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Integrated Predictive Control of Freeway Networks

Using the Extended Link Transmission Model
Mohammad Hajiahmadi, Goof S. van de Weg, Chris M.J. Tampère, Ruben Corthout,

Andreas Hegyi, Bart De Schutter, and Hans Hellendoorn

Abstract—In this paper, the recently developed link transmis-
sion model (LTM) is utilized in an on-line hybrid model-based
predictive control (MPC) framework. The model is extended to
include the effects of ramp metering and variable speed limits.
Next, an integrated freeway traffic control based on the new
model is presented in order to minimize the total time spent
in the network. The integrated scheme has the capability of
controlling large-scale freeway networks in real-time as the model
is computationally efficient and it is yet accurate enough for our
control purposes. In addition, the extended model is reformulated
as a system of linear inequalities with mixed binary and real
variables. The reformulated model along with the linearized
total travel time objective function establish a mixed integer
linear optimization problem that is more tractable and even
faster than the original optimization problem integrated in the
MPC scheme. Finally, to investigate the performance of the
proposed approaches (nonlinear MPC and the mixed integer
linear counterpart), a freeway network layout based on the
Leuven Corridor in Belgium is selected. The extended LTM is
calibrated for this network using micro-simulation data and next,
is used for prediction and control of the large network. Micro-
simulation results show that the proposed methods are able to
efficiently improve the total travel time.

I. INTRODUCTION

MODEL-BASED control for traffic networks has been

attractive for many researchers. In particular, freeway

network modeling and control with the goal of reducing the

travel time, reducing the fuel consumption and emissions,

increasing the throughput of the network, etc., have been

extensively investigated in the literature [1]–[6]. In model-

based traffic control, an efficient and accurate model for the

evolution of the traffic is required. For traffic networks, a

wide range of traffic flow models has been developed, from

microscopic models [7] and micro-simulators [8] that represent

the behavior of individual vehicles to macroscopic models that

describe the traffic dynamics in terms of aggregate variables

[7], [9]. Among these models, those that can accurately

reproduce the traffic states, the relevant dynamics such as

congestion creation and dissolution, blocking back, and the

effects of traffic control measures such as ramp metering and
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variable speed limit (VSL) and meanwhile have reasonable

computational complexity are good candidates for being used

in the model-based traffic control. Macroscopic models such as

the METANET model [10] and its extended versions [3], and

the cell transmission model (CTM) [11] are good examples of

such models.

Model predictive control (MPC) is an advanced control

strategy [12] that has been utilized for traffic network control

in recent years [3], [4], [13], [14]. It involves optimization-

based calculation of control inputs using a prediction model of

the system under control. In [3], [5], the extended METANET

is utilized for the prediction of freeway traffic states in the

model predictive control framework. The CTM has been also

used for predictive freeway and urban network control [14]–

[16]. However, the computation effort required for the model-

based predictive control schemes increases as the size of the

network under control grows and maintaining the real-time

control might not be feasible anymore. Hence, research has

been focused on finding less complex models that have similar

properties as in the more elaborated models.

The link transmission model (LTM) proposed by [17] is

a first-order traffic flow model. It was originally developed

for dynamic traffic assignment [18]. Results presented in [17],

[19], [20] show the capability of the LTM for fast modeling of

large-scale networks. This is mainly due to the fact that in the

LTM modeling framework, long length links with less number

of variables can be used to model freeway roads, while e.g. in

the METANET and CTM modeling approaches, road segments

of around 500-1000 m are used. Moreover, larger sample

times are allowed in the LTM modeling method. Overall,

the LTM can provide a good trade-off between accuracy and

computational efficiency.

In the previous work [21], we extended the original LTM

for incorporating ramp metering and variable speed limits.

In this paper, we elaborate more on the theoretical aspects

of our previous findings and furthermore, using the extended

model, we develop a hybrid model predictive control scheme

for freeway network control. We choose the MPC approach

mainly because it can incorporate and combine multiple traffic

objectives (such as reducing the total time spent, the emission,

and the fuel consumption), it can handle constraints on the

states and the control inputs, it is effective in response to

disturbances affecting the system, and it can integrate traffic

control measures such as ramp metering, variable speed limits,

and route guidance. Network modeling and predictive control

based on the extended LTM is fast. However, further steps

towards having real-time and efficient control for large-scale
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freeway networks is crucial and will be also addressed in this

paper.

Apart from the computation time required for repeated

model execution and solving the optimization problem in the

MPC framework, due to the nonlinear and nonconvex nature

of the optimization problem, there might exist multiple local

optimal solutions. This adds more complexity to the control

problem. In order to overcome this issue, we propose a refor-

mulation of the nonlinear LTM. We use some mathematical

techniques for piecewise affine systems [22] along with the

simplifying assumption that the number of VSL values is finite

(which is consistent with reality), to transform the extended

LTM into a linear model composed of linear equations and

inequalities with mixed real and integer variables. Having

transformed the model, the nonlinear optimization problem

in the MPC framework can be replaced by a mixed integer

linear optimization problem if the objective function is also

linearized. The mixed integer linear optimization problem can

be solved faster and in a more tractable way.

The rest of the paper is organized as follows. In Section II,

the LTM components are defined and the original mathemat-

ical formulations are reviewed. In Section III, the extensions

for ramp metering and variable speed limits are presented

elaborately. Section IV first discusses the main objectives and

structure of the proposed predictive ramp metering and VSL

control scheme and next, the approximation and reformulation

of the extended LTM towards achieving a more efficient

control scheme is presented. In the case study section, the

performance of the integrated ramp metering and VSL control

scheme is evaluated using a real network layout, the Leuven

Corridor. First, the set-up and results of calibration of the

LTM are presented. Next, the closed-loop control results

are compared and discussed. Finally, the paper ends with

concluding remarks and possible future directions.

II. LINK TRANSMISSION MODEL

In this section, the original LTM is introduced using [17]

and [19]. The LTM is capable of determining time-dependent

link volumes, link travel times, and route travel times in traffic

networks. To this aim, the LTM uses the so-called cumulative

number of vehicles to represent the traffic evolution. The cu-

mulative numbers of vehicles are updated using flow functions

of links and nodes defined in the following subsections.

A. Link model

In the LTM framework, the traffic network is characterized

by links that are connected via different types of nodes, as

depicted in Fig. 1. A link i starts at an upstream boundary

denoted by x0
i and ends at a downstream boundary denoted

by xL
i . The length of the link is denoted by Li.

The cumulative number of vehicles N(x, k) is defined only

for the upstream and downstream boundaries of each link

at the time step k, with sample time Ts. In order to obtain

the update equations for the cumulative number of vehicles

we need to define two quantities for each link; the sending

and the receiving number of vehicles. The sending number of

vehicles for link i is the maximum number of vehicles that

can potentially leave the downstream end of this link during

the time interval
[
k · Ts, (k + 1) · Ts

)
and is defined as:

Si(k) = min

[
N

(
x0
i , k + 1−

Li

νfree,i · Ts

)
−N(xL

i , k),

qM,i · Ts

]
, (1)

where νfree,i and qM,i are the free-flow speed and the capacity

of link i, respectively. Note that we have assumed a triangular

Fundamental Diagram [11] (which considers that all vehicles

have the same free-flow speed regardless of the flow). More-

over, in this paper, we assume that the fraction Li

νfree·Ts
has

integer values and if not, we round it off towards the closest

integer value (in the original LTM formulation, interpolation

between grid points is used instead). The sending number is

constrained by the boundary conditions at the upstream end of

the link. If the downstream link boundary at time step k+1 is

in the free-flow traffic condition, then this state must have

been originated from the upstream boundary Li

νfree,i·Ts
time

steps earlier. Note that the sample time must be selected as

Ts ≤
Li

νfree
in order to prevent vehicles from traversing a link

within one sampling period.

Similarly, the receiving number of vehicles Ri(k) is the

maximum number of vehicles that can enter the upstream end

of link i during the time interval
[
k ·Ts, (k+1) ·Ts

)
and it is

formulated as:

Ri(k) = min

[
N

(
xL
i , k + 1−

Li

wi · Ts

)

+ ρmax,iLi −N(x0
i , k), qM,i · Ts

]
, (2)

where wi and ρmax,i are the maximum speed of the congestion

wave propagating backward, and the jam density of link i,
respectively. Similar to the previous case, the fraction Li

wi·Ts
is

also rounded towards the nearest integer value.

B. Node models

In the LTM framework, links are connected to each other

through different types of nodes. For each node, the transition

number of vehicles is defined and determined using the send-

ing and receiving numbers of vehicles of its connected links.

Basically, the transition number of vehicles represents the

maximum number of vehicles that can travel from incoming

links to outgoing links of a node during the time interval[
k · Ts, (k + 1) · Ts

)
. Moreover, we denote the set of the

incoming and the outgoing links of each type of node with ℓin
and ℓout, respectively. In the following, we define the transition

number of vehicles for various types of nodes, starting with

the simplest case.

In order to represent a difference in the characteristics of

a road such as capacity, speed limits, lane change, etc., an

inhomogeneous node nnh can be defined. For the simplest

case with one input and one output link, the transition number

Gij(k) is formulated as

Gij(k) = min
[
Si(k), Rj(k)

]
, i ∈ ℓin(nnh), j ∈ ℓout(nnh),

(3)
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Fig. 1. (a) Link model, (b) Different node types.

where i is the unique incoming link and j is the unique

outgoing link of the given node.

For each origin in the network, the corresponding origin

node no is defined and the transition number of vehicles is

determined as follows:

Goj(k) = min
[
No(k+1)−N(x0

j , k), Rj(k)
]
, j ∈ ℓout(no)

(4)

where j is the index of the link connected to the origin (we

assume that there is only one link connected to an origin or a

destination) and No denotes the traffic demand in origin o in

terms of the cumulative number of vehicles. A simple queue

model for origin o is defined as

ωo(k) = No(k)−N(x0
j , k), (5)

where ωo(k) and N(x0
j , k) denote the number of vehicles

standing in the queue at origin o and the cumulative number

of vehicles that already entered the network at time step k,

respectively.

For a destination in the network, the corresponding destina-

tion node nd is defined and the transition number of vehicles

is determined based on the sending number of vehicles of the

incoming link i and possible restrictions of the destination. If

the destination accepts all the flows, the transition number of

vehicles will be defined as

Gid(k) = Si(k), i ∈ ℓin(nd), (6)

with i the index of the unique incoming link of destination d.

Otherwise, if the destination is treated as a bottleneck with a

user-defined constrained outflow Rd, the Gid(k) would be the

minimum of the sending number of vehicles of the incoming

link i and the maximum receiving number of vehicles of the

destination d:

Gid(k) = min
[
Si(k), Rd(k)

]
, i ∈ ℓin(nd), (7)

For merging of links and/or on-ramps in traffic networks, a

merge node is defined. Multiple models have been proposed

for the merge of links, [23]–[27]. We choose one of the

priority-based merge models for two incoming links proposed

in [25]. To this aim, the transition number of vehicles from an

incoming link i of a merge node to the unique outgoing link

j is formulated as follows:





Gij(k) = Si(k) if Rj(k) ≥
(
Si(k) + Si′(k)

)
,

Gij(k) = median

[
Si(k), Rj(k)− Si′(k), αijRj(k)

]

otherwise,

αij =
qM,i

qM,i + qM,i′
(8)

where j ∈ ℓout(nmrg), i, i′ ∈ ℓin(nmrg), i 6= i′. The

distribution fractions αij reflect priorities that are proportional

to the capacities of the incoming links qM,i. Note that the sum∑
i∈ℓin(nmrg)

αij is equal to 1. The reader is referred to [27]

for a general merge model with more than two incoming links.

A diverge node connects one incoming link i to its outgoing

links j ∈ ℓout(ndiv). For the two outgoing links case, the

following model for transition numbers of vehicles has been

proposed in [28]:

Gij(k) = min

[
βijSi(k), Rj(k),

βij

βij′
Rj(k)

]
, (9)

where i ∈ ℓin(ndiv), j, j′ ∈ ℓout(ndiv), j 6= j′. The

outflow of the incoming link is divided over the outgoing links

according to the turning fractions βij (
∑

βij = 1). The turning

fractions can be fixed or variable to the route choice [27]. For

the general case with more than two outgoing and/or incoming

links and other types of nodes (e.g. intersection nodes) the

interested reader is referred to [27].

C. Update equations

Having determined the transition number of vehicles of all

nodes, the cumulative number of vehicles for the upstream

and downstream boundaries of links can be updated using the

following equations:

N(xL
i , k + 1) = N(xL

i , k) +
∑

j∈ℓout(n)

Gij(k),

for all i ∈ ℓin(n), (10)

N(x0
j , k + 1) = N(x0

j , k) +
∑

i∈ℓin(n)

Gij(k),

for all j ∈ ℓout(n), (11)

for each node n.
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III. EXTENSION OF THE LTM

In this section, the LTM model is extended to include traffic

control signals. First we investigate the possibility of extending

the LTM for metering of on-ramps. Next, variable speed

control using the LTM is discussed and required modifications

of the model are explained.

A. Ramp metering

An on-ramp can be treated as a combination of an origin

node and a merge node connected by a virtual link with a

link length that is equal to 0. We place an origin node for the

metered ramp with a constraint on its outflow to a virtual link.

Thus, the transition number of vehicles of the on-ramp o to

the virtual link i′ can be determined as follows (based on (4)):

Goi′(k) = min
[
No(k+1)−N(x0

i′ , k), ro(k)·qM,i′ ·Ts

]
, (12)

where qM,i′ is the capacity of the virtual link i′ (veh/h), Ts

is the sample time, and ro(k) ∈ [0, 1] is the metering rate.

Moreover, No(k + 1) denotes the traffic demand in the on-

ramp o and N(x0
i′ , k) is the cumulative number of vehicles

that already entered the virtual link i′.
Next, the transition numbers of vehicles from the virtual link

to the outgoing link of the merge node can be determined by

(8) using Goi′(k), as the sending number of vehicles of the on-

ramp, and the sending number of vehicles of the mainstream

incoming link.

Note that using the metering rate ro(k), one can limit the

outflow of an on-ramp in order to prevent traffic congestion

on the mainstream road.

B. Variable speed limit control

In this section, we elaborate on the LTM modifications

required in order to emulate the effects of variable speed limit

signs. Basically, a VSL can be used to modify the time that

vehicles spend to reach the downstream boundary of a link. By

looking at the LTM model, it can be inferred that manipulating

the travel time can be realized using a time-varying speed

νfree in the model. From now on, we denote the time-varying

speed νfree with v̄(k), the speed that holds for all vehicles

entering the link during
[
k · Ts, (k + 1) · Ts

)
. In addition to

this modification, different traffic conditions that can occur in

reality should be investigated and the resulting cases should

be integrated in the extended model. In Fig. 2(a) and 2(b),

the results of changing the value of the VSL in the free-

flow condition are shown for two cases. Before proceeding,

note that without loss of generality, the VSL is assumed to be

implemented at the upstream boundary of a link.

We start with the case that the speed limit increases at time

step k∗ to a higher value as depicted in Fig. 2(a). In this case,

the vehicles are supposed to reach the downstream boundary

faster. However, after the value of the speed limit is changed,

there may exist some vehicles still traveling in the link that

did not see the new speed limit. These vehicles reach the

downstream boundary of the link without following the new

speed limit. Therefore, in order to obtain a better update for

the cumulative number of vehicles, these vehicles should also

be taken into account.

On the other hand, when the speed limit is lowered at time

step k∗, the evolution of the cumulative number of vehicles

may look similar to Fig. 2(b) (if a free-flow condition is

applied, otherwise in congested situations the influence of VSL

may not be as apparent as what is depicted here). Vehicles that

enter the link after the time instant at which the VSL value

is altered, are affected by the new speed limit and will follow

the new speed restriction. However, for the vehicles that are

already in the link, the new speed limit is not applicable. They

reach the upstream boundary with their previously assigned

speed limit or the free-flow speed of the freeway. Moreover,

since the new speed limit is lower, there will be a time interval

in which the cumulative number of vehicles remains constant

(this means that no vehicle departs from the downstream end).

With this information, we now mathematically formulate these

conditions.

1) Increase in the value of VSL: As shown in Fig. 2(a), it

takes some time for the vehicles that did not experience the

new speed limit to leave the link. Before this time, the sending

number of vehicles should be determined using the old value

of v̄. Moreover, the capacity of the road qM,i is calculated

using a triangular fundamental diagram constructed on the old

v̄ (we assume that the speed of the backward propagating

congestion wave remains unchanged). From Fig. 2(c), the

capacity qM,i can be determined as follows:

qM,i = ρmax,i ·
v̄i · wi

v̄i + wi

(13)

If the value of the VSL increases at time step k∗, the speed

v̄ and the capacity of link i will be changed according to the

conditions (14a)–(14b), where VSLi(k
∗) is the value at the

time step k∗ of the VSL installed at the upstream boundary

of link i. In the case (14a), the vehicles that are faced by

the new VSL value has not yet reached the end of the link.

Therefore, the value of N(xL
i , k + 1) must be related to the

value of N(x0
i ) with a travel delay that is calculated based

on the old value of the VSL, i.e. Li

v̄i(k∗−1)·Ts
. Once the first

vehicle reaches the downstream end of the link, the condition

(14b) holds and the value of N(xL
i , k+1) must be calculated

based on the new travel delay Li

VSLi(k∗)·Ts
.

Now the sending number of vehicles for link i can be

determined using N(xL
i , k + 1) and qM,i(k) obtained from

(14a)–(14b):

Si(k) = min

[
N(xL

i , k + 1)−N(xL
i , k), qM,i(k) · Ts

]
(15)

On the other hand, in order to determine the receiving

number of vehicles Ri(k), the capacity qM,i should be altered

immediately after the VSL value is changed. This means that

the capacity should be always calculated using VSLi(k), as

follows:

Ri(k) = min

[
N

(
xL
i , k + 1−

Li

wi · Ts

)
+ ρmax,iLi

−N(x0
i , k), ρmax,i ·

VSLi(k) · wi

VSLi(k) + wi

· Ts

]
, (16)
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Fig. 2. (a) Increase in the value of VSL, (b) Decrease in the value of VSL, (c) Triangular Fundamental Diagram.





if N(xL
i , k) < N(x0

i , k
∗) :





N(xL
i , k + 1) = N

(
x0
i , k + 1− Li

v̄i(k∗−1)·Ts

)
,

v̄i(k) = v̄i(k
∗ − 1),

qM,i(k) = ρmax,i ·
v̄i(k

∗−1)·wi

v̄i(k∗−1)+wi
,

(14a)

if N(xL
i , k) ≥ N(x0

i , k
∗) :





N(xL
i , k + 1) = N

(
x0
i , k + 1− Li

VSLi(k∗)·Ts

)
,

v̄i(k) = VSLi(k
∗),

qM,i(k) = ρmax,i ·
VSLi(k

∗)·wi

VSLi(k∗)+wi
,

(14b)

This is due to the fact that for predecessor links of link i,
the capacity of link i is changed when a new speed limit

is introduced. But for the sending number of vehicles at

the downstream boundary of link i, the capacity remains

unchanged until all the vehicles that did not experience the

new speed limit pass the end of link i, which is exactly the

criterion distinguishing (14a) from (14b).

2) Decrease in the value of VSL: In order to formulate the

problem in this case, we note that every vehicle that reaches

the downstream end of a link must have entered the link either
Li

v̄i(k∗−1) or Li

VSLi(k∗) time steps earlier (note that VSLi(k
∗) <

v̄i(k
∗ − 1)). Hence for k ≥ k∗, N(xL

i , k + 1) can be equal to

N
(
x0
i , k+1− Li

v̄i(k∗−1)

)
, N

(
x0
i , k+1− Li

VSLi(k∗)

)
or N(x0

i , k
∗).

In (17a)–(17c), different conditions that may occur and the

corresponding changes in the model are presented.

The first case (17a) corresponds to vehicles that had entered

the link before the new speed limit is imposed. Therefore, they

have traveled through the link with taking into account the

old speed limit. Hence, the update for the cumulative number

of vehicles N(xL
i , k + 1) must be calculated based on the

old speed v̄i(k
∗ − 1). In the second case (17b), due to the

lower speed limit for the link, there is no vehicle passing the

downstream end for a short period. Thus, N(xL
i , k+1) should

be equal to the cumulative number of vehicles at the upstream

boundary by the time that the VSL sign is changed (k∗). The

last case (17c) describes the situation that vehicles reach the

downstream end while they did encounter the new speed limit.

Therefore, the cumulative number N(xL
i , k + 1) should be

calculated based on the new speed limit v̄i(k) = VSLi(k
∗).

The sending number of vehicles is calculated using

N(xL
i , k+1) and qM,i(k) obtained from the conditions (17a)–

(17c) and (15). However, as mentioned in the previous sec-

tion, in order to determine the receiving number of vehicles

Ri(k), the capacity qM,i should be altered right after the

new speed limit is announced (this means that for k ≥ k∗,

qM,i(k) = ρmax,i ·
VSLi(k

∗)·wi

VSLi(k∗)+wi
for use in the receiving number

of vehicles equation (2)).

Furthermore, all the aforementioned equations in the current

section and in the previous section are valid until a new

speed limit is introduced. Whenever a new limit is announced,

based on its new value (which could be lower or higher than

the old one), the evolution equations should be updated as

prescribed in this section. However, it should be noted that in

our framework, the VSL values should not be updated rapidly.

In fact the VSL updating interval must be bigger than the

largest free-flow travel time in the link.

In the next section, the extended LTM will be utilized in

the model predictive control framework for ramp metering and

VSL control of freeway traffic networks.

IV. PREDICTIVE FREEWAY TRAFFIC CONTROL

Model Predictive Control (MPC) [12] is an advanced control

method originally developed for control of industrial processes

and recently for traffic networks [3], [4], [14], [29]. The main

concept is to use a prediction model of the system and an

objective function that assesses the desired performance over

a given prediction horizon, and next, to find the optimal control

inputs using an optimization algorithm. The optimization algo-

rithm finds a sequence of optimal control inputs for the whole

prediction horizon, but only the first control input sample is
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if N(x0
i , k

∗) > N
(
x0
i , k + 1−

Li

v̄i(k∗ − 1) · Ts

)
:





N(xL
i , k + 1) = N

(
x0
i , k + 1− Li

v̄i(k∗−1)·Ts

)
,

v̄i(k) = v̄i(k
∗ − 1),

qM,i(k) = ρmax,i ·
v̄i(k

∗−1)wi

v̄i(k∗−1)+wi
,

(17a)

if N
(
x0
i , k + 1−

Li

v̄i(k∗ − 1) · Ts

)
≥ N(x0

i , k
∗) ≥ N

(
x0
i , k + 1−

Li

VSLi(k∗) · Ts

)
:





N(xL
i , k + 1) = N(x0

i , k
∗),

v̄i(k) = v̄i(k
∗ − 1),

qM,i(k) = ρmax,i ·
v̄i(k

∗−1)·wi

v̄i(k∗−1)+wi
,

(17b)

if N
(
x0
i , k + 1−

Li

VSLi(k∗) · Ts

)
> N(x0

i , k
∗) :





N(xL
i , k + 1) = N

(
x0
i , k + 1− Li

VSLi(k∗)·Ts

)
,

v̄i(k) = VSLi(k
∗),

qM,i(k) = ρmax,i ·
VSLi(k

∗)wi

VSLi(k∗)+wi
,

(17c)

applied to the system and the procedure is repeated for the

next control step but with a shift in the prediction period.

A. Traffic objective and constraints

For a traffic network, one can define different objective

functions based on travel time, fuel consumption of vehicles,

emissions, etc. The objective function we choose here is the

total time spent (TTS) in the traffic network, consisting of the

time vehicles spend in queues at mainstream origins and on-

ramps and the travel time on the freeway. The TTS objective

function in the MPC framework is formulated as follows:

JTTS(kc) = Ts ·

M(kc+Np)−1∑

k=Mkc

[ ∑

o∈Oall

ωo(k)+

∑

i∈ℓall

(
N(x0

i , k)−N(xL
i , k)

)]
, (18)

where Ts is the simulation sample time, kc is the controller

time step counter, and k is the model time step counter. In

fact, we assume that the controller sample time Tc is an integer

multiple of the simulation sample time: Tc = MTs. In the time

intervals between consecutive control time steps, the control

inputs are not altered. Moreover, Np is the prediction horizon,

ωo is the queue length at origin o, and ℓall and Oall are the set

of all links and the set of all origins, respectively. Moreover,

the optimal control inputs obtained from the MPC controller

may in general have undesired fluctuations over time. Note that

the control inputs are in fact the metering rate and the values

shown on the VSL signs. Therefore, to avoid large fluctuations

a penalty term on the control input deviations is introduced and

added to the objective function. The penalty term on the ramp

metering input is formulated as

ζr

kc+Np−1∑

l=kc

∑

o∈Oramp

∣∣ro(l)− ro(l − 1)
∣∣, (19)

where ro is the metering signal, Oramp is the set of indices

of metered ramps1, and ζr is a weighting factor. Similarly,

1It should be noted that outflows of mainstream origins can also be
controlled in some cases (mainstream metering), so in that case they can
also be included in the set Oramp.

penalizing the VSL input can be formulated as

ζv

kc+Np−1∑

l=kc

∑

i∈ℓvsl

∣∣VSLi(l)−VSLi(l − 1)
∣∣, (20)

where VSLi is the VSL input, ℓvsl is the set of indices of links

equipped with VSL signs, and ζv is a weighting factor.

Moreover, to reduce the complexity, control variables are

sometimes taken constant after passing a predefined control

horizon Nc. Taking this into account, Np in (19) should be

replaced by Nc. Moreover, to take into account the physical

limitation of queues at on-ramps, we use a hard constraint

on the queue lengths. The total objective function along with

the queue length constraint and the LTM as prediction model

constitute a nonlinear nonconvex optimization problem that

has to be solved at every control step in the MPC framework

to find the optimal control signals. There is no guarantee to

find a unique global solution for the optimization problem

and furthermore, solving the nonlinear optimization may take

considerable time. In the next section, a solution to this

problem is proposed. More specifically, we will transform

the nonlinear nonconvex optimization problem into a mixed

integer linear programming (MILP) problem.

Using the methods proposed in [30], [31], one can transform

the model and the objective function into a system of linear

equations and inequalities involving real and integer variables

and formulate an MILP problem. The MILP problem can be

efficiently solved using existing MILP solvers like CPLEX or

GLPK (see [32]). Note that MILP solvers can find the global

optimum of the MILP problem.

B. Reformulation of the LTM

In order to obtain an MILP problem, we first transform the

extended LTM into a system of linear inequalities with mixed

real and binary variables, inspired by the method proposed in

[31]. Compared to the mixed logical dynamical form proposed

in [33], this system of linear inequalities is less complex, as it

needs less number of variables and less number of inequalities

to model the system.

In the following, we present the transformation approach for

different parts of the LTM. First, we consider the parts of the

model that are not affected by the VSL extension, and next,
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we present the reformulation of the proposed VSL extensions

into the linear form.

For links that are not equipped with VSL signs, the delays
Li

νfree,i·Ts
and Li

wi·Ts
would be constant over time. Moreover,

the transition number of vehicles (3) for a homogeneous node

is the minimum of the following three affine functions:

fGij ,1(k) = N

(
x0
i , k + 1−

Li

νfree,i · Ts

)
−N(xL

i , k), (21)

fGij ,2(k) = qM,i(k) · Ts, (22)

fGij ,3(k) = N

(
xL
i , k + 1−

Li

wi · Ts

)
+

ρmax,iLi −N(x0
i , k). (23)

We introduce two binary variables δGij ,1 and δGij ,2, and we

also define the constraint δGij ,1(k) + δGij ,2(k) ≤ 1 so that

we can have only three combinations for (δGij ,1, δGij ,2). The

transformation of (3) to a set of linear inequalities is:

δGij ,1(k) + δGij ,2(k) ≤ 1, (24)(
δGij ,1(k) + δGij ,2(k)

)
·M− ≤ Gij(k)− fGij ,1(k) ≤ 0,

(25)(
1− δGij ,1(k) + δGij ,2(k)

)
·M− ≤ Gij(k)− fGij ,2(k) ≤ 0,

(26)(
1 + δGij ,1(k)− δGij ,2(k)

)
·M− ≤ Gij(k)− fGij ,3(k) ≤ 0,

(27)

where M− is a negative number with a large absolute value

that ensures:

|M−| >
 min

n∈{1,2,3},k
[Gij(k)− fGij ,n(k)]

∣∣∣ (28)

The equivalence of (3) and (24)–(27) is validated in (29a)–

(29c). The same procedure can be applied to origin and

destination nodes.

The transition number of vehicles for merging nodes can

also be transformed into linear inequalities. Consider the

merging of two incoming links i and i′:





Gmrg
ij (k) = Si(k), Gmrg

i′j (k) = Si′(k)

if Rj(k) ≥
(
Si(k) + Si′(k)

)
,





Gmrg
ij (k) = median

[
Si(k), Rj(k)− Si′(k), αijRj(k)

]
,

Gmrg
i′j (k) = median

[
Si′(k), Rj(k)− Si(k), αi′jRj(k)

]

otherwise,

(30)

with αij =
qM,i

qM,i + qM,i′
, αi′j =

qM,i′

qM,i + qM,i′
.

We consider the transformation of the transition number of

vehicles from link i to the outgoing link j, Gmrg
ij (k) (a

similar approach can be applied to Gmrg
i′j (k)). First of all, for

condition Rj(k) ≥ Si(k) + Si′(k), we can define a binary

variable δmrg(k). We assume that the binary variable is set

to 1 whenever the condition holds. Now the condition can be

transformed to a linear form using the following basic rule

[33]:

[f(x) ≤ 0] ⇔ [δ = 1], iff

{
f(x) ≤ M · (1− δ),

f(x) ≥ ǫ+ (m− ǫ) · δ,
(31)

with f an affine function defined over a bounded set X
of the input variable x, m and M the lower and upper

bounds of f over X , ǫ > 0 a small tolerance namely the

machine precision2. The transformed condition is formulated

as follows:

Si(k) + Si′(k)−Rj(k) ≤ Mmrg ·
(
1− δmrg(k)

)
, (32)

Si(k) + Si′(k)−Rj(k) ≥ ǫ+
(
mmrg − ǫ

)
· δmrg(k), (33)

where Mmrg and mmrg denote the upper and the lower bounds

of Si(k) + Si′(k) − Rj(k). Note that an estimation of the

bounds mmrg,Mmrg can be obtained based on the trajec-

tories of Si, Ri, Si′ obtained from simulation and historical

data from the traffic network. Note that a tight upper/lower

bound estimation is not crucial, although it is better from a

computational point of view.

Moreover, we include the following constraint:

(
1− δmrg(k)

)
·mij ≤ Gmrg

ij (k)− Si(k)

≤
(
1− δmrg(k)

)
·Mij , (34)

with mij and Mij the lower and the upper bounds of

Gmrg
ij (k) − Si(k), respectively. Now if δmrg = 1, then

Gmrg
ij (k) = Si(k).
Now for simplicity, we assign new names for the affine

functions in the argument of the median operator:

g1(k) = Si′(k), (35)

g2(k) = Rj(k)− Si′(k), (36)

g3(k) = αijRj(k). (37)

Moreover, three binary variables δmed,1(k), δmed,2(k),
δmed,3(k) are defined. Six combinations may occur and there-

fore we add the following two constraints:

δmed,1(k) + δmed,2(k) + δmed,3(k) ≥ 1, (38)

δmed,1(k) + δmed,2(k) + δmed,3(k) ≤ 2. (39)

to cover all the possible conditions. It can be verified that the

constraints3 (40)–(49) along with (32)–(34) and (38)–(39) are

an equivalent representation of (30). Note that M− ≪ 0 and

M+ ≫ 0 in (40)–(49) should be chosen in a similar way as

in (28).

Now we consider the links that have speed limit signs

installed and activated at their upstream boundary. According

to Section III-B, the delay term in the sending number of

vehicles is time-varying (note that the congestion wave speed

w is assumed not to be altered. Hence, the delay term Li

wi·Ts

is constant). Therefore, the function (21) is no longer affine.

Moreover, in the presence of speed limits, the conditions

introduced in Section III-B need to be taken into account in

2It is mainly used to change a strict inequality into a non-strict inequality.
3the time index k is dropped for the ease of readability.
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fGij ,1(k) ≤ fGij ,2(k) and fGij ,1(k) ≤ fGij ,3(k) ⇐⇒ Gij(k) = fGij ,1(k),
(
δGij ,1(k), δGij ,2(k)

)
= (0, 0) (29a)

fGij ,2(k) ≤ fGij ,1(k) and fGij ,2(k) ≤ fGij ,3(k) ⇐⇒ Gij(k) = fGij ,2(k),
(
δGij ,1(k), δGij ,2(k)

)
= (1, 0) (29b)

fGij ,3(k) ≤ fGij ,1(k) and fGij ,3(k) ≤ fGij ,2(k) ⇐⇒ Gij(k) = fGij ,3(k),
(
δGij ,1(k), δGij ,2(k)

)
= (0, 1) (29c)

g1 − g3 ≤ (1− δmed,1 + δmed,3) ·M
+, (40)

g3 − g1 ≤ (1− δmed,3 + δmed,1) ·M
+, (41)

g2 − g1 ≤ (1− δmed,1 + δmed,2) ·M
+, (42)

g1 − g2 ≤ (2δmed,1 + δmed,2 + δmed,3 − 1) ·M+, (43)

g3 − g2 ≤ (3− 2δmed,1 − δmed,2 − δmed,3) ·M
+, (44)

g2 − g3 ≤ (1 + δmed,1 − δmed,2) ·M
+, (45)

(δmed,1 + 2δmed,2 + δmed,3 − 1) ·M− + δmrg ·M
− ≤ Gmrg

ij − g1 ≤ (δmed,1 + 2δmed,2 + δmed,3 − 1) ·M+ + δmrg ·M
+,

(46)

(1 + δmed,1 − δmed,2 + δmed,3) ·M
− + δmrg ·M

− ≤ Gmrg
ij − g2 ≤ (1 + δmed,1 − δmed,2 + δmed,3) ·M

+ + δmrg ·M
+,

(47)

(2− δmed,1 + δmed,2 − δmed,3) ·M
− + δmrg ·M

− ≤ Gmrg
ij − g2 ≤ (2− δmed,1 + δmed,2 − δmed,3) ·M

+ + δmrg ·M
+,

(48)

(3− δmed,1 − 2δmed,2 − δmed,3) ·M
− + δmrg ·M

− ≤ Gmrg
ij − g3 ≤ (3− δmed,1 − 2δmed,2 − δmed,3) ·M

+ + δmrg ·M
+,

(49)

order to determine the correct delay in (1) and also the capacity

qM,i(k).
In order to simplify the transformation, we assume that the

VSL can take values only from a finite set. This is a realistic

assumption since the VSL signs on roads typically show only

3-5 discrete numbers for the speed limit (e.g. 50, 70, 100,

120 km/h). Therefore, the sending number of vehicles can be

reformulated as sum of cumulative number of vehicles with

different discrete delays:

Si(k) = min
[
qM,i,

Nspeed∑

n=1

δn(k) ·N
(
x0
i , k + 1−

Li

VSLi,n · Ts

)

−N(xL
i , k)

]
, (50)

with Nspeed the total number of discrete VSL values. On the

other hand, we can define two binary variables δi,inc and δi,dec,

as follows:

VSLi(k)−VSLi(k − 1)− ǫ ≥ 0 ⇐⇒ δi,inc(k) = 1, (51)

VSLi(k)−VSLi(k − 1) + ǫ ≤ 0 ⇐⇒ δi,dec(k) = 1. (52)

Hence, we can capture and store the value N(x0
i , k

∗) in ZN,i,

formulated as

ZN,i(k) =
[
δi,inc(k) + δi,dec(k)

]
·N(x0

i , k). (53)

Similarly, we can store the VSL value in an auxiliary variable

ZVSL,i:

ZVSL,i(k) =
[
δi,inc(k) + δi,dec(k)

]
·VSLi(k). (54)

If k = k∗, then ZVSL,i(k
∗) = VSLi(k

∗), otherwise

ZVSL,i(k) = 0. Now we review two basic rules adopted from

[33]. The product of two binary variables δ1 and δ2 can be

replaced by an auxiliary binary variable δ3 , δ1 · δ2. It can be

verified that [30], [33]

δ3 = δ1 · δ2 iff





−δ1 + δ3 ≤ 0,

−δ2 + δ3 ≤ 0,

δ1 + δ2 − δ3 ≤ 1.

(55)

Moreover, multiplication of a binary variable δ with an affine

function f(·) defined over a bounded set X of the variable x
can be replaced by an auxiliary variable z , δ ·f(x), meaning

that z = 0 when δ = 0 and z = f(x) in case δ = 1. It can be

proved that [30], [33]

z = δ · f(x) iff





z ≤ M · δ,

z ≥ m · δ,

z ≤ f(x)−m · (1− δ),

z ≥ f(x)−M · (1− δ),

(56)

with m and M the lower and upper bounds of f(·) over the set

X , respectively. Using the equivalent forms (31), (55), (56), we

can transform (50)–(54) and subsequently, the VSL conditions

(14a)–(14b) and (17a)–(17c) into a system of linear equations

and inequalities.

C. Final mixed integer linear optimization problem

After transforming the LTM into a linear form, the total

objective function should also be reformulated. The TTS

objective function is already linear. But the penalty terms (19)

and (20) are piecewise affine. It can be transformed into a

mixed-integer linear form by defining additional binary and

auxiliary variables. However, there exists a more efficient

way to recast the penalty terms as linear problems without

introducing binary variables. It can be easily proved that

the following optimization problems have the same optimal
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Fig. 3. Google maps illustration of the A2 freeway in Leuven, Belgium. The
South-North direction is used for the evaluation.

VSL VSL VSL VSL

Fig. 4. Schematic representation of the network.

solution:

min
θ

∑∣∣θi
∣∣ ⇐⇒





minθ,β
∑

βi

βi ≥ θi

βi ≥ −θi

(57)

Using this technique along with the reformulated model, the

final MILP problem can be constructed.

V. CASE STUDY

This section describes the evaluation of the proposed inte-

grated ramp metering and variable speed limit control scheme.

First, the benchmark network and the selected traffic scenario

will be described. Next, identification and calibration of the

LTM for the benchmark network is presented. Finally, closed-

loop control results of the freeway network using the proposed

model predictive control schemes will be presented.

A. Benchmark network and simulation set-up

The South-North direction of the A2 freeway near Leuven,

Belgium, is taken as the benchmark network. Fig. 3 shows a

Google maps illustration of this freeway. The freeway consists

of 4 on-ramps and 4 off-ramps and congestion is triggered at

the most downstream on-ramp. Ramp metering installations

are placed at every on-ramp and variable speed limits are

placed directly downstream of every off-ramp. Fig. 4 shows a

schematic representation of the freeway network. The freeway

is divided up into 11 links with two lanes which have the

following lengths in kilometers, ordered from upstream to

downstream: 1, 1.18, 0.42, 1.03, 0.53, 0.52, 0.72, 0.82, 0.4, 1.8,

and 1.0 km. Inductive loop detectors measuring the number of

vehicles that have passed, and their average speed are located

at the upstream and downstream end of every link.

The four off-ramps are located at positions 2.18, 3.63, 4.68,

and 6.22 km. The downstream end of the diverging section is

considered as the off-ramp location. The on-ramps are located

at positions 2.6, 4.16, 5.4, and 6.86 km. The beginning of the

merging section is taken as the on-ramp location. At every on-

ramp, the stop-line of the ramp metering installation is located

150 meters upstream of the merging area. The on-ramp queue

has a storage space of 900 meters. Loop detectors are placed

at the stop-line, and at the maximum queue length, 900 meters

upstream of the stop-line.

The freeway is simulated using the microscopic simulation

software package VISSIM 5.30. The Wiedemann 99 model

is used to reproduce the driving behavior. The following

parameters of VISSIM have been altered from the default

settings: CC0 3.50 m, CC1 1.1 s, CC2 8.00 m, CC3 -8.00 (-),

CC4 -0.50 (-), CC5 0.60 (-), CC6 6.00 (-), CC7 -0.25 m/s2,

CC8 1.00 m/s2, and CC9 1.50 m/s2. Using these parameters,

a capacity flow of 1800 veh/h/lane, and a queue discharge rate

of 1800 (veh/h/lane) are obtained, thus, there is no capacity

drop present. The sampling time in Vissim is 0.2 seconds.

Furthermore, the demand profiles for the mainstream road

and the on-ramps are presented in Table I. The (fixed) split

fractions are 28.09% of the mainstream flow for off-ramp 1,

6.79% for off-ramp 2, 12.90% for off-ramp 3, and 10.26% for

off-ramp 4. Note that the demand of on-ramp 4 has an increase

to 1000 (veh/h) for a short period and then it decreases to a

lower level. This high on-ramp demand causes congestion on

the mainstream road that propagates all the way back to the

upstream end of the freeway (as also illustrated in Fig. 6(a)).

TABLE I
MAINSTREAM AND ON-RAMPS DEMANDS (VEH/H)

Timing Main Ramp 1 Ramp 2 Ramp 3 Ramp 4

0-900 s 2225 240.5 223 265 250

900-1800 s 4450 750 446 530 500

1800-2100 s 4450 750 446 530 1000

2100-2400 s 4450 750 446 530 250

2400-6300 s 4450 750 446 530 500

6300-7200 s 2225 240.5 223 265 250

MATLAB is used to compute the optimal ramp metering

and VSL signals. The simulation sample time in MATLAB is

5 seconds. The MPC controller determines the optimal control

inputs every 60 seconds using the TOMLAB optimization

toolbox (the patternsearch solver is used to solve the nonlinear

optimization problem, and the CPLEX solver inside the TOM-

LAB toolbox is used to solve the MILP problem) in MATLAB

on a computer with a 3.6 GHz processor and 8Gb RAM.

B. Calibration of the LTM

Using simulation data from VISSIM, the LTM is calibrated.

The identification procedure for estimating the parameters of

the LTM is formulated as a nonlinear optimization problem

solved using the global optimization solver patternsearch.

The objective is to minimize the difference between the real

densities and the estimated densities from the LTM, formulated

as follows:

J =
1

ndnℓ

nℓ∑

i=1

nd∑

k=1

(
ρi(k)− ρ̂i(k)

)2
, (58)
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Fig. 5. Calibration of the LTM: real and estimated densities of all links for two traffic scenarios with different demand profiles: (a) congestion starts in the
middle of the simulation period, (b) network is already congested at the beginning of the simulation period.

TABLE II
ESTIMATED PARAMETERS FOR EACH LINK

Link νfree (km/h) w (km/h) ρmax (veh/km) qM (veh/h)

1 119.00 23.00 290.34 5596
2 119.84 24.00 271.24 5423
3 115.00 22.37 219.78 4115
4 114.06 24.00 263.23 5219
5 110.50 23.97 213.65 4208
6 116.96 20.25 289.23 4992
7 114.01 18.87 232.76 3777
8 112.34 22.28 268.53 4992
9 118.25 23.00 218.15 4200

10 120.00 20.00 288.41 4944
11 118.91 22.90 283.33 5440

where nd, nℓ, ρi, and ρ̂i denote the number of data samples,

the number of links, the real density and the density predicted

by the LTM, respectively. The density of links can be calcu-

lated using the cumulative number of vehicles at upstream and

downstream boundaries of links, as follows:

ρi(k) =
N(x0

i , k)−N(xL
i , k)

Li

. (59)

The nonlinear optimization problem is solved using the func-

tion patternsearch from the Global Optimization toolbox of

MATLAB. The optimization algorithm is run 10 times for

different random initial points in order to prevent reaching a

local optimum only. The obtained parameters of the LTM are

presented in Table II. The links are numbered from upstream

to downstream. Note that in the network’s layout, there are

extra lanes from 200 m before the off-ramps and also for 200

m after the on-ramps. However, we do not define extra links in

the LTM to model these small parts, but we take into account

the cumulative number of vehicles leaving (entering) these

links to fit 2-lane LTM links to the data. This is consistent

with having different maximum densities for different links in

Table II.

Moreover, results presented in Fig. 5 verify that the cal-

ibrated LTM is able to estimate traffic densities close to the

ones obtained from the simulation data. In order to numerically

evaluate the calibrated model, we choose to compare the total

time spent on the freeway for both real data and the estimated

data from the calibrated LTM. This is very important as the

main performance measure in our simulations is the TTS and

the model should be able to provide a sufficiently accurate

estimation of the TTS values over a prediction horizon. Using

the real and estimated densities, the TTS values are calculated

for the whole simulation time horizon and the obtained devi-

ation is around 0.62− 1.22% with respect to the real TTS of

3370.5 (veh · h). This amount of deviation is acceptable for

our model-based traffic control purpose presented in the next

section.

C. Control results

Fig. 6(a) shows an illustration of the uncontrolled situation.

It can be observed that congestion forms near the most down-

stream on-ramp and propagates upstream. Once it reaches

the most upstream on-ramp, the congestion increases close

to this on-ramp. The total time spent, which is the sum of

the mainstream traveling time and the time spent in queues

at on-ramps is 1115.63 (veh · h). The total time spent on the

mainstream road only is 1061.41 (veh · h).

Now the uncontrolled case is compared with the cases in

which predictive ramp metering and VSL control is applied.

Two proposed methods are implemented, nonlinear MPC

based on the original formulation of the extended LTM, and

MILP-MPC. The optimization problems integrated in both

methods have a queue length constraint of 100 vehicles for

all on-ramps. The improvement in the TTS values for the

nonlinear MPC and the MILP case along with the average

computation time (required for solving each optimization step)

are compared in Table III. As can be inferred, the control

approaches are able to provide approximately 10 − 14%
reduction in the TTS value. Moreover, the MPC approaches

provide a significant reduction in the total time spent on the

mainstream road (around 44% less than the uncontrolled case).

Although this comes at the price of having longer queues at

the on-ramps, the overall TTS is considerably lower than the

uncontrolled case.

Results of closed-loop simulation using the nonlinear MPC

method with Np = 7, Nc = 3 are illustrated in Fig. 6(b)

and Fig. 8. Moreover, the results of the MILP-MPC approach
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Fig. 6. Flow, speed and density plots for all links over time: (a) Uncontrolled case, (b) Controlled using nonlinear MPC.
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Fig. 7. Flow, speed and density plots for all links over time: MILP-MPC
approach.

are presented in Fig. 7 and Fig. 9. Comparing Fig. 6(a)

and Fig. 6(b), it can be observed that the MPC controller is

able to resolve the congestion caused by the high demand in

the most downstream on-ramp. In fact, the MPC controller

(in both the nonlinear and the MILP case) achieves this by

limiting the outflow of the on-ramps (especially the first 3 on-

ramps, as also shown in Fig. 8(a)) and by imposing the speed

limit mostly for the first links of the freeway, as depicted in

Fig. 8(b).

Moreover, the queue lengths at the on-ramps for both

uncontrolled and controlled (ramp metering) cases are shown

in Fig. 10. As can be seen, the queue lengths in the controlled

case are considerably higher than in the uncontrolled condi-

tion. However, they do not exceed the 100 (veh) constraint

on the queue length. In addition, using the MPC schemes,

the total time spent in the network is improved and moreover,

the congestion (with reduced mean speed and high densities

of vehicles in several links) is significantly attenuated, as

illustrated in Fig. 6(b) and Fig. 7. Note that because the

micro-simulation has a stochastic nature, it is possible that

sometimes the nonlinear MPC approach performs better than

the MILP-MPC method and vice versa. It should be noted that

in both methods we use rounding approximations to make

the delays integer variables. Moreover, in the MILP-MPC

approach, we just reformulate the LTM. Therefore, we expect

that the performance of both methods should be close to each

other. As can be observed in Fig. 6(b) and Fig. 7, in this run

of the closed-loop simulation, the congestion level is less in

the MILP-MPC control case. Instead, the queue lengths in the

nonlinear MPC case are a bit smaller than in the MILP-MPC

case. Furthermore, as discussed in Section IV, we use a penalty

term in the total objective function to reduce fluctuations in

the control inputs, as can be seen in Fig. 8 and Fig. 9. The

penalty term and the TTS objective function are normalized

by their nominal values (the uncontrolled case) in the total

objective function. In addition, the penalty term is weighted

by 0.2.

Regarding the computation time, as can be inferred from

Table III, the nonlinear optimization problem is solved for

several random initial points in each MPC control step, since

there may exist multiple local optimal solutions. On the con-

trary, the MILP approach is more efficient and it provides the

global solution of the reformulated problem. Moreover, due to

the stochastic nature of the micro-simulation, the performance

of nonlinear MPC is sometimes worse than the MILP approach

(note that both N-MPC and MILP-MPC use rounding approxi-
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Fig. 8. Nonlinear MPC control inputs: (a) Ramp metering signals,(b) VSL
signals.

mations for the delays in the model). Furthermore, experiments

for Np > 7 and Nc > 3 show that the computation time

(particularly for the nonlinear approach) grows exponentially,

while the reduction in the TTS is not significant. Moreover,

for small Np the queues are not dissolved until the end of the

simulation period. One way to prevent this is to increase Np.

However, for large values of Np, it might be the case that MPC

focuses more optimizing the future behavior rather than the

current conditions. One can also increase Nc to prevent this,

but this comes at the price of computational complexity and

also more fluctuations in the control inputs. Another solution

is therefore to add an end-point penalty function to the total

objective function (as it is also performed in [34]). The end-

point term expresses the time required for vehicles present in

the network by the end of the prediction horizon to exit the

network. Without this end-point term, it might be the case

that the MPC just postpones the formation of queues and if

the prediction horizon is not long enough, long queues are still

not dissolved by the end of the simulation period (although

the demand level may have been lowered). For our case study

setup, a prediction horizon between 7 and 9 is enough as by

reducing the demands, the queues start to discharge before the

end of simulation period (as can be observed from Fig. 10).

Moreover, adding the end-point penalty term in this case would

have little benefits. This is mainly because the lowest speed on

the freeway in the controlled case is around 65 (km/h) on Links

4 and 5 (see Fig. 6(b)) and therefore, the maximum travel time

required to exit the freeway for vehicles in Link 4 is less than
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Fig. 9. MILP-MPC control inputs: (a) Ramp metering signals, (b) VSL
signals.

(1.56/65 + 5.26/100) · 60 = 4.59 min (1.56 km is the total

length of Links 4 and 5, and 5.26 km is the total distance from

the upstream of Link 6 to the downstream end of the freeway,

and 100 (km/h) is the average speed on proceeding links, as

can be observed from Fig. 6(b)), which is less than Np = 7
min. Hence, the MPC scheme with this prediction horizon

is able to regulate the queues with taking into account the

constraint on the queue length while significantly improving

the travel time on the mainstream road.

VI. CONCLUSION AND FUTURE RESEARCH

The Link Transmission Model has been extended, refor-

mulated and utilized in a hybrid model predictive control

framework. We first modified the model in order to incorporate

the effects of traffic control measures, ramp metering and

variable speed limits. Next, we established two integrated

predictive ramp metering and VSL control schemes, nonlinear

MPC based on the extended LTM, and a mixed integer

linear programming approach based on the transformed LTM.

Finally, the performance of the proposed control schemes was

evaluated using micro-simulation for the Leuven Corridor.

The obtained results show that the MPC schemes are able

to achieve considerable improvement in the total time spent

in the network, and moreover, the computation time required

for control of such network with several links, on/off-ramps

and control inputs is reasonably low (specially for the mixed

integer linear programming method).
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TABLE III
COMPARISON OF TTS (veh · h) AND CPU TIME (s) FOR TWO APPROACHES, NONLINEAR MPC AND MILP-MPC. THE PERCENTAGES SHOW THE

REDUCTION IN THE TTS WITH RESPECT TO THE UNCONTROLLED CASE. THE CPU TIMES FOR N-MPC ARE MULTIPLIED BY 5 TO EXPRESS THAT THE

NONLINEAR OPTIMIZATION IS SOLVED 5 TIMES IN EACH CONTROL TIME STEP.

Control
Total time spent (TTS) (veh · h) Average CPU time (s) Time spent on mainstream road (veh · h)

parameters N-MPC MILP N-MPC MILP N-MPC MILP

Np = 3, Nc = 2 1036.14 (-7.1%) 1032.19 (-7.5%) 26.88× 5 7.32 597.25 (-43.73%) 595.91 (-43.85%)

Np = 5, Nc = 2 987.53 (-11.4%) 994.84 (-10.8%) 43.29× 5 10.51 590.62 (-44.36%) 592.91 (-44.13%)

Np = 7, Nc = 3 972.81 (-12.7%) 963.90 (-13.6%) 124.33× 5 21.79 588.99 (-44.51%) 585.12 (-44.87%)

Np = 9, Nc = 4 969.94 (-13.0%) 965.38 (-13.4%) 297.87× 5 51.39 587.02 (-44.69%) 587.12 (-44.68%)
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Fig. 10. Queues at on-ramps: (a) uncontrolled, (b) controlled by nonlinear MPC, (c) controlled using MILP-MPC.

Extensions to the current work would be, 1) further ex-

tending the LTM to include the effects of possible capacity

drops at merge nodes, and 2) incorporating robust model

predictive techniques in order to better cope with uncertainties

in demand profiles and incidents, 3) field implementation of

the proposed LTM-based control schemes and 4) extending

the LTM-based modeling and control approach for urban and

mixed urban/freeway networks.

REFERENCES

[1] A. Alessandri, A. D. Febbraro, A. Ferrara, and E. Punta, “Nonlinear
optimization for freeway control using variable-speed signaling,” IEEE

Transactions on Vehicular Technology, vol. 48, no. 6, pp. 2042–2052,
1999.

[2] A. Kostsialos, M. Paageorgiou, M. Mangeas, and H. Haj-Salem, “Co-
ordinated and integrated control of motorway networks via nonlinear
optimal control,” Transportation Research Part C, vol. 10, no. 1, pp.
65–84, 2002.

[3] A. Hegyi, B. De Schutter, and H. Hellendoorn, “Model predictive control
for optimal coordination of ramp metering and variable speed limits,”
Transportation Research Part C, vol. 13, no. 3, pp. 185–209, 2005.

[4] I. Papamichail, A. Kotsialos, I. Margonis, and M. Papageorgiou, “Co-
ordinated ramp metering for freeway networks – a model-predictive
hierarchical control approach,” Transportation Research Part C, vol. 18,
no. 3, pp. 311–331, 2010.

[5] S. Zegeye, B. De Schutter, J. Hellendoorn, E. Breunesse, and A. Hegyi,
“A predictive traffic controller for sustainable mobility using parameter-
ized control policies,” IEEE Transactions on Intelligent Transportation

Systems, vol. 13, no. 3, pp. 1420–1429, Sep. 2012.

[6] R. C. Carlson, I. Papamichail, and M. Papageorgiou, “Integrated feed-
back ramp metering and mainstream traffic flow control on motorways
using variable speed limits,” Transportation Research Part C: Emerging

Technologies, vol. 46, pp. 209–221, 2014.

[7] S. Hoogendoorn and P. Bovy, “State-of-the-art of vehicular traffic flow
modelling,” Proceedings of the Institution of Mechanical Engineers, Part

I: Journal of Systems and Control Engineering, vol. 215, no. 4, pp. 283–
303, 2001.

[8] M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator
VISSIM,” in Fundamentals of Traffic Simulation, ser. International Series
in Operations Research and Management Science, J. Barceló, Ed. New
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