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Model Predictive Control for Freeway Networks

Based on Multi-Class Traffic Flow and Emission

Models
Shuai Liu, Hans Hellendoorn, and Bart De Schutter

Abstract—The main aim of this paper is to use multi-class
macroscopic traffic flow and emission models for MPC for
traffic networks. Particularly, we use and compare extended
versions of multi-class METANET, FASTLANE, multi-class
VT-macro, and multi-class VERSIT+. Besides, end-point
penalties based on these multi-class traffic flow and emission
models are also included in the objective function of MPC to
account for the behavior of the traffic system beyond the
prediction horizon. A simulation experiment is implemented to
evaluate the multi-class models. The results show that the
approaches based on multi-class METANET and the extended
emission models (multi-class VT-macro or multi-class
VERSIT+) can improve the control performance for the total
time spent and the total emissions w.r.t. the non-control case,
and they are more capable of dealing with the queue length
constraints than the approaches based on FASTLANE.
Including end-point penalties can further improve the control
performance with a small sacrifice in the computational
efficiency for the approaches based on multi-class METANET,
but not for the approaches based on FASTLANE.

I. INTRODUCTION

There are many ways to realize traffic management.

Online model-based control is a popular approach in

literature [1–4], and it can provide satisfying performance

since it takes the predicted future evolution of traffic flows

into account. In this kind of control approach, traffic models

are necessary to describe the evolution of traffic states.

Hence, appropriate traffic models are important for efficient

online model-based traffic control. Many traffic models have

been developed for describing traffic flows, emissions, and

fuel consumption. In general, microscopic models are more

accurate than macroscopic models because they describe the

states of individual vehicles. However, this also implies that

microscopic models are often time-consuming when

simulating large-scale networks. In order to reduce the

computation load, macroscopic traffic models are often used

in online model-based traffic control. Many macroscopic

models are homogeneous, and this means that the differences

among different kinds of vehicles are neglected. Real traffic

networks subsume various types of vehicles, such as cars,

vans, trucks, etc. This leads to the need of macroscopic

models that can describe the heterogeneous nature of real

traffic networks.
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Some first-order multi-class macroscopic traffic flow

models have been developed by researchers. Wong and

Wong [5] extended the Lighthill-Whitham-Richards (LWR)

model [6, 7] to a multi-class version, in which the essential

characteristics of each vehicle class remain unchanged, i.e.

the states of each vehicle class depend on its own

fundamental diagram and the total density. They validated

that the multi-class LWR model can reproduce some traffic

phenomena that the single-class LWR model cannot

reproduce, e.g. two-capacity phenomena, hysteresis

phenomena of phase transition, and platoon dispersion.

Logghe [8] also developed a multi-class version of the LWR

model, where each class is subject to its own fundamental

diagram, and is considered to be limited within assigned

space of the road. Van Lint et al. [9] proposed the

FASTLANE model, which is a first-order multi-class

macroscopic model. Here dynamic passenger car equivalents

are used to describe different vehicle classes, taking into

account the differences in the space occupied by a vehicle

class under different traffic conditions (e.g. different

densities). Schreiter et al. [10] proposed a multi-class

controller based on FASTLANE, specifically rerouting the

different traffic classes, and proved that a multi-class

controller can improve the control performance more than a

single-class controller. In the conference paper [11], Liu et

al. extended FASTLANE with variable speed limits and ramp

metering, and showed by a case study that MPC based on a

multi-class prediction model can improve the performance

more than MPC based on a single-class prediction model.

According to the literature [12–14], in general second-order

models are more accurate than first-order models, due to the

fact that second-order models can avoid certain non-realistic

phenomena generated in first-order models. For instance, at

the head and tail of shock waves (or traffic jams), the abrupt

change in speed resulting from the large change in density in

first-order models does not correspond to reality. Besides, in

first-order models the tail of a shock wave has a higher speed

than the high-density body of the shock wave, and the tail will

catch up with the body, causing an unrealistically sharp rear

end of the shock wave. In addition, first-order models cannot

reproduce capacity drop near on-ramps and in shock waves,

while second-order models can reproduce this capacity drop.

The METANET model is a second-order traffic flow

model, which has also been extended to multi-class by some

researchers. Deo et al. [15] proposed a multi-class version of

the METANET model [16, 17] in which passenger car
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equivalents are used to represent different vehicle classes.

For the multi-class METANET model of Deo et al. [15], the

total effective density, the joint maximum density, and the

joint critical density are considered to be the same for all

vehicle classes. Two options are considered by Deo et al.

[15] for computing the desired speeds for different vehicle

classes. One option is to use the convex combination of all

class-dependent fundamental diagrams, limited by the

desired speed of the given vehicle class; the other option is

to use the same approach as in FASTLANE: when the total

effective density is larger than the joint critical density, the

fundamental diagram is the same for all vehicle classes;

otherwise, the fundamental diagram differs for different

vehicle classes due to class-dependent free-flow speeds. Deo

et al. [15] showed by a numerical experiment that based on

multi-class METANET the control performance can be

improved more than that for single-class METANET.

Pasquale et al. [18] extended the METANET model to a

two-class version, where a convection factor between cars

and trucks, which is analogous to passenger car equivalents,

is used for describing different vehicle classes. Similarly to

[15], the total density, the maximum density, and the critical

density in terms of cars are considered to be the same for

both cars and trucks. The difference with the multi-class

METANET model in [15] lies in the way the fundamental

diagram (i.e. the relation between desired speed and density)

for a vehicle class is defined. In [18], the desired speed of a

vehicle class depends on class-specific parameters and the

total density. The difference in the critical densities for

different vehicle classes is not considered in the above two

versions of the multi-class METANET model.

The multi-class METANET model we use is based on the

method that is used by Logghe [8] for developing the

multi-class LWR model, where the difference in the critical

densities for different vehicle classes is taken into account. It

is assumed that each vehicle class is constrained within an

assigned space of the road, being subject to its own

fundamental diagram. Road space fractions are introduced

for describing the assigned space for different vehicle

classes. The actual density divided by the road space fraction

for a vehicle class is considered to be the effective density

for that vehicle class. Thus it is possible to describe the

phenomenon that different classes transit to the congestion

mode in different traffic conditions (i.e. at different

densities). In particular, due to the difference in the critical

densities for different vehicle classes, when a faster vehicle

class is in the congestion mode (i.e. the effective density is

larger than the critical density), a slower vehicle class may

still be in the free-flow mode (i.e. the effective density is less

than the critical density). In the conference paper [19], Liu et

al. extended METANET to a multi-class version based on

the above mentioned theory and validated through a

numerical experiment that multi-class METANET can reduce

the total time spent more than single-class METANET.

Traffic emission and fuel consumption models are

necessary for the reduction of traffic emissions and fuel

consumption in online model-based traffic control. Many

microscopic emission and fuel consumption models have

been developed for describing the emissions and fuel

consumption of individual vehicles. These emission and fuel

consumption models can be classified according to their

inputs. Some emission and fuel consumption models use the

vehicle speed as input, such as COPERT [20]. However,

other emission and fuel consumption models use both the

speed and the acceleration as inputs, e.g. VT-micro [21],

VERSIT+ [22]. Macroscopic emission models can be used

for reducing the computation load w.r.t. microscopic

emission models. Csikos et al. [23] extended the COPERT

model into a macroscopic version by introducing the concept

of the spatiotemporal window. Pasquale et al. combined a

multi-class version of METANET with COPERT in [18].

Zegeye et al. [3] developed the VT-macro model by

integrating the VT-micro model with METANET. In the

conference paper [24] Liu et al. applied the VT-macro model

in a multi-class setting by combining the VT-macro model

with a multi-class version of METANET of [15]. In [25]

Pasquale and Liu et al. also combined the VERSIT+ model

with a multi-class version of the METANET model in [18].

The main contribution of this paper is that we use

multi-class macroscopic traffic flow and emission models for

MPC for traffic networks. In particular, we use and compare

extended versions of multi-class METANET, FASTLANE,

multi-class VT-macro, and multi-class VERSIT+. Moreover,

we include end-point penalties based on the extended

multi-class traffic flow and emission models in the objective

function of MPC, so that the performance beyond the

prediction horizon can be captured. MPC is used as the

control approach, considering that it can deal with nonlinear

systems, multi-criteria optimization, and constraints. The

Total Time Spent (TTS) and the Total Emissions (TE) are

both included in the objective function of MPC for traffic

networks, since we want to achieve a balanced trade-off

between these two performance indicators.

This paper is organized as follows. In Section II, we

introduce multi-class traffic flow models, including the

FASTLANE model with extensions [11], and a multi-class

METANET model previously extended by us [19]. In

Section III, we introduce two emission models extended by

the authors: multi-class VT-macro [24] and multi-class

VERSIT+ [25]. In Section IV, we develop online MPC for

freeway traffic networks. A simulation experiment is reported

in Section V to compare the efficiency of these multi-class

traffic models in online MPC for freeway networks.

II. MULTI-CLASS TRAFFIC FLOW MODELS

In this paper, we develop online MPC for traffic networks.

Considering the trade-off between computation complexity

and accuracy, multi-class macroscopic traffic flow models

will be adopted. In the remainder of this section, we

represent the basic FASTLANE model [9], the extensions

developed by the authors [11] for FASTLANE, and the

multi-class METANET model extended by the authors in

[19].
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A. FASTLANE Model with Extensions

1) Basic FASTLANE Model: FASTLANE [9] is a first-order

multi-class macroscopic traffic flow model that is represented

by links (indexed by m), and each link is divided into several

homogeneous cells (indexed by i). Here we give the discrete-

time form of the FASTLANE model, since we use it within a

MPC framework in this paper.

FASTLANE is a multi-class version of the LWR model.

The main feature of FASTLANE is that it uses dynamic

passenger car equivalents (pce) to transform different vehicle

classes into a representative vehicle class. The different

space occupied by vehicles under different traffic conditions

(different traffic densities) is taken into account in the

dynamic pce. In FASTLANE, the dynamic pce (θm,i,c) for

vehicle class c in cell i of link m is defined as

θm,i,c =
sc +Th,c · vm,i,c

s1 +Th,1 · vm,i,1
(1)

in which vm,i,c is the speed of vehicle class c in cell i of link

m, sc is the gross stopping distance of vehicle class c, and Th,c

is the minimum time headway of vehicle class c. The index 1

denotes the reference class.

Based on the dynamic pce, the effective density1 (ρefc
m,i) in

cell i of link m is defined as

ρefc
m,i =

nc

∑
c=1

θm,i,cρm,i,c (2)

where ρm,i,c is the density1 of vehicle class c in cell i of link

m, and nc is the number of vehicle classes.

Since we use MPC in this paper, the discrete-time form of

(2) is given as follows:

ρefc
m,i(k) =

nc

∑
c=1

θm,i,c(k−1)ρm,i,c(k) (3)

where k is the time step counter, which corresponds to the

time instant t = kT , with T the simulation time interval.

Remark. In order to ensure the stability of traffic flow

models (e.g. FASTLANE and METANET), the

Courant-Friedrichs-Lewy (CFL) [26] condition is often

considered. In particular, no vehicle should cross a segment

in one simulation time step T [13], i.e.

T ≤ min
m∈Ilink

Lm

vfree
m,max

(4)

where vfree
m,max = maxc=1,...,nc vfree

m,c is the free-flow speed of the

fastest class of vehicles in link m, vfree
m,c is the free-flow speed

of vehicle class c in link m, Lm is the cell length of link m,

and Ilink is the set including all the links.

For FASTLANE, the basic equations for computing flow,

1The effective density ρefc
m,i , the critical density ρcrit

m , and the effective

maximum density ρmax
m are expressed in pce/km/lane, the density ρm,i,c of

vehicle class c in cell i of link m is expressed in vehicle/km/lane.

density, and speed of vehicle class c in cell i of link m are

qm,i,c(k) = µmρm,i,c(k)vm,i,c(k) (5)

ρm,i,c(k+1) = ρm,i,c(k)+
T

Lmµm

(

qi−1,i
m,c (k)−qi,i+1

m,c (k)
)

(6)

vm,i,c(k) =Vm,c(ρ
efc
m,i(k))

=















vfree
m,c −ρefc

m,i(k)
(vfree

m,c−vcrit
m )

ρcrit
m

for ρefc
m,i(k)< ρcrit

m

vcrit
m ρcrit

m

ρefc
m,i(k)

(

1−
ρefc

m,i(k)−ρcrit
m

ρmax
m −ρcrit

m

)

for ρefc
m,i(k)≥ ρcrit

m

(7)

with qm,i,c the flow of vehicle class c in cell i of link m, q
i,i+1
m,c

the flow of vehicle class c from cell i to cell i+1 of link m,

vcrit
m the joint critical speed for all vehicle classes in link m,

ρcrit
m the joint critical density1 for all vehicle classes in link m,

ρmax
m the effective maximum density1 in link m, and µm the

number of lanes of link m.

The traffic demand of cell i of link m needs to be

distributed among different vehicle classes, according to the

traffic composition in cell i of link m. This composition is

represented by the flow ratio λm,i,c of vehicle class c in cell i

of link m:

λm,i,c(k) =
θm,i,c(k)qm,i,c(k)

∑
nc
j=1 θm,i, j(k)qm,i, j(k)

(8)

The flow of vehicle class c from cell i to cell i+1 of link

m is described as follows:

qi,i+1
m,c (k) =

1

θm,i,c(k)
min

(

Dm,i,c(k),λm,i,c(k)Sm,i+1(k)
)

(9)

where the demand Dm,i,c of vehicle class c and supply Sm,i of

all vehicle classes in cell i of link m are defined as

Dm,i,c(ρ
efc
m,i(k))=











µmθm,i,c(k)ρm,i,c(k)Vm,c(ρ
efc
m,i(k))

for ρefc
m,i(k)<ρcrit

m

µmλm,i,c(k)ρ
crit
m vcrit

m for ρefc
m,i(k)>ρcrit

m

(10)

Sm,i(ρ
efc
m,i(k))=

{

µmρcrit
m vcrit

m for ρefc
m,i(k)<ρcrit

m

µmρefc
m,i(k)Vm,c(ρ

efc
m,i(k)) for ρefc

m,i(k)>ρcrit
m

(11)

For more details about FASTLANE, we refer to [9].

2) Extensions of FASTLANE: The FASTLANE model of

[9] does not yield the queue lengths at origins (indexed by

o). Besides, traffic control measures such as speed limits and

ramp metering are also not included.

Just as in METANET [17], we introduce a simple queue

equation for estimating the queue lengths at origins:

wo,c(k+1) = wo,c(k)+T (do,c(k)−qo,c(k)) (12)

where wo,c is the queue length of vehicle class c at origin o,

qo,c is the flow of vehicle class c at origin o, and do,c is the

external demand of the vehicle class c at origin o.

Following the METANET speed equation of [27], a variable

speed limit is incorporated in the speed equation as follows:

vm,i,c(k) = min(Vm,c(ρ
efc
m,i(k)),(1+δm,c)v

SL
m,i(k)) (13)

where vSL
m,i is the speed limit that is applied in cell i of link m,

and 1+δm,c is the non-compliance factor of vehicle class c in
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link m, which allows for modeling enforced and unenforced

variable speed limits.

In order to apply ramp metering in traffic networks, the

on-ramp flow equation with a ramp metering is defined as

qo,c(k)=
1

θo,c(k)
min

(

ro(k)Do,c(k),Λoλo,c(k)Sm,1(k)
)

(14)

in which (m,1) indicates the cell to which the on-ramp

connects, θo,c is the dynamic pce for vehicle class c at

on-ramp o, Do,c is the total demand of vehicle class c at

on-ramp o, and λo,c is equal to the traffic composition at

on-ramp o set by the user, representing the share for vehicle

class c among the total demand at on-ramp o. In addition,

Λo is defined as Λo = Cefc
o

Cefc
m−1+Cefc

o
, with Cefc

o (expressed in

pce/h) the effective capacity of on-ramp o, Cefc
m−1 (expressed

in pce/h) the effective capacity of the upstream link m−1 of

the link m that connects to on-ramp o.

B. Multi-Class METANET Model

The METANET model [16, 17] is a second-order

macroscopic model that describes traffic networks with

uniform links corresponding to freeway stretches. Nodes are

used to represent on-ramps, off-ramps, or other changes in

geometry. Each link is divided into several homogeneous

segments, which are similar with the concept of cells2 in

FASTLANE. Based on the method that is used by Logghe

for developing the multi-class LWR model [8], we have

proposed a multi-class METANET model in [19].

The multi-class LWR model of [8] is based on user optimum

and optimal road use. The interaction between vehicle classes

is described based on the user optimum, i.e. all vehicle classes

try to maximize their speeds as much as possible, and faster

vehicles cannot affect the speeds of slower vehicles due to

the anisotropy of multi-class traffic. In [8], optimal road use

means that a vehicle class never occupies more space than

what is necessary for maintaining the speed of that vehicle

class. For developing the multi-class METANET model, we

also consider the same assumptions.

It is assumed that each vehicle class is constrained within

an assigned space of the road, being subject to its own

fundamental diagram:

qm,i,c = αm,i,cQc

(

ρm,i,c

αm,i,c

)

(15)

where Qc(ρm,i,c) = µmρm,i,cvm,i,c is the flow function of

vehicle class c, and αm,i,c is the road space fraction of

vehicle class c in segment i of link m, which is defined as

the ratio between the assigned space and the whole road

space. The road space fractions for different classes of

vehicles are always nonnegative, with the sum of all

fractions equal to 1:

αm,i,c > 0 (16)
nc

∑
c=1

αm,i,c = 1 (17)

2Note that in the reminder of this paper, cells are considered to be equivalent
to segments.

The actual density divided by the road space fraction for a

vehicle class is considered to be the effective density of that

vehicle class. Similarly, the actual flow divided by the road

space fraction for a vehicle class is considered to be the

effective flow of that vehicle class.

1) Traffic Flow Equations for Multi-Class METANET:

Referring to single-class METANET [16, 17], the equation

for computing the flow qm,i,c of vehicle class c in segment i

of link m is the same as (5), and the equation for computing

the queue length wo,c of vehicle class c at origin o is the

same as (12). The density ρm,i,c of vehicle class c in segment

i of link m is computed as follows:

ρm,i,c(k+1) = ρm,i,c(k)+
T

Lmµm

(qm,i−1,c(k)−qm,i,c(k)) (18)

Class-dependent parameters (τm,c, ηm,c, κm,c, ρcrit
m,c, vfree

m,c ,

and am,c) are necessary for computing the speed vm,i,c and

the origin flow qo,c. The speed of vehicle class c in segment

i of link m is described through the following equation:

vm,i,c(k+1) = vm,i,c(k)+
T

τm,c

(

Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

− vm,i,c(k)

)

+
T

Lm

vm,i,c(k)(vm,i−1,c(k)− vm,i,c(k))

−
T ηm,c

Lmτm,c

ρm,i+1,c(k)−ρm,i,c(k)

ρm,i,c(k)+κm,c
(19)

where τm,c, ηm,c, and κm,c are model parameters for vehicle

class c in link m, and the desired speed function Vm,c for

vehicle class c in link m is defined as:

Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

= vfree
m,c exp

(

−1

am,c

(

ρm,i,c(k)/αm,i,c(k)

ρcrit
m,c

)

am,c

)

(20)

in which am,c is a model parameter of vehicle class c in link

m, and ρcrit
m,c is the critical density of vehicle class c in link m.

According to Hegyi et al. [27], a variable speed limit is

included similarly to (13):

Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

= min

(

Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

,(1+δm,c)v
SL
m,i(k)

)

(21)

The flow qo,c of vehicle class c at on-ramp o is

qo,c(k) = min

[

do,c(k)+
wo,c(k)

T
,ro(k)αm,1,c(k)Co,c,

αm,1,c(k)Co,c

(

ρmax
m,c −ρm,1,c(k)/αm,1,c(k)

ρmax
m,c −ρcrit

m,c

)

]

(22)

with the index 1 representing the segment that the on-ramp is

connected to in link m, αm,1,c the road space fraction of vehicle

class c in segment 1 of link m, Co,c the theoretical maximum

capacity of on-ramp o if there would be only vehicle class c,

ρmax
m,c the theoretical maximum density of link m if there would

be only vehicle class c, and ρm,1,c the density of vehicle class

c in segment 1 of link m.

For a mainstream origin o, the flow of vehicle class c is

similar to the single-class equation developed in [27]:

qo,c(k) = min

[

do,c(k)+
wo,c(k)

T
,qlim

m,1,c(k)

]

(23)
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Fig. 1: Traffic regimes for two vehicle classes

where qlim
m,1,c is the maximal inflow of vehicle class c for the

first segment of link m that is connected to the origin:

qlim
m,1,c(k)=























αm,i,c(k)µmρcrit
m,cvlim

m,1,c(k)

[

−am,c ln

(

vlim
m,1,c(k)

vfree
m,c

)]
1

am,c

if vlim
m,1,c(k)<Vm,c(ρ

crit
m,c)

αm,i,c(k)µmρcrit
m,cVm,c(ρ

crit
m,c) if vlim

m,1,c(k)>Vm,c(ρ
crit
m,c)

(24)

in which vlim
m,1,c(k) = min(vSL

m,1(k),vm,1,c(k)) is the speed that

limits the flow for vehicle class c in segment (m,1), vSL
m,1 is the

speed limit of segment (m,1), and αm,i,c is used for converting

effective flow to actual flow.

2) Road Space Fractions and Traffic Regimes: According

to the densities for different vehicle classes, three traffic

regimes are defined here, i.e. free-flow, semi-congestion, and

congestion. The road space fractions are determined on the

basis of these traffic regimes. Fig. 1 shows the traffic

regimes for the case with two vehicle classes.

• Regime A: Free-Flow

In the free-flow regime, the effective density of each

vehicle class is less than or equal to its critical density.

Therefore, the sufficient and necessary condition for the

free-flow regime is

ρm,i,c(k)

αm,i,c(k)
6 ρcrit

m,c for all c (25)

Based on (17) and (25), the constraint that separates the

free-flow regime from the semi-congestion regime is

obtained as follows:

nc

∑
c=1

ρm,i,c(k)

ρcrit
m,c

6 1 (26)

According to (25), we define the space fraction of vehicle

class c as

αm,i,c(k) =
ρm,i,c(k)/ρcrit

m,c

∑
nc
j=1 ρm,i, j(k)/ρcrit

m, j

(27)

• Regime B: Semi-Congestion

From [8, 28], it could happen that slower vehicles are

still in the free-flow regime, while faster vehicles are

already in the congested mode. Thus in the multi-class

setting, faster vehicle classes are considered to get in

the congested mode earlier than slower vehicle classes,

and the desired speeds of the congested vehicle classes

are considered to be equal. The semi-congestion regime

corresponds to the case that the desired speeds of the

congested vehicle classes are larger than or equal to the

desired speeds of slower vehicle classes that are still in

the free-flow regime. In the semi-congestion regime, the

effective density of at least one vehicle class is less than

or equal to its critical density, and the effective density

of at least one vehicle class is larger than its critical

density.

In order to obtain the boundary condition distinguishing

the semi-congestion regime from the congestion regime,

it is assumed that all vehicle classes are congested except

for one vehicle class c∗m that is on the verge of getting in

the congested mode, i.e. the effective density of vehicle

class c∗m is equal to its critical density, resulting in the

following road space fraction for vehicle class c∗m:

αm,i,c∗m(k) =
ρm,i,c∗m(k)

ρcrit
m,c∗m

(28)

Actually, c∗m is the vehicle class with the slowest desired

speed when all vehicle classes are assumed to be on the

verge of getting in the congested mode:

c∗m = argmin
c=1,...,nc

(

vfree
m,c exp

(

−1

am,c

))

(29)

The following relation holds according to the definition

of the semi-congestion regime:

Vm,c∗m

(

ρm,i,c∗m(k)

αm,i,c∗m(k)

)

6Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

for c = 1, . . . ,nc with c 6= c∗m (30)

Considering (17), (28), and (30), the boundary condition

distinguishing the semi-congestion regime from the

congestion regime is obtained as follows:

nc

∑
c=1

ρm,i,c(k)

ρcrit∗
m,c

6 1 (31)

where ρcrit∗
m,c is determined by the following equation:

ρcrit∗
m,c = ρcrit

m,c

[

−am,c ln

(

vfree
m,c∗m

vfree
m,c

exp

(

−1

am,c∗m

)

)]
1

am,c

(32)

The proof of (31) and (32) is included in Appendix A.

Suppose that S
cong
m,i (k) denotes the set of all vehicle classes

that are in congested mode in segment i of link m at time

step k, and Sfree
m,i (k) denotes the set of all vehicle classes

that are in free-flow mode in segment i of link m at time

step k. The space fractions for the vehicle classes that are

in free-flow mode are

αm,i,c(k) =
ρm,i,c(k)

ρcrit
m,c

for c ∈ Sfree
m,i (k) (33)

The space fractions for the congested vehicle classes are

obtained through solving the following system of
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equations:






















Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

=Vm,lm,i

(

ρm,i,lm,i
(k)

αm,i,lm,i
(k)

)

for c ∈ S
cong
m,i (k)/{lm,i}

∑c∈S
cong
m,i (k) αm,i,c(k) = 1−∑ĉ∈Sfree

m,i (k)
αm,i,ĉ(k)

(34)

where lm,i is an arbitrary element of the set S
cong
m,i (k).

• Regime C: Congestion

In the congestion regime, the effective density of each

vehicle class is larger than its critical density; the desired

speeds of all classes of vehicles are equal.

The constraint for the congestion regime is the restriction

on the maximum density:

nc

∑
c=1

ρm,i,c(k)

ρmax
m,c

6 1 (35)

The space fractions can be derived by equating the desired

speeds of all classes of vehicles:






















Vm,1

(

ρm,i,1(k)

αm,i,1(k)

)

=Vm,2

(

ρm,i,2(k)

αm,i,2(k)

)

...

Vm,nc−1

(

ρm,i,nc−1(k)

αm,i,nc−1(k)

)

=Vm,nc

(

ρm,i,nc (k)

αm,i,nc (k)

)

∑
nc
c=1 αm,i,c(k) = 1

(36)

III. MULTI-CLASS TRAFFIC EMISSION MODELS

A. Multi-Class VT-Macro

The VT-macro model [3] is a macroscopic emission and

fuel consumption model, which has been developed based on

an integration of the VT-micro model [21] and the

single-class METANET model [16, 17]. When the VT-macro

model is used together with multi-class macroscopic traffic

flow models, it is necessary to extend it to a multi-class

setting too. In this section, we introduce the multi-class

VT-macro model extended by the authors in [24], and this

multi-class VT-macro model is an extension of the

single-class VT-macro model in [3]. In the ensuing part of

this section, the explanations are given for multi-class

METANET and FASTLANE, but the multi-class VT-macro

model can also be used for other multi-class macroscopic

traffic flow models.

For each segment, two acceleration components are

considered: inter-segment acceleration and cross-segment

acceleration. For multi-class traffic flow, the accelerations for

each class c are defined as follows:

ainter
m,i,c(k) =

vm,i,c(k+1)− vm,i,c(k)

T
(37)

across
α ,β ,c(k) =

vβ ,c(k+1)− vα ,c(k)

T
(38)

where the indices α and β represent different adjacent

segments, on-ramps, or off-ramps.

The numbers of vehicles corresponding to the above two

components of accelerations are as follows:

ninter
m,i,c(k) = Lmµmρm,i,c(k)−Tqm,i,c(k) (39)

ncross
α ,β ,c(k) = T qα ,c(k) (40)

where ninter
m,i,c (expressed in veh) is the number of vehicles

corresponding to ainter
m,i,c, and ncross

α ,β ,c (expressed in veh) is the

number of vehicles corresponding to across
α ,β ,c.

The emission rates (EMinter
y,m,i,c and EMcross

y,α ,β ,c) for vehicle

class c are as follows:

EMinter
y,m,i,c(k) = ninter

m,i,c(k)exp
(

ṽT
m,i,c(k)Py,cãinter

m,i,c(k)
)

(41)

EMcross
y,α ,β ,c(k) = ncross

α ,β ,c(k)exp
(

ṽT
α ,c(k)Py,cãcross

α ,β ,c(k)
)

(42)

in which Py,c is a class-dependent parameter matrix,

y ∈ Y = {CO,NOx,HC, fuel}, and ṽT
m,i,c, ãinter

m,i,c, ṽT
α ,c, and

ãcross
α ,β ,c are vectors in the form of x̃ = [1 x x2 x3]T .

The VT-macro model does not yield the emission rate of

CO2. According to [29], an approximate affine relationship

exists between the emission rate for CO2 and the fuel

consumption rate. The emission rate EMCO2,m,i,c for CO2 for

vehicle class c in segment i of link m can be estimated

through

EMCO2,m,i,c(k) = γ1,cvm,i,c(k)+ γ2,cEMfuel,m,i,c(k) (43)

where γ1,c and γ2,c are class-dependent model parameters, and

EMfuel,m,i,c is the fuel consumption rate for vehicle class c in

segment i of link m given by

EMfuel,m,i,c(k) = EMinter
fuel,m,i,c(k)+∑

α∈I
up
m,i

EMcross
fuel,α ,(m,i),c(k) (44)

where I
up
m,i is the set that includes all the upstream segments

and origins that connect to segment (m, i).

Remark. The approach for extending the multi-class

VT-macro model is general in the sense that it can be used

for any emission model using car characteristics, and with

speeds and accelerations as inputs.

B. Multi-Class VERSIT+

The VERSIT+ model [22] is a microscopic emission

model developed based on a large number of emission tests.

The VERSIT+ model requires a speed-data profile as input.

Based on the VERSIT+ model in [22], we have extended a

multi-class VERSIT+ model in [25] by the approach for

extending the multi-class VT-macro model. In particular, the

inter-segment acceleration and the cross-segment acceleration

are also used here. The emission rate EMinter
y,m,i,c (expressed in

g/s) based on the inter-segment acceleration of vehicle class

c is

EMinter
y,m,i,c(k)=



































































ninter
m,i,c(k)u0,y,c if vm,i,c(k)6 5, ainter

m,i,c(k)6 0.5

ninter
m,i,c(k)

(

u1,y,c +u2,y,c(z
inter
m,i,c(k))+

+u3,y,c(z
inter
m,i,c(k)−1)+

)

if 5 < vm,i,c(k)6 50

or vm,i,c(k)6 5, ainter
m,i,c(k)> 0.5

ninter
m,i,c(k)

(

u4,y,c +u5,y,c(z
inter
m,i,c(k))+

+u6,y,c(z
inter
m,i,c(k)−1)+

)

if 50 < vm,i,c(k)6 80

ninter
m,i,c(k)

(

u7,y,c +u8,y,c(z
inter
m,i,c(k)−0.5)+

+u9,y,c(z
inter
m,i,c(k)−1.5)+

)

if vm,i,c(k)> 80

(45)
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where y represents emission categories (e.g. CO2, NOx, and

PM10), u0,y,c, . . . ,u9,y,c are model parameters, and zinter
m,i,c is

defined as

zinter
m,i,c(k) = ainter

m,i,c(k)+0.014vm,i,c(k) (46)

in which ainter
m,i,c (m/s2) is the inter-segment acceleration of

vehicle class c in segment i of link m, vm,i,c (km/h) is the

speed of vehicle class c in segment i of link m, and

(x)+ = max(x,0).
The emission rate (EMcross

y,α ,β ,c) based on the cross-segment

acceleration of vehicle class c is defined in a similar way as

(45). In addition, the number of vehicles ninter
m,i,c and ncross

α ,β ,c are

computed through (39) and (40).

IV. ONLINE MODEL PREDICTIVE CONTROL FOR TRAFFIC

NETWORK

A. Model Predictive Control

We choose Model Predictive Control (MPC) [30] for

online traffic management, since it can deal with nonlinear

systems, multi-criteria optimization, and constraints. MPC is

a control approach based on dynamic prediction and a

receding horizon scheme. In MPC, an objective function is

used to capture the future performance of the system to be

controlled over some prediction horizon. The controller

determines the input sequence that optimizes the value of the

objective function. According to the receding horizon

scheme, only the first element of this optimal input sequence

is applied to the controlled system.

In this paper, the main aim is to compare the extended

multi-class traffic models (i.e. FASTLANE with extensions,

multi-class METANET, multi-class VT-macro, and

multi-class VERSIT+); thus, the extended models are used

as prediction models of MPC for traffic networks. The

control measures that we choose are variable speed limits

and ramp metering. In addition, according to the literature

[31, 32], in MPC for nonlinear systems the instability of the

controlled system can be handled by including an end-point

constraint or by using a large enough prediction horizon.

B. Performance Criteria

Various performance criteria can be considered when

constructing the objective function for traffic management. In

this paper, as an illustration, we consider the Total Time

Spent (TTS) and the Total Emissions (TE).

The total time that all vehicles spend in the considered

traffic network is denoted by Total Time Spent3 (TTS), and

defined as follows:

TTS(kc) = T

(kc+Np)M−1

∑
j=kcM

nc

∑
c=1

pc

[

∑
(m,i)∈Iall

µmρm,i,c( j)Lm +∑
o∈Oall

wo,c( j)

]

(47)

where Iall is the set of all pairs of link and segment indices

(m, i) in the traffic network, Oall is the set of the indices of

3Note that the TTS index here includes the TTS for all segments, the TTS
for all origins, and the TTS for all on-ramps, and they are treated equally, i.e.
their weights are equal to 1.

all origins, kc is the control time step counter, which

corresponds to the time instant t = kcTc (with Tc the control

time interval4), Np is the prediction horizon, M = Tc/T is

assumed to be a positive integer, pc indicates the passenger

car equivalents (pce) for vehicle class c, and in this paper

pc = sc/s1.

The TE indicates the total emissions that all vehicles in the

considered traffic network generate. The TE for emission type

y is defined as

TEy(kc) = T

(kc+Np)M−1

∑
j=kcM

nc

∑
c=1

(

∑
(m,i)∈Iall

EMinter
y,m,i,c( j)+

∑
α ,β∈Pall

EMcross
y,α ,β ,c( j)+ ∑

o∈Oall

EMinter
y,o,c( j)

)

(48)

in which Pall is the set of all pairs of adjacent segments and

origins, and EMinter
y,o,c represents the emission rate of emission

category y for vehicles in queue at origin o. The emission

rate EMinter
y,o,c is computed in a similarly way as EMinter

y,m,i,c, with

vehicles in queue considered to have low speeds and no

acceleration.

C. End-Point Penalties

In MPC for traffic networks, obtaining appropriate control

performance may require a long prediction period, since it is

recommended [27] to select the prediction period to be in the

order of the typical travel time for a vehicle to cross the traffic

network. This makes computation slow and complex for large-

scale traffic networks. In this section, we present end-point

penalties (which can be computed based on the multi-class

traffic flow and emission models in Sections II-III) to take

into account the performance of the considered traffic network

beyond the prediction period.

1) End-Point Penalty Derived from the TTS: Based on the

definition of the TTS, we present a TTS end-point penalty,

which is an estimate of the TTS for all vehicles that are still

in the network at time step (kc +Np)M. Particularly, the TTS

end-point penalty consists of the following parts:

• The number of vehicles in each segment multiplied by

the time trem
m,i,c((kc +Np)M) that a vehicle that is present

in that segment at time step (kc +Np)M would on the

average need to get to its destination.

• The number of vehicles in each origin queue multiplied

by the time trem
o,c ((kc +Np)M) that a vehicle present in

that origin queue at time step (kc +Np)M would on the

average need to get to its destination.

The formula for computing the TTS end-point penalty is

TTSend(kc)=
nc

∑
c=1

∑
(m,i)∈Iall

µmρm,i,c((kc +Np)M)Lmtrem
m,i,c((kc+

Np)M)+ ∑
o∈Oall

wo,c((kc +Np)M)trem
o,c ((kc +Np)M) (49)

4Note that in Sections II and III we assume Tc = T . Now we consider the
general case with Tc 6= T .
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2) End-Point Penalty Derived from the TE: Based on the

definition of the TE, we present a TE end-point penalty, which

is an estimate of the total emissions that the remaining vehicles

at time step (kc + Np)M generate before leaving the traffic

network. The TE end-point penalty consists of the following

two parts:

• The number of vehicles in each segment at time step

(kc + Np)M multiplied by the emissions TErem
y,m,i,c((kc +

Np)M) that a vehicle present in that segment at time step

(kc+Np)M would on the average generate before leaving

the network.

• The number of vehicles in each origin queue at time step

(kc +Np)M multiplied by the emissions TErem
y,o,c((kc +Np)

that a vehicle present in that origin queue at time step

(kc+Np)M would on the average generate before leaving

the network.

The formula for computing the TE end-point penalty is

TEend
y (kc) =

nc

∑
c=1

∑
(m,i)∈Iall

µmρm,i,c((kc +Np)M)LmTErem
y,m,i,c((kc+

Np)M)+ ∑
o∈Oall

wo,c((kc +Np)M)TErem
y,o,c((kc +Np)M) (50)

Remark. Note that Origin-Destination (OD) matrices are

needed for computing the end-point penalties, since they

both depend on the destinations of vehicles. As reviewed in

[33], OD matrices can be estimated based on traffic counts

by means of both static methods [34] and dynamic methods

[35]. In this paper, we just assume that a good estimate of

the OD information is available.

D. MPC Based on the Overall Objective Function

For different traffic conditions, the traffic control

objectives may be conflicting [36]. We aim to achieve a

balanced trade-off between the TTS and the TE here.

However, the approach that we develop is generic, and it can

also accommodate other performance indicators. Next, we

will express the integrated control problem for reducing

traffic congestion and traffic emissions in a systematic way.

As examples, variable speed limits and ramp metering are

chosen as control measures.

The overall objective function of the online traffic control

in this paper is defined as follows:

J(kc) = ξTTS
TTS(kc)

TTSnom
+ ∑

y∈Y

ξTE,y
TEy(kc)

TEy,nom

+
ξramp

NcNRM

kc+Nc−1

∑
l=kc

∑
o∈Oramp

(rctrl
o (l)− rctrl

o (l −1))2

+
ξspeed

NcNVSL

kc+Nc−1

∑
l=kc

∑
(m,i)∈Ispeed

(

vctrl
m,i(l)− vctrl

m,i(l −1)

vfree
m,max

)2

+ξ end
TTS

TTSend(kc)

TTSend
nom

+ ∑
y∈Y

ξ end
TE,y

TEend
y (kc)

TEend
y,nom

(51)

where ξTTS, ξTE,y, ξramp, ξspeed, ξ end
TTS, and ξ end

TE,y are

nonnegative weights, TTSnom, TEy,nom, TTSend
nom, and TEend

y,nom

are the corresponding ”nominal” values for some nominal

control profile (e.g. the no-control case), NRM is the number

of groups of metered on-ramps, and NVSL is the number of

groups of variable speed limits, Oramp is the set of all

metered on-ramps, Ispeed is the set of all segments with speed

limits, rctrl
o is the ramp metering rate of on-ramp o for a

given control step, vctrl
m,i is the speed limit in segment i of link

m for a given control step, and for

k = M(kc − 1) + 1, . . . ,Mkc, ro(k) = rctrl
o (kc) and

vSL
m,i(k) = vctrl

m,i(kc). Note that the third and fourth terms of

(51) are penalties to avoid abrupt variations in the control

inputs.

The MPC problem based on the overall objective function

is formulated as follows:

min
vctrl

m,i(l),(m, i) ∈ Ispeed

rctrl
o (l),o ∈ Oramp

l = kc, . . . ,kc +Nc −1

J(kc) (52)

s.t. Traffic flow model equations

Traffic emission model equations

f (qm,i,c(l),ρm,i,c(l),vm,i,c(l),wo,c(l))6 0 (53)

for l = kcM, . . . ,(kc +Np)M−1

g(vctrl
m,i(l),r

ctrl
o (l))6 0 for l = kc, . . . ,kc +Nc −1 (54)

where the traffic flow model equations are those of the

multi-class METANET model or the FASTLANE model, the

traffic emission model equations are those of the multi-class

VERSIT+ model or the multi-class VT-macro model, (53)

represents a general constraint on traffic variables, and (54)

represents a general constraint on variable speed limits and

ramp metering rates. The above MPC problem is a general

nonconvex problem, which can be solved using e.g.

multi-start sequential quadratic programming, genetic

algorithm, pattern search according to the literature [37,

Chapter 5],[38, 39]

V. BENCHMARK EXPERIMENT

We now present a simulation experiment for comparing the

multi-class traffic flow models and traffic emission models of

Sections II-III, and for evaluating the effectiveness of the end-

point penalties in Section IV-C.

A. Benchmark Network

The simulation experiment is based on the Dutch freeway

A13, where we consider the direction from Rijswijk to

Rotterdam, as shown in Fig. 2. The start of the considered

part of the A13 is seen as the mainstream origin (O0), and

the end of the considered part of the A13 is seen as the

mainstream destination (D0). There are four on-ramps (O1,

O2, O3, and O4) and four off-ramps (O5, O6, O7, and O8)

each of which consists of a single lane, and all the on-ramps

are metered. The main road subsumes three lanes, and

variable speed limit signs are installed through the whole

stretch in 15 positions in total. According to the location of

on-ramps, off-ramps, and variable speed limit signs, the main

road (7.8 km) is divided into 21 links, and in total 23

segments, i.e., most links only have 1 segment.
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Fig. 2: Part of the Dutch freeway A13 considered in the case study
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Fig. 3: Model predictive control for A13

The microscopic simulators VISSIM and Enviver are used

as process models for representing the real traffic network.

VISSIM is used for simulating the traffic flows, and Enviver

is used for simulating the emissions. The multi-class traffic

flow and emission models in Sections II-III are used as

prediction models in MPC. In both the process models and

the prediction models, we consider two classes of vehicles

(i.e. cars and trucks). The control procedure is shown in Fig.

3.

B. Identification of the Model Parameters

In order to describe the traffic flows and emissions by the

models in Sections II and III, the parameters for these

models need to be calibrated. The mainstream demand and

the on-ramp demands for identification, which are shown in

Fig. 4, are generated based on the field measurements of A13

on Feb. 18, 2014. The fraction of trucks in all the demands

is taken as 0.1, considering the actual situation on the A13.

These demands are used as the inputs for the microscopic

simulator VISSIM. The model outputs are compared with

the simulation outputs of VISSIM. Subsequently, the outputs

from VISSIM are used as the inputs for Enviver. For

multi-class METANET and FASTLANE, the objective for

the identification procedure is to fit the TTS. Similarly, for

multi-class VERSIT+ and multi-class VT-macro5, the

objective for the identification procedure is to fit the TE,

where only CO2 is considered. The optimizer ”lsqnonlin” in

MATLAB has been used for solving the calibration problem,

based on the ”trust-region-reflective” algorithm.

The prediction period length is chosen as 15 minutes,

which corresponds to the average time needed for a vehicle

to cross the freeway stretch under consideration. We consider

5Note that the effect that some cars may be stuck behind trucks can be
indirectly included in these emission and fuel consumption models via the
calibration of the model parameters.
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Fig. 4: Demands for A13

TABLE I: Validation errors for traffic flow models

Scenario 1 Scenario 2 Scenario 3

Multi-class METANET 8.8% 9.2% 7.7%
FASTLANE 8.1% 7.4% 6.8%

TABLE II: Validation errors for emission models

Scenario 1 Scenario 2 Scenario 3

Multi-class VERSIT+ 2.6% 3.3% 4.3%
Multi-class VT-macro 1.1% 1.3% 1.4%

the morning rush hours from 8.00 am to 10.00 am for the

identification of the model parameters. For the period 8.00

am-10.00 am, the average calibration and validation errors

within the prediction period between the measured TTS and

the predicted TTS by METANET and FASTLANE are

shown in Table I. The calibration and validation errors for

multi-class VT-macro and multi-class VERSIT+ in the period

8.00 am-10.00 am are shown in Table II. Three scenarios for

the traffic demands are considered for assessment:

• Scenario 1: the scenario used for identification;

• Scenario 2: Scenario 1 + sinusoidal noise (with an

amplitude equal to 5% of the demands for Scenario 1,

and with a cycle time of 15 minutes);

• Scenario 3: Scenario 1 + white noise (with an amplitude

equal to 5% of the demands for Scenario 1).

According to Table I, both the calibration errors and the

validation errors are comparable for multi-class METANET

and FASTLANE. According to Table II, the calibration errors

and the validation errors are also comparable for multi-class

VERSIT+ and multi-class VT-macro.

Based on the model parameters obtained, the total

fundamental diagram (basic flow-density relationship) of the

extended multi-class METANET model is shown in Fig. 5.

C. Control Settings

Scenario 1 as shown in Fig. 4 is considered for control

in this case study. The control time interval (Tc) is chosen
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Fig. 5: Total fundamental diagram of multi-class METANET for cars
and trucks

as 5 minutes, the control horizon is chosen as 10 minutes

(Nc = 2), and the prediction horizon is chosen as 15 minutes

(Np = 3). The simulation time step (T ) is selected to be 6

seconds, according to (4).

Recall that suppose that all four on-ramps are metered

(NRM = 4). According to the actual length of the on-ramps,

the maximum permitted queue lengths (wmax
o ,

o ∈ Oramp = {O1,O2,O3,O4}) are repetitively 100, 100, 200,

50 pce. There are 15 positions equipped with Variable Speed

Limit (VSL), and we divide them into 4 groups (NVSL = 4):

• VSL group 1: VSLs 1-4, i.e. VSLs before O1;

• VSL group 2: VSLs 5-7, i.e. VSLs between O1 and O2;

• VSL group 3: VSLs 8-10, i.e. VSLs between O2 and O3;

• VSL group 4: VSLs 11-15, i.e. VSLs after O3.

Considering that all segments are relatively short, we assume

that vehicles in a segment without a variable speed limit sign

are subject to the variable speed limit for the closest upstream

segment with a variable speed limit sign.

As will be explained below, two groups of approaches are

implemented for comparing multi-class macroscopic traffic

flow models and traffic emission models in Sections II-III,

and for investigating the effectiveness of the end-point

penalties in Section IV-C.

1) Comparison for multi-class models: For the multi-class

models, we compare four approaches without end-point

penalties as follows:

• Approach A: Multi-class METANET and multi-class

VERSIT+;

• Approach B: Multi-class METANET and multi-class VT-

macro;

• Approach C: FASTLANE and multi-class VERSIT+;

• Approach D: FASTLANE and multi-class VT-macro.

For each approach, we consider 3 combinations of weights

without end-point penalties (ξ end
TTS=0, and ξ end

TE,CO2
=0):

• Combination 1: ξTTS=1, ξTE,CO2
=0.1;

• Combination 2: ξTTS=0.5, ξTE,CO2
=0.5;

• Combination 3: ξTTS=0.1, ξTE,CO2
=1.

2) Comparison for end-point penalties: In order to show

the effects of end-point penalties, we also implement the

following four approaches:

• Approach E: multi-class METANET and multi-class

VERSIT+ with end-point penalties;

• Approach F: multi-class METANET and multi-class VT-

macro with end-point penalties;

• Approach G: FASTLANE and multi-class VERSIT+ with

end-point penalties;

• Approach H: FASTLANE and multi-class VT-macro with

end-point penalties.

As an illustration, we choose ξTTS=1 and ξTE,CO2
=0.1 (the

same as in Combination 1) for Approaches E to H. For

ξTTS=1 and ξTE,CO2
=0.1, an investigation has been done to

find appropriate ξ end
TTS and ξ end

TE,CO2
for the end-point penalties;

the values obtained are ξ end
TTS=0.1 and ξ end

TE,CO2
=0.01.

We solve the control problem with sequential quadratic

programming based on a multi-start scheme. An

investigation has been done in order to make the CPU time

for the approaches including multi-class METANET and the

approaches including FASTLANE roughly the same. Thus

for Approaches A, B, E, and F, 50 starting points are used

for every control step, and for C, D, G, and H, 70 starting

points are used for every control step.

D. Results and Analysis

All simulations are implemented on a computer with 2

Intel(R) Xeon(R) CPU E5-1620 v3 @3.50GHz processors.

For each approach and each combination of weights, 10 runs

with different random seeds corresponding to different

starting points for ”fmincon” in MATLAB are implemented,

and the average results are listed in Tables III-VI. In

addition, we have also recorded the CPU time for each

approach and each combination of weights, and the results

are listed in Tables III-VI.

In these tables, J
imp
TTS,TE represents the relative improvement

of JTTS,TE over the entire simulation period w.r.t. the case

without control, with JTTS,TE defined as

JTTS,TE = ξTTS
TTStot

TTSnom
+ξTE,CO2

TECO2,tot

TECO2,nom

(55)

where TTSnom is the TTS over the prediction period for the

no-control case computed at the first control step, TTStot is the

total time spent over the entire simulation period, TECO2,nom

is the TE of CO2 over the prediction period for the no-control

case computed at the first control step, and TECO2,tot represents

the TE of CO2 over the entire simulation period.

We define a total objective function Jtotal as follows:

Jtotal = JTTS,TE+

ξqueue max
o∈Oramp

max

(

max
k=1,...,kend

∑
nc
c=1(pcwo,c(k))

wmax
o

−1,0

)

(56)

where kend is the last simulation time step of the entire

simulation period, and wmax
o is the maximum permitted

queue length for on-ramp o expressed in pce. The last term

of Jtotal represents the maximum queue length constraint

violation for all on-ramps over the entire simulation period,

and the weight for this term is set to be a large value aiming

at evaluating the satisfaction of queue length constraints:

ξqueue = 10. This total objective function is used for

comparing the total performance including the TTS, the TE,

and the queue length constraint violations, where higher

values indicate a worse total performance.
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TABLE III: Simulation results for Combination 1

Approaches J
imp
TTS,TE

Constraint violations
Jtotal CPU (h)

O1 O2 O3 O4

A 2.2% 0% 0% 0% 0% 8.6 7.7
B 2.4% 0% 0% 0% 0% 8.6 11.4
C -5.7% 43.5% 0% 125.4% 0% 21.8 10.0
D -8.6% 48.1% 14.6% 210.2% 0% 30.6 10.7

TABLE IV: Simulation results for Combination 2

Approaches J
imp
TTS,TE

Constraint violations
Jtotal CPU (h)

O1 O2 O3 O4

A 3.9% 0% 0% 0% 0% 7.7 7.0
B 2.4% 6.6% 0% 0% 0% 8.4 10.1
C 0.6% 10.2% 8.1% 229.2% 0% 30.8 10.7
D 0.2% 57.4% 0% 220.9% 0% 30.0 13.3

TABLE V: Simulation results for Combination 3

Approaches J
imp
TTS,TE

Constraint violations
Jtotal CPU (h)

O1 O2 O3 O4

A 6.8% 5.1% 0% 0% 0% 8.6 6.1
B 3.7% 26.5% 0% 0% 0% 11.0 8.9
C 13.1% 37.9% 23.8% 177.0% 0% 25.3 10.3
D 12.7% 107.1% 18.9% 188.7% 0% 26.5 12.9

TABLE VI: Simulation results for Combination 1 with end-point
penalties

Approaches J
imp
TTS,TE

Constraint violations
Jtotal CPU (h)

O1 O2 O3 O4

E 3.5% 0% 0% 0% 0% 8.5 8.2
F 4.2% 0% 0% 0% 0% 8.4 12.4
G -9.7% 57.2% 6.3% 236.3% 0% 33.3 8.0
H -5.9% 69.0% 7.7% 157.8% 0% 25.1 10.0

In following two subsections we first compare Approaches

A-D, then the effects of each extended multi-class traffic

model can be analyzed. Next, we compare Approaches E-H

with Approaches A-D, then the effects of end-point penalties

can be analyzed.

1) Results for multi-class models without end-point

penalties: The results for multi-class models without

end-point penalties are listed in Tables III-V. According to

Tables III-V, Approach A (multi-class METANET and

multi-class VERSIT+) can improve the performance for TTS

and TE (2.2% − 6.8%) w.r.t. the non-control case, with

relatively small queue length constraint violations

(0% − 5.1%); the queue length constraint violations only

occur for Combination 3, which has a high weight for TE.

Approach B (multi-class METANET and multi-class

VT-macro) can also improve the performance for TTS and

TE (2.4%− 3.7%) w.r.t. the non-control case, but the queue

length constraint violations increase from 0% to 26.5% with

the increase of the weight for TE. For Approach A, the

values of Jtotal are less than those for Approach B for all the

combinations of weights, i.e. the total performance for

Approach A is better than the total performance for

Approach B.

The approaches based on FASTLANE (C and D) lead to a

worse performance for TTS and TE (−8.6%− −5.7%) than

the no-control case for Combination 1, but a better

performance for TTS and TE (0.2% − 13.1%) than the

no-control case for Combination 2 and Combination 3. Note,

however, that for all the combinations there are consistent

queue length constraint violations for on-ramps O1

(10.2% − 107.1%) and O3 (125.4% − 229.2%). Thus the

values of Jtotal (21.8 − 30.8) for the approaches based on

FASTLANE (C and D) are much higher than the values

(7.7 − 11.0) for the approaches based on multi-class

METANET (A and B), i.e. the total performance for the

former approaches is worse than that of the latter

approaches.

High constraint violations can lead to traffic jams

upstream of the given on-ramps, which is an important issue

to be handled when a control approach is developed. For the

settings of our experiment, the approaches based on

multi-class METANET are more capable of dealing with the

queue length constraints.

Comparing the CPU time for Approach A (which is based

on multi-class METANET and multi-class VERSIT+) with

that for Approach B (which is based on multi-class

METANET and multi-class VT-macro), we find that

Approach A is faster than Approach B for the 3 considered

combinations of weights. Comparing the CPU time for

Approach C (which is based on FASTLANE and multi-class

VERSIT+) with that for Approach D (which is based on

FASTLANE and multi-class VT-macro), we find that

Approach C is faster than Approach D for the 3 considered

combinations of weights.

2) Results for end-point penalties: The results for

approaches with end-point penalties are included in Table

VI, and these results are now compared with results in Table

III. In comparison with the approaches based on multi-class

METANET without end-point penalties (A and B in

Combination 1), including end-point penalties (E and F) can

further improve the performance for TTS and TE

(3.5%-4.2%), while there is still no queue length constraint

violation. In addition, the values of Jtotal (8.4-8.5) are also

further reduced w.r.t. the approaches without end-point

penalties. Thus, for approaches based on multi-class

METANET we can say that end-point penalties can improve

both the performance for TTS and TE and the total

performance.

The approaches based on FASTLANE with end-point

penalties (G and H) cannot reduce the high constraint

violations for on-ramps O1 (57.2%-69.0%) and O3

(157.8%-236.3%) to a low level, and the values of Jtotal

(25.1-33.3) are still much higher than those for the

approaches based on multi-class METANET (A, B, E, and

F). This might be because of the first-order characteristics of

FASTLANE, which makes the estimations of end-point

penalties less reliable.

Comparing the CPU time for Approaches A and B (which

are based on multi-class METANET without end-point

penalties) with that for Approaches E and F (which are

based on multi-class METANET with end-point penalties),

we find that when the end-point penalties are included the

CPU time is increased by 6.5% for Approach A, and by

8.8% for Approach B. However, for the approaches based on

FASTLANE, the CPU time for Approach G (with end-point

penalties) is reduced compared to Approach C (without

end-point penalties), and the CPU time for Approach H

(with end-point penalties) is also reduced compared to
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Approach D (without end-point penalties).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have compared extended multi-class

traffic flow models (multi-class METANET and FASTLANE

with extensions) and traffic emission models (multi-class

VT-macro and multi-class VERSIT+). End-point penalties

that are computed based on the extended multi-class traffic

flow and emission models are included to account for the

future evolution of the traffic system beyond the prediction

period. Since the main aim is to compare the extended

models, we have used them as prediction models for MPC

for traffic networks based on the same setting. We have

expressed the integrated control problem for reducing traffic

congestion and traffic emissions in a systematic way, and the

work in this paper can be seen as a proof of the concept for

the integrated control approach for reducing traffic

congestion and traffic emissions.

A simulation experiment has been implemented to

compare these multi-class traffic flow models and traffic

emission models, and to evaluate the effectiveness of the

end-point penalties. Eight approaches have been considered

for MPC for part of the Dutch freeway network A13, i.e.,

the four approaches based on the multi-class traffic flow

models and traffic emission models, as well as these

approaches with the end-point penalties. The results show

that the approaches based on multi-class METANET can

improve the performance for TTS and TE w.r.t. the

no-control case with smaller queue length constraint

violations than those for FASTLANE. The queue length

constraint violations for multi-class METANET increase with

the weight for TE, probably due to the fact that vehicles in

queues are considered to generate less emissions than

vehicles that are driving, since the vehicles in the queues

have low speeds and almost no acceleration. For these

approaches based on multi-class METANET, including

end-point penalties can further improve the performance for

TTS and TE and the total performance with a small sacrifice

in the computational efficiency. On the other hand, for the

given case study, the approaches based on FASTLANE lead

to consistent queue length constraint violations, which may

cause traffic jams upstream of the corresponding on-ramps;

furthermore, for these approaches including end-point

penalties cannot improve the total performance, probably due

to the less reliable estimations of end-point penalties based

on FASTLANE.

For future research, the VISSIM model parameters can be

calibrated with real-world data. Extra identification for more

scenarios, identification with flow and density calibrated, and

identification through other algorithms could be done for

model parameters. Besides, larger complex networks and

more traffic scenarios can be investigated for validating the

effectiveness of the extended multi-class traffic flow and

emission models. Additionally, the impact of end-point

penalties can also be further investigated by testing suitable

weights for these penalties in different control conditions.

Moreover, the comparison of the single-class METANET

model and the multi-class METANET model can be

implemented for multiple layouts and a wide range of

scenarios based on microscopic simulators. When the size of

the network increases, distributed model predictive control

approach and parameterized control approach can be

considered for reducing the computation time.
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APPENDIX A

PROOF OF THE BOUNDARY CONDITION FOR THE

SEMI-CONGESTION REGIME

Proof. The proof is based on (17), (20), (30), and (28).

Substitute (20) into (30), and consider (28):

vfree
m,c∗m

exp

(

−1

am,c∗m

)

6 vfree
m,c exp

(

−1

am,c

(

ρm,i,c(k)

αm,i,c(k)ρcrit
m,c

)am,c
)

(57)

for c = 1, . . . ,nc with c 6= c∗m

From (57), the following equation can be obtained:

ρm,i,c(k)

αm,i,c(k)
6 ρcrit

m,c

[

−am,c ln

(

vfree
m,c∗m

vfree
m,c

exp

(

−1

am,c∗m

)

)]
1

am,c

(58)

for c = 1, . . . ,nc with c 6= c∗m

The right-hand side of (58) is equal to ρcrit∗
m,c , cf. (32). Hence,

ρm,i,c(k)

ρcrit∗
m,c

6 αm,i,c(k) (59)

for c = 1, . . . ,nc with c 6= c∗m

For vehicle class c∗m, ρcrit
m,c∗m

= ρcrit∗
m,c . Considering (17), the

boundary condition for the semi-congestion regime can be

obtained:
nc

∑
c=1

ρm,i,c(k)

ρcrit∗
m,c

6 1, i.e. (31) in Section II-B.

APPENDIX B

TABLE OF NOTATIONS

m index for link;
i index for segment (cell);
o index for origin;
c index for vehicle class;

c∗m
vehicle class with the slowest desired speed in free-flow
regime;

y index for emission (fuel) category;
t time instant;
k simulation time step counter;
kc control time step counter;
kend last simulation time step of the entire simulation period;
T simulation time step length;
Tc control time step length;
M positive integer defined by M = Tc/T ;
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Np prediction horizon length;
Nc control horizon length;
nc total number of vehicle classes;
Lm segment (cell) length of link m;
µm number of lanes of link m;
qm,i,c flow of vehicle class c in segment (cell) (m, i);
qα,c flow of vehicle class c in segment (cell) α;

qlim
m,1,c

maximal inflow of vehicle class c for the first segment of link
m that is connected to the origin;

qo,c flow of vehicle class c at origin o;
Qc flow function of vehicle class c;
ρm,i,c density of vehicle class c in segment (cell) (m, i);
ρefc

m,i effective density in cell (m, i);

vm,i,c speed of vehicle class c in segment (cell) (m, i);
vα,c speed of vehicle class c in segment (cell) α;

vlim
m,1,c speed that limits the flow for vehicle class c in segment (m,1);

Vm,c desired speed function for vehicle class c in link m;
wo,c queue length of vehicle class c at origin o

do,c external demand of the vehicle class c at origin o;

ρcrit
m joint critical density for all vehicle classes in link m;

ρcrit
m,c critical density of vehicle class c in link m;

ρcrit∗
m,c

parameter of vehicle class c in link m for determining the
boundary condition for the semi-congestion regime;

ρmax
m effective maximum density in link m;

ρmax
m,c

theoretical maximum density of link m if there would be only
vehicle class c;

vfree
m,c free-flow speed of vehicle class c in link m;

vfree
m,max free-flow speed of the fastest vehicle class in link m;

vcrit
m joint critical speed for all vehicle classes in link m;

δm,c
1+δm,c is the non-compliance factor of vehicle class c in link
m;

τm,c,
ηm,c,
κm,c,
am,c

model parameters of vehicle class c in link m for multi-class
METANET;

Co,c
theoretical maximum capacity of on-ramp o if there would
be only vehicle class c;

wmax
o maximum allowed queue length for origin o;

Py,c

class-dependent parameter matrix for emission (fuel
consumption) rates of vehicle class c for emission (fuel)
category y;

γ1,c, γ2,c
class-dependent model parameters for transferring the fuel
consumption rate to the emission rate for CO2;

θm,i,c
dynamic passenger car equivalents for vehicle class c in cell
(m, i);

θo,c
dynamic passenger car equivalents for vehicle class c at origin
o;

pc passenger car equivalents for vehicle class c;
Th,c minimum time headway of vehicle class c;
sc gross stopping distance of vehicle class c;
λm,i,c flow ratio of vehicle class c in cell (m, i);
λo,c flow ratio of vehicle class c at on-ramp o;
Λo proportion of the supply that is distributed to on-ramp o;
Dm,i,c demand of vehicle class c in cell (m, i);
Do,c total demand of vehicle class c at on-ramp o;
Sm,i supply of all vehicle classes in cell (m, i);
αm,i,c road space fraction of vehicle class c in segment (m, i);

S
cong
m,i

set of all vehicle classes that are in congested mode in
segment (m, i);

Sfree
m,i

set of all vehicle classes that are in free-flow mode in segment
(m, i);

Y set of emission (fuel) categories;

ainter
m,i,c

inter-segment (inter-cell) acceleration of vehicle class c in
segment (cell) (m, i);

across
α,β ,c

cross-segment (cross-cell) acceleration of vehicle class c from
segment (cell) α to segment (cell) β ;

ninter
m,i,c number of vehicles corresponding to ainter

m,i,c;

ncross
α,β ,c number of vehicles corresponding to across

α,β ,c;

EMinter
y,m,i,c

emission (fuel consumption) rate of emission (fuel) category
y corresponding to ainter

m,i,c;

EMcross
y,α,β ,c

emission (fuel consumption) rate of emission (fuel) category
y corresponding to across

α,β ,c;

EMinter
fuel,m,i,c fuel consumption rate corresponding to ainter

m,i,c;

EMcross
fuel,α,(m,i),cfuel consumption rate corresponding to across

α,(m,i),c;

EMCO2 ,m,i,c
emission rate for CO2 of vehicle class c in segment (cell)
(m, i);

EMfuel,m,i,c
fuel consumption rate of vehicle class c in segment (cell)
(m, i);

EMinter
y,o,c

emission (fuel consumption) rate of emission (fuel) category
y for vehicles in queue at origin o

u0,y,c,...,
u9,y,c

model parameters of vehicle class c for emission category y

for multi-class VERSIT+;

vSL
m,i speed limit that is applied in segment (cell) (m, i);

vctrl
m,i speed limit in segment (cell) (m, i) for a given control step;

ro ramp metering rate that is applied at on-ramp o;

rctrl
o ramp metering rate of on-ramp o for a given control step;

NVSL number of groups of variable speed limits;
NRM number of groups of metered on-ramps;
J overall objective function;
TTS total time spent;

TTSend end-point penalty for total time spent;

TTSnom nominal total time spent;

TTSend
nom nominal end-point penalty for total time spent;

trem
m,i,c

time that a vehicle of class c that is present in segment (cell)
(m, i) at time step (kc +Np)M would on the average need to
get to its destination;

trem
o,c

time that a vehicle of class c present in queue at o at time step
(kc+Np)M would on the average need to get to its destination;

TEy total emissions of emission category y;

TEend
y end-point penalty for total emissions of category y;

TEy,nom nominal total emissions of category y;

TEend
y,nom nominal end-point penalty for total emissions of category y;

TErem
y,m,i,c

emissions that a vehicle of class c present in segment (cell)
(m, i) at time step (kc +Np)M would on the average generate
before leaving the network;

TErem
y,o,c

emissions that a vehicle of class c present in queue at o at
time step (kc +Np)M would on the average generate before
leaving the network;

Ilink set including all the links;

I
up
m,i

set including all the upstream segments (cells) and origins
that connect to segment (cell) (m, i);

Iall set of all pairs of link and segment (cell) indices (m, i);
Pall set of all pairs of adjacent segments (cells) and origins;
Oall set of the indices of all origins;
Oramp set of all metered on-ramps;
Ispeed set of all segments (cells) with speed limits;
ξTTS,
ξTE,y,
ξramp,
ξspeed,

ξ end
TTS,

ξ end
TE,y

nonnegative weights.
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