). Since the assump-
tion (B.1) holds, then there must exist an index α ∈ I≥,k

such that

ℓα(x) ≤ ℓact(τ)(x), ∀x ∈ Dτ .
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ℓact(i)

ℓact(k)

ℓact(τ)

Di DkDτ m base regions

A

ℓα

ℓα

(a) τ = k −m, i = k −m− 1

ℓact(i)

ℓact(k)

ℓact(τ)

Di
Dk Dτm base regions

A

ℓα

ℓα

(b) τ = k +m, i = k +m+ 1

Fig. B.3. Sketches of 1-dimensional affine functions ℓact(i),
ℓact(τ), and ℓact(k) when act(i) ∈ I≥,τ and act(τ) ∈ I≥,i.

According to (3), in the base regionDi, either ℓα ≤ ℓact(i)
or ℓα ≥ ℓact(i). The sketch of possible position of ℓα is
also shown in Fig. B.3 and Fig. B.4.

If ℓα ≤ ℓact(i) in Di, we have (10).

Else if ℓα ≥ ℓact(i) in Di, as ℓα ≤ ℓact(τ) in Dτ , the
affine functions ℓact(i), ℓact(τ), and ℓα must intersect at
the same point, indicated by “A” in Fig. B.3 and B.4.
Then we have ℓact(i) ≥ ℓα in Dk, as α ∈ I≥,k, thus
act(i) ∈ I≥,k. Therefore

min
j∈I≥,k

{ℓj(x)} ≤ ℓact(i)(x), ∀x ∈ Di

and (10) holds.
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