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Integration of Resource Allocation Coordination and Branch-and-Bound

Renshi Luo1, Romain Bourdais2, Ton J.J. van den Boom1 and Bart De Schutter1

Abstract— In general, integer programming problems are
computationally very hard to solve, which makes solving an
integer programming problem with a large number of decision
variables in a centralized way intractable. In this paper, we
propose a novel integer optimization method for strategic
planning by integrating the resource allocation coordination
method into a branch-and-bound paradigm. Thanks to the
distributed computation of the resource allocation coordination
method and distributed evaluation of nodes in the branch-
and-bound paradigm, our method is capable of solving an
integer programming problem in a distributed way. Moreover,
since in the branch-and-bound paradigm the size of solution
space decreases monotonically as the iteration proceeds, it is
guaranteed that the globally optimal solution to an integer
programming problem is obtained by using our method. Finally,
we apply our method to the optimal charging control problem
of electric vehicles under constrained grid conditions in a
simulation study.

I. INTRODUCTION

Integer programming problems are computationally very

hard to solve, which makes solving an integer programming

problem with a large number of decision variables in a

centralized way intractable. So far, the inevitability of solving

(mixed) integer programming problems has been hindering

the development of intelligent control of large-scale hybrid

systems. Therefore, it is important to seek a method to solve

the integer programming problem in a distributed way.

In strategic planning, resource allocation is a plan for

using available resources to achieve goals for the future.

Actually, primal decomposition is naturally applicable to

resource sharing scenarios, where the allocation of resources

can be represented by auxiliary variables and these variables

are optimized via using a master problem to coordinate the

resource allocation to the subproblems [1]. In fact, a resource

allocation coordination method, which is a distributed opti-

mization method based on the primal decomposition of the

overall problem, has already been developed for continuous

optimization problems with global capacity constraints in [2].

However, if the resource allocation coordination method

is used directly in distributed optimization for an integer

programming problem, there could arise problems, such as

oscillatory behavior of the decision variables, which will then

not converge anymore.
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Actually, in [3], a mechanism integrating a distributed

optimization method based on dual decomposition of the

overall problem into the branch-and-bound [4] paradigm has

been proposed to deal with the oscillatory behavior of the

integer decision variables. However, that mechanism cannot

guarantee that the constraints are always satisfied during

iterations since the constraints are relaxed as penalties to

the original objective function in dual decomposition. In the

contrast, satisfaction of the constraints during the iterations

is always guaranteed by using the resource allocation coor-

dination method since it is based on primal decomposition

of the overall problem.

A general framework of embedded optimization based on

the branch-and-bound paradigm has been presented in [5]

and it has been pointed out that optimization methods devel-

oped by using that framework can be used for implementing

predictive control of hybrid systems on embedded systems.

In this paper, we integrate the resource allocation coor-

dination method into the paradigm of generic branch-and-

bound, and then develop a new optimization method for a

class of integer programming problems with capacity con-

straints. As an illustration example, we apply the proposed

optimization method to the optimal charging control problem

of electric vehicles under constrained grid conditions.

As the increasing number of electric vehicles (EVs) will

inevitably cause an additional load to the electrical power

distribution grids [6], [7], the current capacity of the distri-

bution grid will not be sufficient. The most direct way to

solve this problem is to increase the capacity of the distribu-

tion grid. However, this will require huge investment costs.

Alternatively, a smart charging control strategy that balances

the charging demands of EVs can help to solve the problem

in a more sustainable way and therefore is highly preferred

by the distribution grid operators. So far, intelligent control

of electric vehicles charging has been addressed by using

distributed integer linear optimization method [8], sequential

quadratic optimization [9], [10], dynamic programming [11],

and heuristic methods [12].

Since a whole fleet of vehicles has to share the limited

amount of charging power provided by the grid, we use our

method which is based on the resource allocation coordina-

tion method to solve the optimal charging control problem

of a fleet of electric vehicles.

II. RESOURCE ALLOCATION COORDINATION

METHOD

In the resource allocation coordination method, the shares

of resources that are allocated to subproblems are represented



by auxiliary variables and then optimized by a master prob-

lem to achieve the coordination of resource allocation [1].

A. General separable problem

Let us consider the following general optimization prob-

lem

minimize
xxx

N

∑
n=1

fn(xn) (1)

subject to xn ∈ Xn, n = 1, ...,N

N

∑
n=1

gn(xn)≤ r

where all xn are scalar variables. The problem can be

interpreted as the optimization of N independent agents

sharing a common resource r. More specifically, the variable

xn denotes the decision of agent n and the function value

gn(xn) denotes the amount of resources required by agent n

if it makes decision xn.

B. Primal decomposition

By introducing auxiliary variables θn, which denote the

amount of resources allocated to each agent n, we can rewrite

(1) as

minimize
xxx

N

∑
n=1

fn(xn) (2)

subject to xn ∈ Xn, n = 1, ...,N

gn(xn)≤ θn, n = 1, ...,N

N

∑
n=1

θn = r

Let us define

pn(θn) = minimize
gn(xn)≤θn,xn∈Xn

fn(xn) (3)

Then, problem (2) can be written as

minimize
θθθ

N

∑
n=1

pn(θn) (4)

subject to
N

∑
n=1

θn = r

This problem is called the master problem. We will discuss

how to solve it in the next subsection.

C. Optimize the resource allocation

Actually, if all xn are continuous decision variables, the

problem (4) can be solved efficiently by using subgradient

methods, which are simple iterative methods for solving

convex optimization problems [13]. Suppose y is the decision

variable of a convex problem, classical subgradient methods

search for the solution to the problem by using the iteration

y(z+1) = Π
(

y(z)−α(z)h
(

y(z)
)

)

where h
(

y(z)
)

denotes a subgradient of the objective function

of the problem at y(z), α(z) denotes the stepsize and Π(·)
denotes the projection onto the constrained solution space.

It can be seen that a subgradient of pn(θn) at θn is equal

to −λn, where λn is the Lagrange multiplier corresponding

to the constraint gn(xn) ≤ θ j in the definition of pn(θn)
[14, Chapter 6.4.2]. In particular, the projected subgradient

method in [2] is given by

θ
(z+1)
n = θ

(z)
n +ξ (z)

(

λ
(z)
n −

1

N

N

∑
j=1

λ
(z)
j

)

(5)

where z is the iteration counter and ξ (z) is a square-summable

but not summable stepsize which satisfies

ξ (z)
> 0,

+∞

∑
z=1

ξ (z) =+∞,

+∞

∑
z=1

(ξ (z))2
<+∞ (6)

Note that (5) uses −λ
(z)
n as the subgradient of pn(·) at θ

(z)
n

and guarantees the constraint ∑N
n=1 θ

(z)
n = r for is satisfied

for all iterations.

In fact, the Lagrange multiplier corresponding to the

constraint gn(xn) ≤ θn in the definition of pn(θn) can be

generally computed by

λn =







− f
′
n(x
∗
n)

g
′
n(x
∗
n)
, if− f

′
n(x
∗
n)

g
′
n(x
∗
n)
> 0

0, otherwise

(7)

where

x∗n = argmin
gn(xn)≤θn,xn∈Xn

fn(xn)

In summary, the explicit resource allocation coordination

algorithm is:

Resource allocation coordination algorithm

i) Initialize θ
(1)
n for all n and set z = 1.

ii) At each iteration z, each agent n solves

x
∗,(z)
n = argmin

gn(xn)≤θ
(z)
n ,xn∈Xn

fn(xn)

and obtains λ
(z)
n by using equation (7).

iii) Obtain θ
(z+1)
n by using (5).

iv) Stop if |θ
(z+1)
n −θ

(z)
n | ≤ ε for all n are satisfied or the

maximum number of iterations is reached; otherwise set

z← z+1 and go back to ii).

III. INTEGRATE RESOURCE ALLOCATION

COORDINATION METHOD INTO

BRANCH-AND-BOUND

Actually, the resource allocation coordination method can

guarantee that the global optimum is attained if the overall

problem (1) is strictly convex. However, even given fn(·) and

gn(·) are strictly convex functions, if xn is integer decision

variable or subject to discrete values i.e. Xn is a set of integers

or discrete values, the overall problem is not convex. In fact,

in that case the integer or discrete decision variables will
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Fig. 1. Discrete decision variables exhibit oscillatory behaviors

exhibit oscillatory behaviors and the global optimum will

not be attained by using the resource allocation coordination

method. To be more specific, a simple numerical example

describing the problem of directly using the resource alloca-

tion coordination on an integer optimization problem is given

here:

minimize
x1,x2

(x1−2)2 +(x2−2)2

subject to x1 ∈ {−3,0,3,3.5,3.7}

x2 ∈ {−2.7,0.75,3.2,3.6,3.8}

x1 + x2 ≤ 4

and Figure 1 shows the behaviors of the decision variables.

A. Generic branch-and-bound

Branch-and-bound is an algorithm design paradigm for

combinatorial optimization problems that involve integer or

discrete variables. Actually, disregarding the computation

time, an algorithm designed according to the branch-and-

bound paradigm can always find the global optimum of a

combinatorial optimization problem. Therefore, we propose

to integrate the resource allocation coordination method into

the branch-and-bound paradigm.

B. Using resource allocation coordination method as a

bounding technique

Although there is no guarantee for all cases that the global

optimum is attained, the resource allocation coordination

method has a nice economic interpretation and has already

been proposed as a heuristic [2]. Therefore, we use the

resource allocation coordination method as a heuristic to

compute an upper bound of the minimum of value of the

overall problem within a given subset of the overall solution

space. Meanwhile, a lower bound of the minimum of the

problem within the same subset of the overall solution space

is obtained by solving the relaxed problem where integer

variables are relaxed to real variables.

C. Branching based on the outcome of resource allocation

coordination method

If x j for all j are integer decision variables, their values

may oscillate between two different integers during the

iterations when calling the resource allocation coordination
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relaxed problem
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subspace subspace

lower bound

upper bound

oscillation flag

 resource allocation

coordination method

relaxed problem lower bound

upper bound

oscillation flag

...

S

S1 S2

Fig. 2. The overall method

method on a subspace of the overall solution space. Actually,

we can make use of the oscillation of the decision variables

to help with the further branching of the solution space.

We propose the following way to branch the solution space

when the oscillations of decision variables are diagnosed:

• assume S = X1×X2× ...×XN and call resource alloca-

tion coordination method on S.

• when oscillations of decision variables are diagnosed,

choose a decision variable xn which oscillates between

αn ∈ Xn and βn ∈ Xn.

• perform branching

S1 = X1× ...×
(

Xn \{xn|xn ≤ αn}
)

× ...×XN

S2 = X1× ...×
(

Xn \{xn|xn > αn}
)

× ...×XN

Note that the oscillation of decision variable xn is character-

ized by

x
∗,(z+1)
n 6= x

∗,(z)
n , sgn

(

∆θ
(z+1)
n

)

6= sgn
(

∆θ
(z)
n

)

(8)

with ∆θ
(z+1)
n = θ

(z+1)
n −θ

(z)
n and ∆θ

(z)
n = θ

(z)
n −θ

(z−1)
n . There-

fore, we diagnose the oscillation of decision variables by

detecting the condition (8) for each n.

Even if none of the decision variables oscillates, in gen-

eral, it may happen that the global optimum is not yet

reached. Therefore, if no oscillation of any decision variable

is diagnosed during the calling of resource allocation coor-

dination method, we propose to arbitrarily choose a decision

variable xn and a γn ∈ Xn and then perform branching

S1 = X1× ...×
(

Xn \{xn|xn ≤ γn}
)

× ...×XN

S2 = X1× ...×
(

Xn \{xn|xn > γn}
)

× ...×XN

D. The overall method

Finally, the flowchart of the integration of resource al-

location coordination method into the branch-and-bound

paradigm is given in Figure 2. More specifically, the overall

method consists of two levels:



• the inner procedure of resource allocation coordination

at each node in the tree

• the outer procedure of branch-and-bound

Since branch-and-bound is used as the outer procedure, the

stopping criterion of the overall method is the same as that

of the general branch-and-bound.

The global optimal solution to the integer programming

problem is always obtained by using the proposed method.

This is guaranteed by the fact that in the branch-and-bound

paradigm, the size of solution space decreases monotonically

until the global optimal solution is found.

Compared with the classical integer optimization method

based on the branch-and-bound paradigm but with a pre-

defined branching sequence, our method has advantages

in both bounding and branching. More specifically, since

the resource allocation coordination method is a distributed

method, it can find an upper bound of the minimum of the

problem within a shorter time span. Moreover, since the

resource allocation coordination method is also a heuristic

method [2], branching based on the heuristic results is in

general better than that based on a predefined sequence if no

prior knowledge of the problem is given.

IV. CHARGING CONTROL OF ELECTRIC

VEHICLES

By assuming that the profile of the electricity price and

the arrival and the departure times of all EVs at a charging

station given, we focus on the optimal charging control of a

fleet of EVs at a charging station. We aim to achieve that all

the EVs charge up to the required level within the required

time and the total cost on charging the EVs is minimized.

A. Definitions

Let k be the discrete-time counter and T be the simulation

interval whose typical value is 15 minutes. Let Nv be total

number of EVs. Let Ti,arrival be the arrival time of EV i at

the charging station and Ti,departure be the departure time of

EV i from the charging station. Without loss of generality,

we assume Ti,arrival and Ti,departure are integer multiples1 of

T . Let si,k be the state of charge of EV i at time kT and sd
i

be required state of charge of EV i when it departs from the

station. Let Ci be the capacity of the onboard battery of EV

i and di,tol be the tolerance of difference between the state of

charge of EV i at its departure time and sd
i . Finally, let pi,k

be the consumed power by EV i at time kT and ui,k be the

binary decision variable indicating whether EV i is charging

at time kT or not.

B. Model of the charging of an individual electric vehicle

The charging power of an electric vehicle at time step k−1

is given by

pi,k−1 =

{

F
(

si,k−1

)

, if ui,k−1 = 1

0, if ui,k−1 = 0
(9)

1If vehicles arrive earlier or depart later than a sampling time instant,
they will not be charging in the partial time slot of the simulation interval
within which they arrive or depart.

where the nonlinear function F(·) describes how the con-

sumed power of EV i depends on its state of charge.

Therefore, the dynamics of the state of charge of an

electric vehicle is given by

pi,k−1 = F
(

si,k−1

)

·ui,k−1 (10)

si,k = si,k−1 +
pi,k−1 ·T

Ci

(11)

In general, there are two charging options available for

EV chargers, namely Constant Current - Constant Voltage

(CCCV) option and Constant Power - Constant Voltage

(CPCV) option [15]. With the CPCV option, the vehicle

is first charged with constant power until the critical state

of charge is reached. After that, it is charged with constant

voltage until it is fully charged.

C. Coupling constraints

At any time, the total power consumption of all the EVs

should not be more than the maximum power that can be

provided by the grid. Therefore, the coupling constraints on

all the EVs imposed by the capacity of the grid are given by

Nv

∑
i=1

pi,k ≤ Pmax
, k = 1, ...,kd (12)

where Pmax denotes the steady maximum power limit2 pro-

vided by the grid.

D. Charging cost

Given the profile of price of electricity, the total cost on

charging all the EVs is given by:

J =
Nv

∑
i=1

ki,departure−1

∑
k=ki,arrival

pi,k ·T · ck (13)

where ck denotes the price of electricity at time kT and

ki,arrival =
Ti,arrival

T
, ki,departure =

Ti,departure

T

E. Problem formulation

According to [15], if the CPCV option is used, an electric

vehicle can be charged with constant power up to more

than 90% of the capacity of its onboard battery. After that,

the charging power will decrease dramatically along with

the improvement of state of charge of the vehicle. If we

define si,critical as the critical state of charge of vehicle i right

after which the charging power starts to decrease, then after

vehicle i is charged up to si,critical, it will still take much time

for vehicle i to be fully charged (100%) since the charging

power decreases dramatically. Therefore, we assume that

sd
i ≤ si,critical (14)

holds for all i. Then, we have pi,k = pi,constant for all i and

all k.

2The maximum power limit might also be time-dependent.



By making assumption (14), the model of the charging of

an electric vehicle can be simplified to

si,ki,departure
= si,ki,arrival

+

ki,departure−1

∑
k=ki,arrival

pi,constant ·ui,k ·T

Ci

and the charging requirement constraint sd
i −si,ki,departure

≤ di,tol

for each vehicle i can be written as

sd
i − si,ki,arrival

−di,tol

pi,constant ·T
·Ci ≤

ki,departure−1

∑
k=ki,arrival

ui,k

Note that the decision variables are all binary values. Then,

the constraint can be further rewritten as

ki,departure−1

∑
k=ki,arrival

ui,k ≥ mi (15)

where mi is an integer constant determined by

mi = ceiling

(

sd
i − si,ki,arrival

−di,tol

pi,constant ·T
·Ci

)

Finally, the constraint (15) is added as penalty term to

the objective function with sufficiently large weight βi for

i = 1, ...,Nv. Then, the optimal charging control problem of

electric vehicles can be formulated as

minimize
UUU

Nv

∑
i=1

(

1

Ji,cost,typical

ki,departure−1

∑
k=ki,arrival

pi,constant ·T · ck ·ui,k

+
βi

ki,departure− ki,arrival

∣

∣

∣

∣

mi−

ki,departure−1

∑
k=ki,arrival

ui,k

∣

∣

∣

∣

)

(16)

subject to
Nv

∑
i=1

pi,constant ·ui,k ≤ Pmax
, k = 1, ...,kd

where UUU = [UT
1 ,U

T
2 , ...,U

T
Nv
]T is a compact decision variable

symbol with Ui = [ui,ki,arrival
,ui,ki,arrival+1, ...,ui,ki,departure−1]

T and

Ji,cost,typical is the typical value for the charging cost of vehicle

i, which is used to normalize the real charging cost and is

given by

Ji,cost,typical =
(

ki,departure− ki,arrival

)

·T · c̄ · pi,constant

with c̄ denoting the average price of electricity. It is clear that

the optimal charging control problem (16) is a specific case

of the general problem (1). Therefore, the resource allocation

coordination method is naturally applicable to problem (16).

In the simulation study, we will apply our optimization

method based on the integration of resource allocation co-

ordination method into branch-and-bound paradigm to solve

problem (16).

V. NUMERICAL SIMULATION STUDY

We consider a case where 6 electric vehicles need to be

charged. The information of all the vehicles is summarized

in Table I. Note that the number of binary decision variables

in this case is ∑6
i=1(ki,departure − ki,arrival) = 24. The other

TABLE I

FLEET INFORMATION

i karrival kdeparture sinitial sd C (kWh) pconstant (kW)

1 3 6 0.6 0.8 9 3.5

2 1 4 0.35 0.45 7.1 2.5

3 2 5 0.4 0.6 8 3

4 5 10 0.6 0.9 8.5 2.7

5 4 8 0.5 0.7 7.5 3.2

6 3 9 0.3 0.5 7.8 3.1
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Fig. 3. Profile of electricity price

parameters used in the simulation are T = 15 min, Pmax = 9

kW, di,tol = 0.02 and βi = 200 for i = 1, ...,6; the profile of

electricity price is shown in Figure 3.

In the simulation, we solve problem (16) by using three

different optimization methods. The first two methods use

glcSolve and minlpBB of the Tomlab/MINLP optimization

toolbox for Matlab, respectively. More specifically, glcsolve

is a solver for global optimization problems with both non-

linear and integer constraints by implementing an extended

version of DIRECT algorithm [16]. The solver glcsolve is

run for a predefined number of function evaluations and

considers the best function value found as the optimal

one. It is possible to restart glcsolve with a warm-start,

where all parameters are set to the final status from the

previous run. The solver minlpBB is for large, sparse or dense

mixed-integer linear, quadratic and nonlinear programming

problems by implementing a branch-and-bound algorithm

searching a tree whose nodes correspond to continuous non-

linearly constrained optimization problems that are solved

using filterSQP [17]. The third one is the method proposed

in this paper.

The simulations are performed using Matlab 2013b on a

desktop computer with an Intel® CoreTM i5-2400 CPU with

3.10 GHz and 4 GB RAM. The simulation results of using

the three optimization methods are summarized in Table II.

It is clear that our method outperforms the first two methods

in both solution quality and computation time. In addition,

by using the distributed nature of the resource allocation

coordination method and the distributed evaluation of nodes

in the branch-and-bound paradigm, our method can be fur-

ther accelerated if executed on several processors in parallel.

More specifically, at each node of the tree in the branch-

and-bound paradigm, the resource allocation coordination



TABLE II

COMPARISON OF THE THREE OPTIMIZATION METHODS

Optimization method Jopt computation time (s)

glcSolve (30 warm start runs) 0.2086 2056.3

minlpBB 0.2502 1620.2

our method 0.2047 647.3
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Fig. 4. Total power consumption of the EVs

method can be implemented in a distributed way by assigning

one processor for each subproblem. Besides, since the nodes

on different branches of the tree in the branch-and-bound

paradigm are independent from each other, the evaluation of

those nodes can be assigned to different processors.

Finally, the total power consumption of all time steps and

the final state of charge of all vehicles corresponding to the

solution found by the three methods are given in the Figure

4 and Table III, respectively.

It is clearly seen from Table III that the vehicles are all

charged up to the required levels under the charging control

using the three optimization methods. However, Figure 4

together with Figure 3 clearly shows that the solution found

by our method is best since under the charging control using

our method, the fleet of vehicles only charge at the times

when the electricity price is the low.

VI. CONCLUSION

In this paper, a novel integer optimization method has been

proposed by integrating the resource allocation coordination

method into the branch-and-bound paradigm. Thanks to the

distributed computation of the resource allocation coordi-

nation method and distributed evaluation of nodes in the

branch-and-bound paradigm, the proposed method is capable

of solving an integer programming problem in a distributed

way. Moreover, the optimality of the proposed method is

TABLE III

FINAL STATE OF CHARGE OF EVS AFTER CHARGING

Method EV 1 EV 2 EV 3 EV 4 EV 5 EV 6

glcSolve 0.7944 0.438 0.5875 0.9176 0.7133 0.4987

minlpBB 0.7944 0.438 0.5875 0.9176 0.7133 0.4987

our method 0.7944 0.438 0.5875 0.9176 0.7133 0.4987

proved by the fact that in the branch-and-bound paradigm

the size of solution space decreases monotonically until the

global optimum is attained. Finally, the proposed method

has been applied to the optimal charging control of electric

vehicles under constrained grid conditions in a numerical

simulation study. It is shown in the simulation results that

the proposed method outperforms the commercial MINLP

solvers in both solution quality and computation time.

In our future work, we will first further improve the

efficiency of the proposed method, e.g., by directly projecting

the update of resource allocation onto the feasible discrete

space, and then apply the resulting integer optimization

method to distributed model predictive control of large-

scale hybrid systems and in particular, of power system and

transportation system.
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