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Minimal conjunctive normal expression of

continuous piecewise affine functions
Jun Xu, Ton J. J. van den Boom, Bart De Schutter, and Xionglin Luo

Abstract—Continuous piecewise affine (PWA) functions arise
in many aspects of control. For this kind of function, we propose
the minimal conjunctive normal expression (CNE). The CNE can
be expressed as the minimum of a collection of terms, each of
which is the maximum of a set of affine functions. The minimal
CNE is defined to contain the smallest number of parameters.
Analogous to Boolean algebra, we propose implicants and prime
implicants for continuous PWA functions. After obtaining all
prime implicants, the problem of finding minimal CNEs can then
be cast as a binary programming problem. A sharp bound on the
number of boolean variables in the binary programming problem
is given. In two worked examples, minimal CNEs are derived for
given continuous PWA functions.

Index Terms—Continuous piecewise affine, minimal expres-
sion, conjunctive normal expression.

I. INTRODUCTION

For a continuous piecewise affine (PWA) function, the

domain is partitioned into finite nonoverlapping polyhedra,

in each of which the continuous PWA function is affine.

Continuous PWA functions form the “simplest” extension of

linear functions and they can approximate smooth nonlinear

functions in a compact set with arbitrary precision [1]. Con-

tinuous PWA functions have been introduced for the modeling

of nonlinear circuits [2], and they find extensive applications

in modeling and control, such as dynamic system modeling,

model predictive control (MPC), and constructing Lyapunov

functions [3], [4].

In the context of modeling of dynamic system, continuous

PWA systems are equivalent to several classes of hybrid

systems [5]. Typical examples of hybrid systems are manu-

facturing systems, telecommunication and computer networks,

traffic control systems, digital circuits, and logistic systems.

Nonlinear smooth systems can also be approximated with

continuous PWA systems [6], [7].

Continuous PWA functions also appear in MPC, in which

an optimization problem is solved at each time step. For

the optimization problems with affine constraints, if the cost
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function is convex quadratic or polyhedral, i.e., the epigraph

of the cost is a polyhedron, the optimal control law of the

optimization problem is continuous PWA with respect to the

state; moreover, the optimal MPC objective function is contin-

uous PWA if the cost is polyhedral. Continuous PWA functions

can also express cost functions of min-max control problems

for uncertain linear systems [8] or uncertain continuous PWA

systems [9], [10].

There are several representation forms for continuous PWA

functions. In [11], continuous PWA functions are expressed

by the polyhedral regions and affine functions defined on

them. Then in several papers [1], [12], [13], continuous PWA

functions are expressed via basis functions expansion, i.e.,

linear combinations of a set of basis functions. There is also

another representation form of continuous PWA functions,

which is min-max (or max-min) function, i.e., the minimum

(maximum) of a set of terms, each of which is the maximum

(minimum) of several affine functions. In fact, these represen-

tations first appeared in [14], and nowadays find applications

in generating nonlinear functions, discrete event system and

model predictive control [15], [16]. In this paper, the min-max

form is called the conjunctive normal expression (CNE) and

the max-min form is called the disjunctive normal expression

(DNE), which follows the terminology in Boolean algebra.

It is mentioned in [10] that the CNE will facilitate the

research on structural properties of the system, such as con-

trollability, reachability, and observability. Besides, if the MPC

objective function is expressed as a CNE, only a set of linear

programming problems have to be solved at each time step

and the MPC optimization is simplified [15]. There are also

approaches to remove redundant parameters in CNE or DNE

[16]–[18]. However, none of these results has the minimal

number of parameters. Other papers like [19], [20] reduce the

complexity of the continuous PWA function through merging

polyhedra in the function, and [20] finds the minimal number

of polyhedra. In the current paper we consider minimal CNEs

with the minimal number of parameters. It is important to note

that the results can easily be extended to DNEs due to duality.

The paper is organized as follows. Section II introduces

continuous PWA functions and CNEs. Then Section III defines

implicants and prime implicants. In Section IV, minimal CNEs

are derived through solving a binary programming problem.

Besides, a sharp bound on the number of binary variables is

given and the time complexity is discussed. Section V gives

two examples for which minimal CNEs are obtained. The

paper ends with conclusions and future work in Section VI.
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II. CONTINUOUS PWA FUNCTION AND CNE

A scalar-valued continuous PWA function is defined as

follows:

Definition 1. A function f : D → R where D ⊆ Rn is convex,

is said to be continuous PWA if it is continuous on the domain

D and the following conditions are satisfied:

• There are a finite number of nonempty, nonoverlapping

full-dimensional polyhedra Ω1, . . . ,ΩN̂
with Ωi ⊆ D, the

union of which covers D, i.e.,

D = Ω1 ∪ · · · ∪ Ω
N̂
.

We call Ωi, i = 1, . . . , N̂ regions.

• In each region Ωi, the function f equals a local affine

function ℓj with j ∈ {1, . . . ,M}. The affine functions ℓj
and ℓk are different if j 6= k; hence, M is the number of

distinct affine functions.

According to [21], the region Ωi can be further divided

into so called nonempty, nonoverlapping base regions, in the

interior of which no other affine functions intersect with the

local affine function. Therefore, we then have

D = ∪N
i=1Di

with int(Di) 6= ∅ and int(Di) ∩ int(Dj) = ∅, i, j ∈
{1, . . . , N}, i 6= j.

Besides, in each base region Di, i = 1, . . . , N , we have

{x|ℓj(x) = ℓact(i)(x), j 6= act(i)} ∩ int(Di) = ∅, (1)

where ℓact(i) is called the active affine function in Di, i.e.,

f(x) ≡ ℓact(i)(x), ∀x ∈ Di.

From Definition 1, it is clear that act(i) ∈ {1, . . . ,M}.

Analogous to the conjunctive normal form of Boolean func-

tions, considering two binary operations “min” and “max”, we

define the conjunctive normal expression (CNE) for continu-

ous PWA functions as follows:

Definition 2. The CNE of a continuous PWA function f as

defined in Definition 1 is defined as

min
i∈I

{max
j∈Ii

{ℓj}} (2)

where I and Ii are index sets. We call max
j∈Ii

{ℓj} with i ∈ I a

term, and the affine functions ℓj , j ∈ Ii are called literals.

In fact, the CNE appears in [14], [15], [22], [23], in which

different names are given for (2). It has also been proved

in these papers that any continuous PWA function can be

expressed as a CNE (2).

For a continuous PWA function, there may exist many

CNEs. Then following gives a simple example to illustrate

this.

Example 1. Consider the following 1-dimensional continuous

PWA function defined on [0, 4]:

f(x) =















ℓ1(x) = −0.5x+ 2.5, x ∈ [0, 1],
ℓ2(x) = −2x+ 4, x ∈ [1, 2],
ℓ3(x) = 2x− 4, x ∈ [2, 2.5],
ℓ4(x) = 1, x ∈ [2.5, 4].

(3)

Fig. 1 shows the plot of this function. We can see that there are

4 regions and 6 base regions with Ω1 = D1, Ω2 = D2 ∪ D3,

Ω3 = D4 and Ω4 = D5 ∪ D6.
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Fig. 1. A 1-dimensional example of a continuous PWA function.

For the two CNEs

f1(x) = min{max{−0.5x+ 2.5, 1},max{−2x+ 4, 2x− 4},
max{−2x+ 4, 1}}, (4)

f2(x) = min{max{−0.5x+ 2.5, 2x− 4, 1},max{−2x+ 4,

2x− 4},max{−2x+ 4, 1}}, (5)

we can verify that both of them equal f in [0, 4]. However,

there is one more literal in (5).

In the following, we derive minimal CNEs for continuous

PWA functions.

III. IMPLICANTS AND PRIME IMPLICANTS

The notions “implicant” and “prime implicant” play an

important role in the derivation of the conjunctive normal form

for Boolean functions. Hence here similarly, we define these

two in the context of continuous PWA functions.

Definition 3. For a continuous PWA function f as defined in

Definition 1, we say Ti = max
j∈Ii

{ℓj} is an implicant of f , if

Ti(x) ≥ f(x), ∀x ∈ D,

and there is some base region Dk such that Ti ≡ f in Dk. The

implicant Ti = max
j∈Ii

{ℓj} is a prime implicant if there exists

no other implicant Tr = max
j∈Ir

{ℓj} of f such that Ir ( Ii.

Next we explain how to identify an implicant.

Lemma 1. Assume Tik = max
j∈Iik

{ℓj} is an implicant of f . Then

there must exist some index i ∈ {1, . . . , N} such that

Iik ⊆ I≤,i, (6)

in which I≤,i = {υ ∈ {1, . . . ,M}|ℓυ(x) ≤ ℓact(i)(x), ∀x ∈
Di}. Besides, Tik ≡ f in Di.

Proof. As a dual result of Lemma 2 of [21], we have

max
j∈I≤,i

{ℓj(x)} ≥ f(x), ∀x ∈ D
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and

max
j∈I≤,i

{ℓj(x)} = f(x), ∀x ∈ Di.

Assume (6) does not hold, i.e., for all t = 1, . . . , N , we

have

Iik 6⊆ I≤,t.

Then for each t = 1, . . . , N , there exists some tk ∈ Iik such

that tk /∈ I≤,t. According to (1) we have

Tik(x) ≥ ℓtk(x) > ℓact(t)(x) = f(x), ∀x ∈ int(Dt).

Hence in all base regions D1, . . . ,DN , we have Tik 6≡ f . This

contradicts that Tik is an implicant of f . Therefore, there exists

some index i ∈ {1, . . . , N} such that Iik ⊆ I≤,i.

In the base region Di with Iik ⊆ I≤,i, we now have

f = max
j∈I≤,i

{ℓj} ≥ Tik ≥ f.

Thus Tik ≡ f in the base region Di.

According to Lemma 1, now we can calculate I≤,i for

each base region Di, i = 1, . . . , N , and then obtain all prime

implicants by searching for all the index sets Iik ⊆ I≤,i

such that Tik = max
j∈Iik

{ℓj} is an implicant of f and any

max
j∈Iir

{ℓj} with Iir ( Iik is not an implicant of f . We

denote all prime implicants of f defined in Definition 1 as

Ti = max
j∈Ii

{ℓj}, i ∈ S .

IV. DERIVING MINIMAL CNES OF CONTINUOUS PWA

FUNCTIONS

A. Minimal CNE

We define the minimal CNE with the least number of

parameters, i.e., the number of integers in the index sets

Ii, i ∈ I plus the number of real parameters in the affine

functions.

Definition 4. The CNE

g∗(x) = min
i∈I∗

{Ti(x)} = min
i∈I∗

{max
j∈Ii

{ℓj}}, ∀x ∈ D (7)

is called a minimal CNE of f in D if g∗ ≡ f in D and
∑

i∈I∗

|Ii| ≤
∑

i∈I
|Ii| for all gi = min

i∈I
{max
j∈Ii

{ℓj}} = f . Here |Ii|
is the cardinality of Ii and |Ii| ≤ M .

It is obvious that all the distinct affine functions appear in

the expression of g∗ and g. In fact, the number of parameters

is
∑

i∈I∗

|Ii| + M · (n + 1), where M · (n + 1) is the number

of parameters in the M affine functions. As M · (n + 1) is

constant, we only consider
∑

i∈I∗

|Ii|.
The following theorem shows that the terms in g∗ are prime

implicants.

Theorem 1. For a minimal CNE g∗ = min
i∈I∗

{Ti} of the

continuous PWA function f as defined in Definition 1, the

terms Ti, i ∈ I∗ must be prime implicants of f , i.e., I∗ ⊆ S .

Proof. First we show that Ti with i ∈ I∗ is an implicant.

If this is not true, then there would exist some term Tα =
max
j∈Iα

{ℓj}, α ∈ I∗ such that Tα is not an implicant of f .

According to Definition 3, there could be two cases. The

first one is that there exists some x̂ ∈ D such that Tα(x̂) <
f(x̂). The second is that Tα(x) ≥ f(x), ∀x ∈ D but Tα 6≡ f
in each Dk, k = 1, . . . , N .

Case 1: There exists an x̂ ∈ D such that Tα(x̂) < f(x̂). In

this case, we have

g∗(x̂) ≤ Tα(x̂) < f(x̂),

contradicting that g∗ ≡ f in D.

Case 2: Tα(x) ≥ f(x), ∀x ∈ D but Tα 6≡ f in each Dk, k =
1, . . . , N . In this case, as (1) holds, we have

Tα(x) > ℓact(k)(x), ∀x ∈ int(Dk), ∀k = 1, . . . , N. (8)

As g∗ = min
i∈I∗

{Ti} satisfies g∗ ≡ f in each Dk, k =

1, . . . , N , according to (8), we have

min
i∈I∗\{α}

{Ti(x)} ≡ f(x), ∀x ∈ int(Dk), ∀k = 1, . . . , N.

Then it follows from continuity that

min
i∈I∗\{α}

{Ti(x)} ≡ f(x), ∀x ∈ Dk, ∀k = 1, . . . , N. (9)

As (9) holds and
∑

i∈I∗

|Ii| >
∑

i∈I∗\{α}
|Ii|, the expression g∗

is not a minimum CNE, yielding contradiction.

Now we prove that every term should also be a prime

implicant. Assume Tβ = max
j∈Iβ

{ℓj} is not a prime implicant,

then we can obtain a prime implicant T̄β = max
j∈Īβ

{ℓj} with

Īβ ( Iβ such that

Tβ(x) ≥ T̄β(x) ≥ f(x), ∀x ∈ D.

Hence, we have

f(x) = g∗(x) = min

(

min
i∈I∗\{β}

{Ti(x)}, Tβ(x)

)

≥ min

(

min
i∈I∗\{β}

{Ti(x)}, T̄β(x)

)

≥ min

(

min
i∈I∗\{β}

{Ti(x)}, f(x)
)

≥ f(x), ∀x ∈ D.

So min

(

min
i∈I∗\{β}

{Ti}, T̄β

)

≡ f in D. As
∑

i∈I∗

|Ii| >
∑

i∈I∗\{β}
|Ii|+ |Īβ |, the expression g∗ is not a minimum CNE,

yielding contradiction. Therefore, every term in g∗ is a prime

implicant, i.e., I∗ ⊆ S .

According to Theorem 1, now the problem of finding a

minimal CNE consists of choosing I∗ ⊆ S such that g∗ =
min
i∈I∗

{Ti} = f and g∗ has the smallest number of parameters.

Suppose I ⊆ S , then we first investigate the conditions

under which min
i∈I

{Ti} is equivalent to f . To facilitate the

derivation, we define the coverage vector of an implicant Ti

as

cov(Ti) = [cov(Ti)1, . . . , cov(Ti)N ]T ,

where the elements cov(Ti)υ, υ ∈ {1, . . . , N} are given by

cov(Ti)υ =

{

1 if Ti(x) = ℓact(υ)(x) = f(x), ∀x ∈ Dυ,
0 otherwise.

(10)
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Lemma 2. The CNE g = min
i∈I

{Ti} with I ⊆ S satisfies

g(x) = f(x), ∀x ∈ D (11)

if and only if

∑

i∈I
cov(Ti) ≥







1
...

1






. (12)

Proof. The condition (12) means that
∑

i∈I
cov(Ti)k ≥ 1 for all

k ∈ {1, . . . , N}. According to the definition of cov(Ti), this

means that for each k ∈ {1, . . . , N}, there exists at least one

ik ∈ I such that cov(Tik)k = 1, i.e.,

Tik(x) = ℓact(k)(x) = f(x), ∀x ∈ Dk. (13)

Necessity. Assume (11) is valid, i.e., g(x) = f(x) for all x ∈
Dk, k = 1, . . . , N . Since each Ti, i ∈ I is a prime implicant

of f , due to (1), for all k = 1, . . . , N , we have either

Ti(x) > f(x), ∀x ∈ int(Dk)

or

Ti(x) = f(x), ∀x ∈ int(Dk).

Then for all k = 1, . . . , N , as g = f in Dk, there exists at

least one ik ∈ I such that (13) holds, i.e., (12) is valid.

Sufficiency. If (12) is valid, for each k ∈ {1, . . . , N} we

have at least one ik ∈ I such that (13) holds, which directly

yields the validity of (11).

Now we show how to derive a minimal CNE g∗.

Analogous to the minimization of Boolean functions [24],

the derivation of minimal CNEs of a continuous PWA function

f can then be cast as the following binary programming

problem:

min
si,i∈S

J(si)

s.t.
∑

i∈S
sicov(Ti) ≥







1
...

1






,

si = 0 or 1, ∀i ∈ S,

(14)

where the optimized variables are the binary variables si, i ∈
S . Each si corresponds to a prime implicant Ti. The case

si = 1 is equivalent to the inclusion of Ti in the CNE, while

si = 0 corresponds to the exclusion of Ti in the CNE. The

cost function J(si) can be expressed as

J(si) =
∑

i∈S
si|Ii|.

The optimal s∗i , i ∈ S follows from solving the optimization

problem (14). Let I∗ = {k|s∗k = 1}, then g∗ = min
i∈I∗

{Ti} is a

minimal CNE according to Definition 4.

It can be seen in (14) that the number of binary variables

si, i.e., |S|, determines the complexity of the optimization

problem. So next we will discuss a bound on |S| with respect

to the number of distinct affine functions M in the continuous

PWA function f .

B. Bound on the number of prime implicants

Theorem 2. Given a continuous PWA function f with M dis-

tinct affine functions, the number of prime implicants satisfies

|S| ≤
(

M
⌊M

2 ⌋

)

, (15)

in which ⌊M
2 ⌋ is the largest integer no greater than M

2 .

The bound is sharp, i.e., for each M , we can construct a

continuous PWA function f such that |S| =
(

M
⌊M

2 ⌋

)

.

Proof. From Lemma 1, for a prime implicant Ti = max
j∈Ii

{ℓj}
with Ii ⊆ {1, . . . ,M}, there is no Ir ( Ii such that

Tr = max
j∈Ir

{ℓj} is also an implicant of f . Hence, for two

prime implicants Ti and Tk, neither Ii ⊆ Ik nor Ik ⊆ Ii. We

say that Ii and Ik are incomparable. Therefore, all index sets

of prime implicants of f are pairwise incomparable subsets of

{1, . . . ,M}.

It is demonstrated by Sperner’s theorem [25], [26] that

the maximal number of pairwise incomparable subsets of

{1, . . . ,M} does not exceed

(

M
⌊M

2 ⌋

)

. Besides, all subsets

of {1, . . . ,M} with ⌊M
2 ⌋ elements constitute such pairwise

incomparable subsets. Therefore, |S| ≤
(

M
⌊M

2 ⌋

)

.

Now we prove that there exists a continuous PWA function

f with M distinct affine functions such that |S| =
(

M
⌊M

2 ⌋

)

.

It is shown in [14] that if M ≤ n+ 1, the intersections of

M distinct affine functions can divide the domain D into at

most M ! distinct regions D1, . . . ,DM !, in the interior of which

no intersections of any two affine functions occur. Therefore,

those regions satisfy (1), and hence can be regarded as base

regions.

Besides, it is also shown in [14] that for each region

Di, there is a tuple (ai,1 · · · ai,M ) with ai,1, . . . , ai,M ∈
{1, . . . ,M} such that

ℓai,1
(x) < · · · < ℓai,M

(x), ∀x ∈ int(Di).

Moreover, for any i 6= k, the tuples (ai,1 · · · ai,M ) and

(ak,1 · · · ak,M ) are different. As there are M ! regions, the

tuples (a1,1 · · · a1,M ), . . . , (aM !,1 · · · aM !,M ) correspond to all

possible permutations of {1, . . . ,M}.

Consider the arrangement of ℓ1, . . . , ℓM yielding M ! base

regions as described above. Let f be the ⌊M
2 ⌋-th minimum of

ℓ1, . . . , ℓM , i.e.,

f(x) = ℓτ(⌊M
2
⌋)(x) (16)

with ℓτ(1)(x) ≤ ℓτ(2)(x) ≤ · · · ≤ ℓτ(M)(x). It is shown in

[27] that f is a continuous PWA function.

In each base region Dk, k ∈ {1, . . . ,M !}, the index τ(⌊M
2 ⌋)

may be different. In fact, for each k ∈ {1, . . . ,M !}, we have

f(x) = ℓτ(⌊M
2
⌋)(x) = ℓa

k,⌊M
2

⌋
(x), ∀x ∈ Dk,

i.e.,

τ

(

⌊M
2
⌋
)

= ak,⌊M
2
⌋ = act(k), ∀x ∈ Dk.
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We now prove that the number of prime implicants of the

continuous function described in (16) is

(

M
⌊M

2 ⌋

)

.

For each base region Dk, k = 1, . . . ,M !, let

Tk = max
j∈I≤,k

{ℓj}

then there are ⌊M
2 ⌋ indices in I≤,k. According to Lemma 1,

Tk is an implicant of f . Next we will show that Tk is also a

prime implicant of f .

For each t ∈ I≤,k, we collect the base regions Dtk with

tuples (atk,1 · · · atk,M ) such that

atk,⌊M
2
⌋ = t (17)

and

{atk,1, . . . , atk,⌊M
2
⌋} = {ak,1, . . . , ak,⌊M

2
⌋}. (18)

As there are (⌊M
2 ⌋ − 1)! possible permutations of

{atk,1, . . . , atk,⌊M
2
⌋−1} and (M − ⌊M

2 ⌋)! permutations of

{atk,⌊M
2
⌋+1, . . . , atk,M}, the number of base regions satisfying

(17) and (18) is (⌊M
2 ⌋ − 1)!(M − ⌊M

2 ⌋)!.
From (17) and (18), we have

Tk(x) = max
j∈I≤,k

{ℓj(x)} = ℓt(x) = f(x), ∀x ∈ Dtk .

Thus for all x ∈ int(Dtk), we have max
j∈I≤,k\{t}

{ℓj(x)} < f(x),

meaning that max
j∈I≤,k\{t}

{ℓj} is not an implicant of f . There-

fore, the term Tk = max
I≤,k

{ℓj} is a prime implicant.

As the number of distinct I≤,k is

(

M
⌊M

2 ⌋

)

, the number

of prime implicants of (16) is

|S| =
(

M
⌊M

2 ⌋

)

.

C. Complexity analysis

In this paper, complexity refers to storage requirement,

offline processing and online evaluation complexity. Similar

to the results in [21] and [16], the minimal CNE has to store

(n+1)·M real numbers and
Ñ
∑

i=1

|Ii| integer numbers, in which

Ñ denotes the number of terms. Besides, the online evaluation

complexity is O(Ñ2).
Assuming that the continuous PWA function is given in

the form of polyhedra and affine functions defined on them,

the offline processing step includes calculating the base re-

gions and index sets I≤,i, i = 1, . . . , N ; getting all prime

implicants; and solving the binary programming problem

(14). It is indicated in Lemma 6 of [21] that the worst-case

offline complexity for the first step can be approximated by

O(
N̂
∑

i=1

2M−1(ri +M − 1)3Li), in which N̂ is the number of

polyhedra, ri is the number of linear inequalities defining the

i-th polyhedron and Li denotes the bit length of the linear

programming (A.11) in [21].

To get all prime implicants, we search for all the index

sets Iik with Iik ( I≤,i, i = 1, . . . , N such that max
j∈Iik

{ℓj}
is an implicant of f , and any max

j∈Iir

{ℓj} with Iir ( Iik is

not an implicant of f . As each subset of I≤,i should contain

at least one element, there are at most
N
∑

i=1

2|Ii|−1 subsets.

Since the worst-case complexity for checking whether a term

is an implicant is O(M2N) according to [21], the worst-

case time complexity for deriving all prime implicants is

O
(

2M−1M2N2
)

.

According to Theorem 2, the number of binary vari-

ables in the binary programming problem (14) is no more

than

(

M
⌊M

2 ⌋

)

. According to Stirling’s formula [28], when

M is large, we have M ! ≈
√
2πM

(

M
e

)M
, and then

(

M
⌊M

2 ⌋

)

≈ c 2M√
M

, where c is a constant. We use

O(bp(N, c 2M√
M
)) to denote the complexity of solving (14),

which has N constraints and c 2M√
M

binary variables. Accord-

ing to [29], the problem (14) is strongly NP-complete and

O(bp(N, c 2M√
M
)) ≥O(( c·2

M

√
M

)2N+2 ·N (N+1)(2N+1)).

Generally speaking, O
(

2M−1M2N2
)

, O(
N̂
∑

i=1

2M−1(ri +

M − 1)3Li) ≪ O
(

( c·2
M

√
M

)2N+2 ·N (N+1)(2N+1)
)

, then the

worst-case offline complexity for deriving the minimal CNE

is O(bp(N, c 2M√
M
)).

V. EXAMPLES

Example 1 (Continued): Reconsidering Example 1, first we

calculate the index sets I≤,k for each base region Dk, k =
1, . . . , 6:

I≤,1 = {1, 3, 4}, I≤,2 = {2, 3, 4}, I≤,3 = {2, 3},
I≤,4 = {2, 3}, I≤,5 = {2, 4}, I≤,6 = {1, 2, 4}.

We obtain all 4 prime implicants:

T1 = max{ℓ1, ℓ4}, T2 = max{ℓ1, ℓ3},
T3 = max{ℓ2, ℓ3}, T4 = max{ℓ2, ℓ4}.

The corresponding coverage vectors are

cov(T1) = [1 0 0 0 0 1]T , cov(T2) = [1 0 0 0 0 0]T ,

cov(T3) = [0 1 1 1 0 0]T , cov(T4) = [0 1 0 0 1 1]T .

Solving the binary programming (14) yields s∗1 = 1, s∗2 =
0, s∗3 = 1, s∗4 = 1. This corresponds to the CNE

min{max{ℓ1, ℓ4},max{ℓ2, ℓ3},max{ℓ2, ℓ4}},
which coincides with (4).

Moreover, s∗1 = 0, s∗2 = 1, s∗3 = 1, s∗4 = 1 is also an optimal

solution and this corresponds to the CNE

min{max{ℓ1, ℓ3},max{ℓ2, ℓ3},max{ℓ2, ℓ4}}.
Hence for this problem, we have two minimal CNEs. In

fact, these two are the only minimal CNEs for the continuous

PWA function (3).
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Example 2. In this example we consider a continuous PWA

state-feedback control law. In [30], the authors have formu-

lated and solved a constrained finite time optimal control

problem. The resulting explicit control laws u = [u1, u2]
T

as computed through the Multi-Parametric Toolbox 3 [31]

consists of 674 polyhedra.

For u1, there are 9 different control laws, and the 674

polyhedra are divided into 712 base regions, i.e., M =
9, N = 712. It takes 7.9198s for the division and calculation

of I≤,i, i = 1, . . . , 712, then 0.2297s to obtain all the 10

prime implicants, and 0.5669s to solve the binary integer

programming through the “intlinprog” function in MATLAB

R2014b on a 2.4 GHz Intel Core i5 computer. A minimal CNE

is obtained containing only 6 prime implicants.

For u2, there are 5 different control laws, and the 674

polyhedra are divided into 846 base regions, i.e., M =
5, N = 846. It takes 11.1268s to divide the polyhedral

and calculate I≤,i, i = 1, . . . , 846, then 0.0460s to obtain

all the 3 prime implicants, and 0.0325s to solve the binary

integer programming on the same computer. All of the 3 prime

implicants are included in the resulting minimal CNE.

In this example, as the number of distinct affine functions

is small, the complexity of deriving a minimal CNE is small.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered deriving a minimal

conjunctive normal expression (CNE), or in other words, a

minimal min-max expression, for general continuous piece-

wise affine (PWA) functions. Analogous to Boolean algebra,

we have defined implicants and prime implicants for the

continuous PWA function. The minimal CNE is proved to

contain only prime implicants. A binary programming problem

has been formulated to obtain a minimal CNE. Besides, a

sharp bound on the number of binary variables is given.

The complexity has also been analyzed. We have presented

two examples, in which the minimal CNEs are derived for

continuous PWA functions.

For a continuous PWA function with large n, M and N ,

the time complexity for deriving minimal CNEs is large. In

the future we will consider some suboptimal strategy like [32]

to trade-off between time complexity and optimality.

REFERENCES

[1] L. Breiman, “Hinging hyperplanes for regression, classification and
function approximation,” IEEE Transactions on Information Theory,
vol. 39, no. 3, pp. 999–1013, 1993.

[2] L. O. Chua and A. C. Deng, “Canonical piecewise-linear modeling,”
IEEE Transaction on Circuits and Systems, vol. 33, no. 5, pp. 511–525,
1986.

[3] A. Alessio and A. Bemporad, “A survey on explicit model predic-
tive control,” in Nonlinear Model Predictive Control, D. Raimondo,
L. Magni, and F. Allgower, Eds. Springer-Verlag, 2009, vol. 384, pp.
345–369.

[4] P. Grieder, M. Kvasnica, M. Baotić, and M. Morari, “Stabilizing low
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