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Efficient Real-Time Train Scheduling for Urban

Rail Transit Systems Using Iterative Convex

Programming
Yihui Wang, Bin Ning, Tao Tang, Ton J.J. van den Boom, and Bart De Schutter

Abstract—The real-time train scheduling problem for urban
rail transit systems is considered with the aim of minimizing
the total travel time of passengers and the energy consumption
of the operation of trains. Based on the passenger demand
in the urban rail transit system, the optimal departure times,
running times, and dwell times are obtained by solving the
scheduling problem. A new iterative convex programming (ICP)
approach is proposed to solve the train scheduling problem.
The performance of the ICP approach is compared with other
alternative approaches, i.e., nonlinear programming approaches,
a mixed integer nonlinear programming (MINLP) approach,
and a mixed integer linear programming (MILP) approach. In
addition, this paper formulates the real-time train scheduling
problem with stop-skipping and shows how to solve it using an
MINLP approach and an MILP approach. The ICP approach
is shown, via a case study, to provide a better trade-off between
performance and computational complexity for the real-time
train scheduling problem. Furthermore, for the train scheduling
problem with stop-skipping, the MINLP approach turns out to
have a good trade-off between the control performance and the
computational efficiency.

Index Terms—real-time train scheduling, urban rail transit,
stop-skipping

I. INTRODUCTION

W ITH the increasing passenger demand for urban rail

transit systems, such as subway systems, the frequency

of train operations is becoming very high, especially in large

cities like Beijing, Shanghai, Tokyo, New York, and Paris,

where trains arrive at a station every 2 to 5 minutes. The

planning process for the urban rail transit systems becomes

more important for reducing the operation costs of railway

operators and for guaranteeing passenger satisfaction, as char-

acterized by waiting times, on-board times, and number of

transfers. The planning process is traditionally a sequential

process consisting of five phases [1]: demand analysis, line

planning, train scheduling, rolling stock planning, and crew

scheduling. This paper considers the train scheduling problem

for urban rail transit systems.

In the urban rail transit systems considered in this paper,

the lines are assumed to be separated from each other and

each direction of the line has a separate rail track. Therefore,
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trains do not overtake each other. In addition, for urban rail

transit systems with high frequencies, it is not a major issue

to the passengers anymore whether or not the train schedule

is cyclic since new trains arrive at a station every 2 to 5

minutes. In practice, rail transport operators therefore do not

announce the train schedule to passengers but only provide

some information, such as that a train will arrive within 2

minutes. Hence, rail transport operators can schedule trains in

real time based on the current situation, such as the number

of waiting passengers at stations, the passenger arrival rates,

and the number and position of running trains.

In the literature, there are several interpretations for real-

time scheduling. For example, in [2]–[11], real-time schedul-

ing is based on the existing timetable data and is used to handle

route conflicts due to train delays or incidents. However,

in [12]–[15], real-time scheduling is based on a constant

headway between trains and it regulates the headways between

trains through holding, deadheading, zone scheduling, short

turning, and/or stop-skipping. Furthermore, automatic train

regulation proposed in [16], [17] adjusts the running times and

dwell times of trains to operate trains according to the train

schedule and maintain the headway adherence. In the current

paper, real-time scheduling means that there is no existing

timetable or constant headways, but the schedule of trains is

optimized in a rolling horizon way taking passenger demands

and operation costs into consideration.

In [18], [19] the train schedule was obtained in an energy-

efficient way but without considering the passenger demands.

In that situation, the train schedule may be optimal from the

point view of the rail operator, but it may not be optimal for

the passengers. In [12], [20], [21] the passenger demand was

taken into account in the train scheduling model. However, the

capacity of trains is assumed to be unlimited, which is not the

case in practice. In addition, only the passenger travel time was

considered as objective function and the cost of the rail oper-

ator was not included in [12], [20], [21]. Niu and Zhou [22]

proposed a binary integer programming model to optimize the

urban rail timetable under time-dependent passenger demand,

where the capacity of trains and the over-saturated stations

are included in the model formulation. The uneven-headway

timetable obtained in [22] was illustrated to reduce the average

waiting time by almost 40% when compared with the regular

timetable through a case study on Line 8 in Guangzhou, China.

However, the energy consumption is not considered in [22].

A stochastic approximation approach is proposed to adjust the

frequencies of different urban transit lines according to the



2

observed variable passenger demand [23]. However, the energy

consumption of railway operation and dwell times at stations

are not included in the model of [23]. In our scheduling model,

the passenger characteristics are considered and the maximum

capacity of trains is included. Furthermore, both the passenger

travel time and the operation cost are included in the objective

function.

We have proposed a real-time scheduling approach for trains

based on the passenger demand in [24], where the capacity of

the trains, the capacity of the stations, and the safety con-

straints caused by urban rail transit systems are included. The

objective of the real-time scheduling problem is to minimize

the total travel time of passengers. Furthermore, the problem

is solved by the sequential quadratic programming (SQP)

approach in [24]. However, the train scheduling problem is

essentially a multi-objective optimization problem because it

should consider both the benefits of the rail transport operators

and the passengers [25], [26]. The rail transport operators pre-

fer to minimize the operation cost (e.g., energy consumption).

This conflicts with the benefit of the passengers (e.g., travel

time) since a lower operation cost usually results in a longer

travel time. In [27], we have solved the multi-objective train

scheduling problem (i.e., minimizing the energy consumption

and the passenger travel time) using the pattern search method,

the mixed integer nonlinear programming (MINLP) approach,

and the mixed integer linear programming (MILP) approach.

The current paper extends our previous research in the

following three aspects:

• A more realistic model for the operation of trains: Three

operation phases for the operation of trains are consid-

ered, i.e., the acceleration phase, the speed holding phase,

and the deceleration phase. As a result, the calculation of

the energy consumption based on these three phases is

more precise than that using the mean speed between

stations as was done in [27].

• A new iterative convex programming (ICP) approach: We

propose a new ICP approach to solve the real-time train

scheduling problem more efficiently. The performance

of the ICP approach is compared with the nonlinear

programming approaches (i.e., pattern search method,

SQP algorithm), the MINLP approach, and the MILP

approach through a case study. Among these methods,

the new ICP algorithm proposed in this paper obtains

comparable results with respect to other approaches but

with a lower computational complexity for the case study,

which indicates that this approach can be applied for real-

time use.

• A real-time train scheduling model with stop-skipping:

This paper also considers stop-skipping, where trains may

skip some small stations to reduce the passenger travel

time and energy consumption (see Appendix C). Binary

variables are introduced to indicate whether a train stops

or skips a station. We show that the MINLP approach

and the MILP approach can be directly applied to the

problem with stop-skipping.

The rest of this paper is structured as follows. Section II for-

mulates the dynamics of the operation of trains, the passenger

demand characteristics, and the passenger/vehicle interaction.

Section III describes the multi-objective cost function and

the constraints of the real-time train scheduling problem.

Section IV proposes several solution approaches for the train

scheduling problem, in particular, the new iterative convex

programming approach. Section V compares the performance

of the solution approaches in Section IV with a case study.

Finally, Section VI concludes the paper with a short discussion

of some topics for future work.

II. MODEL FORMULATION

This paper considers one direction of an urban transit line

consisting of J stations as shown in Figure 1. Station 1 is the

origin station and station J is the final station of each trip. The

track section between station j and station j+1 is denoted as

segment j.

We make the following assumptions when formulating the

real-time scheduling model:

A1. Station j for j ∈ {2,3, . . . ,J−1} can only accommodate

one train at a time and no passing can occur at any point

in the line.

A2. Passengers arrive randomly at a constant rate λ j at station

j.

A3. The number of passengers alighting from trains at station

j for j ∈ {1,2, . . . ,J} is a fixed proportion ρ j of its arrival

load.

A4. The number of passengers waiting at a station and the

number of passengers on-board immediately after a train’s

departure are approximated by real numbers.

Assumption A1 generally holds for most urban transit systems,

which are usually operated in first-in first-out order from

station 1 to J. With Assumption A2, the passenger arrival

rates are considered as constants for a scheduling period.

This assumption is consistent with observed random passenger

arrivals for short headway (less than 10 minutes) services [28].

The passenger arrival rates can be estimated based on a

combination of the historical data, the data from the current

automatic fare collection systems, and the data obtained by

personal digital devices (PDAs) in future. Since the passenger

demands of urban rail transit systems usually have certain

patterns for different days, e.g., weekdays and weekend, in

Assumption A3 we adopt the alighting proportions proposed

in [29] to calculate the number of alighting passengers. The

alighting proportions are usually assumed as constants for

a scheduling period and could be estimated based on his-

torical data and data collected in real-time from automatic

fare collection systems and PDAs. The time-varying alighting

proportions can be taken into account by the rolling horizon

approach, where the alighting proportions can differ for each

scheduling period. For Assumption A4, if the number of

passengers is high, then the error made by this assumption is

small. Furthermore, this assumption simplifies the optimiza-

tion problem later on.

A. The operation of a train

In the literature on train scheduling, the operation of trains

is usually described by the departure times, arrival times,
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Fig. 1. Illustration of the subway line and variables

running times, and dwell times. In order to obtain a balanced

trade-off between the accuracy and the computation speed, a

macroscopic model is used. The detailed train dynamics, the

position of block signals, the detection of trains, etc. can then

be taken into account by the lower level control layer. The

departure time di, j of train i at station j is

di, j = ai, j + τi, j, (1)

where ai, j and τi, j are the arrival time and the dwell time of

train i at station j. In the literature, the dwell time is usually

considered as a constant. However, in practice, it is influenced

by the number of passengers boarding and alighting from a

train. Therefore, we consider a variable dwell time, as will

be explained in Section II-C. The arrival time ai, j+1 of train

i at station j+1 equals the sum of the departure time di, j at

station j and the running time ri, j on segment j (i.e., the track

between station j and station j+1 as shown in Figure 1) for

train i:

ai, j+1 = di, j + ri, j. (2)

In this paper, we assume that the operation of trains only

consists of three phases: the acceleration phase, the speed

holding phase, and the deceleration phase. In addition, we

assume the acceleration aacc
i, j and the deceleration adec

i, j are

known constants. Define the speed in the speed holding phase

as vi, j, the running distance of these three phases can be

calculated as

sacc
i, j =

v2
i, j

2aacc
i, j

, sdec
i, j =−

v2
i, j

2adec
i, j

, shold
i, j = s j− sacc

i, j − sdec
i, j .

where s j is the length of segment j. The running time ri, j of

train i on segment j is equal to the sum of the acceleration

time, the holding time, and the deceleration time, i.e., ri, j =
tacc
i, j + thold

i, j + tdec
i, j , where tacc

i, j = vi, j/aacc
i, j , thold

i, j = shold
i, j /vi, j, and

tdec
i, j =−vi, j/adec

i, j . So the running time can be recast as

ri, j = tacc
i, j + thold

i, j + tdec
i, j

=
vi, j

aacc
i, j

+
s j− sacc

i, j − sdec
i, j

vi, j
+
−vi, j

adec
i, j

=
vi, j

aacc
i, j

+
s j

vi, j
−

vi, j

2aacc
i, j

+
vi, j

2adec
i, j

−
vi, j

adec
i, j

=
s j

vi, j
+

vi, j

2aacc
i, j

−
vi, j

2adec
i, j

.

(3)

Remark. The coasting phase of the operation of trains can

be included as follows (at the cost of an increased number of

variables and an increased computational complexity). Both

the traction force and braking force are equal to zero in the

coasting phase, where the train speed slows down because

of the resistance. With the model given above, the entering

speed (i.e., the holding speed) of the coasting phase is vi, j. We

denote the speed at the end of the coasting phase as v′i, j. The

resistance varies with the train speed. Here, we approximate

the resistance using the mean speed vm,i, j = (vi, j + v′i, j)/2 of

the coasting phase:

Ri, j = m(k1i + k2ivm,i, j)+ k3iv
2
m,i, j,

where m is the mass of the train itself and of the passengers

on board of the train and k1i, k2i, and k3i are the resistance

coefficients of train i. Hence, the running distance and running

time of the coasting phase can be calculated. The coasting

phase can then be included in the model formulation for the

optimization of train schedule.

Note that the speed vi, j of the holding phase should satisfy

vi, j ∈ [vi, j,min,vi, j,max], (4)

where vi, j,min and vi, j,max are the minimal and maximal running

speed for the speed holding phase of train i at segment

j, respectively. The maximum running speed is limited by

the train characteristics and the condition of the line. The

minimum running speed is introduced to ensure passenger

satisfaction since if trains run too slow, the passengers may

complain.

The minimum headway is the minimum time interval be-

tween two successive trains so that they can enter and depart

from a station safely [30]. Followed from assumption A1, a

train cannot enter a station until a minimum headway h0 after

the preceding train’s departure, which can be formulated as

ai, j−di−1, j ≥ h0. (5)

In addition, we select the order in which the trains run such

that vehicle i−1 always precedes train i for i ∈ {1,2,3, . . . , I}
with I the total number of trains.

Remark. After the schedule of trains has been obtained, a

more accurate speed profile can be calculated in a lower

control layer based on the detailed dynamics of the operation

trains and line segments between station. For more information

about the speed profile optimization see [31]–[34].

B. Passenger demand characteristics

The number of passengers still remaining at the station after

the departure of train i−1 immediately after its departure at

station j is defined as wi−1, j. The number of passengers who

want to get on train i at station j can then be formulated as

w
waiting
i, j = wi−1, j +λ j(di, j−di−1, j), (6)

where λ j(di, j − di−1, j) is the number of the passengers that

arrived during the departure of train i−1 and the departure of

train i.

By defining the number of passengers on train i immediately

after its departure at station j− 1 as ni, j−1, the remaining
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capacity of train i at station j immediately after the alighting

process of the passengers is

n
remaining
i, j =Ci,max−ni, j−1(1−ρ j), (7)

where Ci,max is the effective maximal capacity of train i, and

ni, j−1(1−ρ j) is the number of passengers remaining on train

i immediately after all the passengers that wanted to leave the

train have gotten off. Note that the effective maximal capacity

can be estimated based on the data from the daily operations,

where the distribution of on-board passengers and the effect

of the distribution of waiting passengers on the platforms, etc.

can be taken into account.

The number of passengers boarding train i at station j

is equal to the minimum of the remaining capacity and the

number of waiting passengers, i.e.

n
boarding
i, j = min

(

n
remaining
i, j ,w

waiting
i, j

)

. (8)

The number of passengers at station j immediately after the

departure of train i, i.e. the passengers who cannot get on train

i, is then given by

wi, j =w
waiting
i, j −n

boarding
i, j . (9)

The number of passengers on train i when it departs from

station j is equal to the sum of the passengers arriving but not

getting off at station j and the passengers boarding on train i

at station j, which can be formulated as

ni, j =ni, j−1(1−ρ j)+n
boarding
i, j . (10)

C. Passenger/vehicle interaction

As mentioned before, the dwell time is influenced by the

number of alighting and boarding passengers. According to

the research for Beijing subway stations in [35], the goodness

of fit of the linear and nonlinear model for the dwell time are

86% and 94%, respectively. Since the nonlinear model needs

detailed information of passengers, such as the passenger

distributions, here we adopt the linear model, as it has an

acceptable performance and as it will simplify the model for

passenger characteristics and the optimization problem later

on. The minimum dwell time can be described as [35]:

τi, j,min =α1,d +α2,dni, j−1ρ j +α3,dn
boarding
i, j , (11)

where α1,d, α2,d, and α3,d are coefficients that can be estimated

based on historical data. The dwell time τi, j should be larger

than the minimal dwell time τi, j,min such that the passengers

can get on and get off the train. However, it should be less

than a maximum dwell time τi, j,max to ensure the passenger

satisfaction.

Remark. In this paper, the time for opening and closing of

doors are not included in the calculation of the minimum dwell

time. In addition, a minimum operational dwell time, e.g., 30 s,

is not considered here. When calculating the train schedules

in practice, both the minimum operational dwell time and the

door opening and closing time should be taken into account.

III. THE REAL-TIME TRAIN SCHEDULING PROBLEM

Based on the model formulation in Section II, we now

formulate the real-time train scheduling problem. The energy

consumption caused by the operation of trains and the total

travel time of all passengers are minimized using the weighted

sum strategy for the real-time train scheduling problem.

In [27], [36], the energy consumption is proportional to the

product of the resistance and the mean speed, where the

resistance includes the rolling resistance, air resistance, and

grade resistance. However, in the literation of the operation

of trains, the computation of the energy consumption is more

precise [18], [31]–[34], [37]. Hence, we consider an operation

model of a train with the acceleration phase, the speed holding

phase, and the deceleration phase in this paper.

The energy consumption for train i on segment j is equal

to the sum of the consumption of the acceleration phase, the

speed holding phase, and the deceleration phase. The energy

consumption for the acceleration phase of train i on segment

j is

Eacc
i, j =

∫ tacc
i, j

0

(

(me,i +ni, jmp)
(

aacc
i, j + k1i + k2iv(t)

+gsin(θ j)
)

+ k3iv
2(t)

)

v(t)dt,

(12)

where me,i is the mass of train i itself, mp is the mass of

one passenger, (me,i + ni, jmp) is the mass of train i and the

passengers on-board of train i at station j, k1i,k2i, and k3i are

the resistance coefficients of train i, θ j is the grade profile of

segment j, and the speed in the acceleration phase is changing

with time t and can be calculated by v(t) = aacc
i, j t. In addition,

the speed at the end of the acceleration phase is equal to the

speed of the holding phase, i.e., vi, j = aacc
i, j tacc

i, j . The energy

consumption for the speed holding phase of train i on segment

j is

Ehold
i, j =

∫ tacc
i, j +thold

i, j

tacc
i, j

(

(me,i +ni, jmp)(k1i + k2ivi, j +gsin(θ j))

+ k3iv
2
i, j

)

vi, jdt.

(13)

In the deceleration phase, the energy consumption for the air

braking system is small compared with the traction energy

and is usually ignored in the literature of the operation of

trains [18], [31]–[34], [36], [37]. For the sake of completeness,

we include it in the energy consumption for deceleration phase.

In addition, electric motors work as electric generators to

generate energy for the regenerative braking system. Hence,

the energy consumption may become negative in the braking

process of trains. The energy consumption of the deceleration

phase of train i on segment j is calculated by

Edec
i, j = εi, j +ηi, j

∫ ri, j

tacc
i, j +thold

i, j

(

(me,i +ni, jmp)
(

adec
i, j + k1i + k2iv(t)

+gsin(θ j)
)

+ k3iv
2
i, j

)

vi, jdt,

(14)

where εi, j is the energy consumption of the air braking system

for train i on segment j and ηi, j is the energy recovery rate
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in the deceleration phase of train i on segment j. The total

energy consumption for all I trains running with J stations

can then be formulated as

Etotal =
I

∑
i=1

J

∑
j=1

(Eacc
i, j +Ehold

i, j +Edec
i, j ). (15)

The total travel time is the sum of the passenger waiting

time and the passenger in-vehicle time. The passenger waiting

time twait,i, j at station j for train i includes the waiting time of

both passengers left by the previous train i−1 and the newly

arrived passengers, and it can be calculated by

twait,i, j = wi−1, j(di, j−di−1, j)+
1

2
λ j(di, j−di−1, j)

2, (16)

where the first term represents the waiting time of the pas-

sengers left by train i− 1 at station j, and the second term

represents the waiting time of randomly arriving passengers

between the departures of train i−1 and train i. The passenger

in-vehicle time for train i running from station j to j + 1

includes the running time for all passengers on train i after its

departure form station j and the waiting time of the passengers

who do not get off the train at station j + 1, which can be

formulated as

tin-vehicle,i, j = ni, jri, j +ni, j(1−ρ j+1)τi, j+1. (17)

The total passenger travel time for all I trains can then be

formulated as

ttotal =
I

∑
i=1

J−1

∑
j=1

(twait,i, j + tin-vehicle,i, j). (18)

We apply a weighted sum strategy to solve the multi-

objective optimization of the train scheduling problem, i.e.,

fopt =
Etotal

Etotal,nom

+λ
ttotal

ttotal,nom

, (19)

where λ is a non-negative weight, and the normalization

factors Etotal,nom and ttotal,nom are the nominal values of the total

energy consumption and the total travel time of passengers,

respectively. These nominal values can e.g. be determined by

running trains using a feasible initial schedule.

The constraints of the real-time scheduling problem con-

sist of the running time constraints, dwell time constraints,

headway constraints, and capacity of trains, shown as (1)-(5),

(9)-(11) in Section II.

Since passenger demands vary with the time in a daily

operation, the train scheduling problem can be solved in a

rolling horizon way, by solving the scheduling problem, e.g.,

every half hour, so as to adapt the train schedule to passenger

demands in real time. This works as follows. First, the train

scheduling problem is solved for some period [t0, tend] and

the trains will be operated according to the resulting optimal

schedule. After some period of time tp, e.g., half an hour,

we run the optimization process again, but now for the period

[t0+tp, tend+tp] using the known, measured, or estimated states

of the system at time t0+tp. Once the new optimal schedule is

computed, it is executed for tp time units, and next the whole

process is repeated again for the period [t0+2tp, tend+2tp] and

so on, until the end of the daily operation of the urban rail

transit system.

IV. SOLUTION APPROACHES

The resulting real-time train scheduling problem with ob-

jective function (19) and constraints (1)-(5) and (9)-(11) is a

non-smooth non-convex problem, where the non-smoothness

is caused by the min function in (8), and the non-convexity

is due to the nonlinear non-convex objective function and

the non-convex set defined by constraints. We propose a

new iterative convex programming (ICP) approach to solve

the real-time train scheduling problem in Section IV-A. In

addition, we solve the train scheduling problem using several

alternative approaches in Section IV-B. One is a gradient-

free non-smooth programing approach, e.g., pattern search.

Another one is a gradient-based nonlinear programming, e.g.,

sequential quadratic programming. Furthermore, a general

purpose nonlinear integer programming approach, e.g., the

branch-and-bound algorithm, is also used. By approximating

the nonlinear objective function using piecewise affine func-

tions, the train scheduling problem can be recast into an MILP

problem, which can be solved efficiently by existing solvers,

e.g., CPLEX.

A. A new approach: ICP

The non-differentiability of the train scheduling problem is

introduced by the min function, which is used to describe

the number of waiting passengers wi, j and the passengers

onboard ni, j immediately after train’s departure. Since the

non-differentiability and non-convexity of the train scheduling

problem are introduced by the calculation of the number

of waiting passengers and onboard passengers, we propose

an iterative convex programming (ICP) approach inspired by

the iterative (alternating) approaches in [38]–[41]. The ICP

approach is based on a reduced-complexity model, where the

number of waiting passengers and onboard passengers are

not variables anymore but estimated values. The estimated

values of ŵi j(p) and n̂i j(p) are calculated via simulation using

the model proposed in Section II with fixed departure times

di, j(p), fixed running times ri, j(p), and fixed dwell times

τi, j(p). This eliminates the min function and the nonlinear

terms wi, jdi, j, wi, jdi−1, j, ni, jri, j and ni, jτi, j+1 in the objec-

tive function. Hence, the resulting optimization problem is

a smooth and convex problem, which can often be solved

efficiently for the global optimum using interior point algo-

rithms [42]. By solving the convex problems iteratively, an

approximation of the global optimum of the original non-

smooth non-convex problem can be obtained. The procedure

of the ICP method is given in Algorithm 1.

For the ICP approach, the variables of the real-time schedul-

ing problem are the departure times di, j, the running times

ri, j, and the dwell times τi, j. The number of passengers wi, j

waiting at stations and the number of passengers ni, j on-board

the trains are estimated by ŵi, j and n̂i, j, respectively. The

other variables, such as the passenger waiting time twait,i, j

and the passenger on-board times tin−vehicle,i, j, are functions

of the decision variables and hence are not explicitly rep-

resented in the solution process. The solution obtained by

the ICP approach is not necessarily the global minimum of

the formulated scheduling problem since the ICP approach
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solves a sequence of convex approximations of the formulated

nonlinear non-convex problem. For the ICP approach, we

should in general use multiple starting points. However, for

this case study, we found that one random feasible initial

point yields comparable results with respect to other alternative

approaches. The resulting convex problem in the ICP approach

can be solved using the ellipsoid algorithm and interior point

algorithm, which are implemented in the Matlab software

CVX for disciplined convex programming1.

Algorithm 1 The procedure of the ICP method

1: Input : a feasible initial solution of departure times,

running times, and dwell times, i.e., di, j(0), ri, j(0), and

τi, j(0) for i = 1, . . . , I and j = 1, . . . ,J, pmax, convergence

tolerance ς , maximum number of iterations pmax;

2: iteration index p← 0;

3: calculate initial estimates ŵi, j(p) and n̂i, j(p) using (9) and

(10) based on di, j(p), ri, j(p), and τi, j(p);
4: calculate the initial objective fopt(p) using (19) ;

5: Repeat

6: p = p+1;

7: substitute the estimates ŵi, j(p− 1) and n̂i, j(p− 1)
into the original problem to get a convex problem;

8: obtain optimal departure time d∗i, j(p), running time

r∗i, j(p), and dwell time τ∗i, j(p) by solving the convex

problem;

9: compute ŵi, j(p) and n̂i, j(p) using (9) and (10) based

on d∗i, j(p), r∗i, j(p), and τ∗i, j(p);
10: calculate the objective fopt(p) using (19);

11: Until p = pmax or | fopt(p)− fopt(p−1)| ≤ ς
12: Return d∗i, j(p), r∗i, j(p), τ∗i, j(p), fopt(p)

B. Alternative approaches

Nonlinear programming approaches, an MINLP approach,

and an MILP approach are adopted to solve the real-time train

scheduling problem.

1) Gradient-free nonlinear programming: Nonlinear pro-

gramming approaches can be grouped in gradient-free ap-

proaches and gradient-based approaches. The gradient-free

approaches do not explicitly require gradient and Hessian

information but only require that the values of the objective

function can be ranked. Moreover, gradient-free methods are

suitable for non-smooth problems. Since the real-time train

scheduling problem is non-smooth due to the min function,

the first choice is to use the gradient-free method. Here, in

particular we propose to use the pattern search method.

The pattern search method handles optimization problems

with nonlinear, linear, and bound constraints, and does not

require objective functions to be differentiable or continuous.

The pattern search method was first proposed by Hooke and

Jeeves [43], and it has been proved successful in practice even

for objective functions with many local minima, in combina-

tion with a multi-start method, to improve the probability of

obtaining a solution close to a globally optimal solution.

1More information about Matlab software CVX, see http://cvxr.com/cvx.

When solving the real-time scheduling problem using the

pattern search method, the variables are the departure times

di, j, the running times ri, j, and the dwell times τi, j. The other

variables, such as the number of passengers wi, j waiting at

stations, the number of passengers ni, j on-board the trains, the

passenger waiting times twait,i, j, and the passenger on-board

times tin-vehicle,i, j, can be eliminated. The pattern search method

has been implemented in the global optimization toolbox of

Matlab.

2) Gradient-based nonlinear programming: The gradient-

based nonlinear programming methods rely on gradient and

Hessian information. If this information is not available, it can

be approximated numerically. We consider the gradient-based

sequential quadratic programming (SQP) algorithm here since

it is widely used to solve nonlinear programming problems.

A requirement for the SQP algorithm is that the objective

function and the constraints of the nonlinear programming

problem should be continuously differentiable [44]. In the SQP

method, the nonlinear programming problem is recast as a

sequence of quadratic programming problems, which can be

solved easily and efficiently. The train scheduling problem in

Section III is non-differentiable because of the min function.

Even though the SQP2 algorithm is a gradient-based method,

we also apply it to our problem setting since it yields good

solutions to most of the nonlinear programming problems.

When solving the real-time scheduling problem using the

SQP algorithm, the variables are the same as those in the pat-

tern search method. The SQP algorithm has been implemented

in many packages, such as SNOPT and the optimization

toolbox of MATLAB.

3) The MINLP approach: In the MINLP approach, we

introduce auxiliary binary variables and auxiliary real vari-

ables to deal with the non-smooth min function in (8). By

introducing a binary variable δi, j ∈ {0,1} and defining

f̃i, j =wi−1, j+λ j(di, j−di−1, j)− [Ci,max−ni, j−1(1−ρ j)], (20)

the following equivalence holds [45]:

[ f̃i, j ≤ 0]⇔ [δ = 1] (21)

is true iff
{

f̃i, j ≤ M̃i, j(1−δi, j)
f̃i, j ≥ ε +(m̃− ε)δi, j

, (22)

where ε is a small positive number that is introduced to

transform a strict equality into a non-strict inequality, and M̃i, j

and m̃i, j are the maximum value and the minimum value of

f̃i, j, respectively. Equation (8) can now be rewritten as

n
boarding
i, j =δi, j[wi−1, j +λ j(di, j−di−1, j)]+(1−δi, j)[Ci,max

−ni, j−1(1−ρ j)].
(23)

Note that in equation (23) there are four nonlinear terms (i.e.,

δi, jwi−1, j, δi, jdi, j, δi, jdi−1, j, δi, jni, j−1), which are the products

2When the SQP algorithm is applied to the non-differentiate problem, it
might get stuck in a local solution. In the non-differentiate problem proposed
in this paper, the minimum value of the objective function is usually not
obtained at the non-differentiate points, so the SQP algorithm jumps over
these points successfully. Therefore, the SQP approach with multiple initial
points works well in this case.
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of the binary variable δi, j and real variables. Four auxiliary

real variables can then be introduced to transform these four

nonlinear terms into linear terms with linear constraints. The

detailed information about this transformation is given in

Appendix A.

The variables of the resulting MINLP problem include

the variables occurring in the pattern search method and the

binary variables δi, j. The MINLP problem can be solved

using a branch-and-bound algorithm, such as the MINLP BB

solver3 and SCIP [46]. In addition, we now propose a bi-

level optimization method to solve the MINLP problem. This

method consists of two levels of optimization. The high-

level optimization optimizes the binary variables, where a

brute force approach can be used to find all the combinations

for the binary variables when the size of the problem is

small. Alternatively, integer programming approaches, such

as genetic algorithms implemented in the global optimization

toolbox of Matlab [47], can be applied in the high-level

optimization. For each combination of binary variables, the

nonlinear optimization problem in the lower level is now a

smooth problem, which can be solved using gradient-based

approaches, such as the interior point algorithm implemented

in the optimization toolbox of MATLAB [48].

4) The MILP approach: In our earlier work [33], we have

shown that the mixed integer linear programming (MILP)

approach can be very efficient for train trajectory planning

problems. Therefore, we also apply the MILP approach to

the real-time train scheduling problem. In this approach, we

approximate the nonlinear terms in the objective function by

piecewise affine approximations and then transform the non-

smooth non-convex problem into an MILP problem. The MILP

approach deals with the min function of (8) in the same way

as the MINLP approach. In the MINLP problem in Section

IV-B3, the constraints are linear, but the objective function is

nonlinear and non-convex. Therefore, in order to solve the real-

time rescheduling problem as an MILP problem, we need to

approximate the nonlinear terms as piecewise affine functions,

such as wi−1, jdi, j, ni, jri, j, and ni, jτi, j. For more information

about the piecewise affine approximation, see Appendix B.

The variables of the resulting MILP problem include the

variables in the MINLP problem and the binary variables

and the auxiliary variables introduced by the approximations

of nonlinear terms in the objective function. The MILP

problem can be solved by the branch-and-bound algorithm

implemented in several existing commercial and free solvers,

such as CPLEX, Xpress-MP, and GLPK [49], [50].

V. CASE STUDY

A. Set-up

In order to demonstrate and compare the performance of

the approaches proposed in Section IV for the real-time train

scheduling problem, the train characteristics and the line data

of the Yizhuang subway line in Beijing are used as a test case

study. Note that this case study that considers one subway

line is compact and easily interpreted. The Yizhuang line has

3For more details about MINLP BB solver, see http://tomopt.com.

Fig. 2. The layout of the Yizhuang subway line

TABLE I
INFORMATION OF THE YIZHUANG SUBWAY LINE

Station Distance Passenger Passenger Minimum
number to next arrival rate alighting running

station [m] [passenger/s] proportion time [s]

1 1332 3 0 87.721
2 1286 0.5 0.05 85.651
3 2086 3 0.3 121.654
4 2265 4 0.38 129.710
5 2331 0.4 0.04 132.680
6 1354 4 0.32 88.711
7 1280 4 0.38 85.380
8 1544 3 0.7 97.260
9 992 3 0.6 72.420
10 1975 3 0.7 116.659
11 2369 3 0.7 134.391
12 1349 2 0.5 88.486
13 2610 2 0.5 145.237
14 - 0 1 -

14 stations, and the speed limit for the line is 80 km/h (i.e.,

22.2 m/s). The detailed information about these 14 stations

is listed in Table I. The minimum running time in Table I is

calculated by taking a fixed acceleration of 0.8 m/s2 and a fixed

deceleration of −0.8 m/s2. Furthermore, the speed vi, j of the

holding phase in (3) is equal to the maximum speed 22.2 m/s

for the minimum running time. We assume the maximum

running time is ri, j,max = ζ ri, j,min, where ζ is larger than 1. We

have chosen ζ as 1.2 in order to ensure that the passengers do

not complain that the train is too slow. Based on the maximum

running time, the minimal holding speed can be calculated.

The other parameters of trains and passengers are shown in

Table II. The mass of the train itself and the standard mass of

one passenger is shown in Table II. The values of the dwell

time coefficients are chosen as shown in Table II according

to [51]. The minimum dwell time can then be calculated by

(11). The maximal dwell time is chosen as 150 s. The effective

capacity of each train is 1468 passengers. The communication-

based train control system (i.e., a moving block signaling

scheme) is implemented in the Beijing Yizhuang subway line

and the minimum headway h0 between two successive trains

is 90 s. Moreover, in practice the regenerated energy of the

Beijing Yizhuang line is hardly fed back to the power supply

system due to some technical problems, e.g., over voltages.

Therefore, the regenerative energy is not taken into account in

this case study.

In order to illustrate the performance of the solution ap-

proaches proposed for different-sized problems, we considered

9 scenarios with different problem sizes as shown in Table

III, where the values of I and J are the number of trains

and stations involved. For the cases with J less than 14,
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TABLE II
PARAMETERS OF THE TRAINS AND THE PASSENGERS

Property Symbol Value

Train mass [kg] me,i 199 ·103

Mass of one passenger [kg] mp 60

Maximum dwell time [s] τmax 150

α1,d 4.002
Coefficients of the α2,d 0.047
minimal dwell time α3,d 0.051

k1i 0.012

Coefficients of resistance k2i 5.049·10−4

k3i 8.521

TABLE III
THE NOMINAL VALUES OF THE ENERGY CONSUMPTION AND THE

PASSENGER TRAVEL TIME

Scenario I & J Nominal passenger Nominal energy
index travel time [s] consumption [J]

1 I = 2,J = 3 6.402 ·105 1.216 ·108

2 I = 3,J = 4 1.954 ·106 3.285 ·108

3 I = 4,J = 5 6.457 ·106 4.780 ·108

4 I = 5,J = 6 7.211 ·106 1.402 ·109

5 I = 6,J = 7 1.582 ·107 1.992 ·109

6 I = 7,J = 8 2.537 ·107 1.943 ·109

7 I = 7,J = 10 2.943 ·107 2.859 ·109

8 I = 7,J = 12 3.523 ·107 2.557 ·109

9 I = 7,J = 14 3.298 ·107 4.926 ·109

the passenger arrival rate and the passenger alighting rate

at station J is changed to 0 and 1, respectively, because

we assume that station J is the last station of the trip. The

weight λ in the multi-objective function (19) is chosen as 1,

which means that the energy consumption and the passenger

travel time is equally important since they are normalized in

the objective function. However, rail operators can take any

positive and reasonable value for the weight λ . In addition,

the nominal values of the passenger travel time and the energy

consumption shown in Table III are obtained using random

feasible train schedules for different cases. Note that the

random feasible train schedule is actually with fixed departure

headway at station 1 but with random running times (a value

in [rmin,1.2 · rmin]) later on.

B. Simulation and results

We have applied the approaches proposed in Section IV to

solve the real-time train scheduling problem. For the pattern

search method, we used the patternsearch function in the

global optimization toolbox of Matlab. The SNOPT solver

implemented in the Matlab Tomlab toolbox is adopted for

the SQP algorithm to solve the nonlinear non-convex train

scheduling problem. In the ICP approach, the resulting smooth

and convex problem is also solved by the SNOPT. In addition,

the low-level optimization problem of the bi-level approach

is also solved using SNOPT. The ga function in the global

optimization toolbox of Matlab is applied for the high-level

optimization of the bi-level approach with genetic algorithm.

Furthermore, we use CPLEX, implemented through the cplex

interface function of the Matlab Tomlab toolbox as MILP

solver.

The schedule of trains for scenario 5 is shown in Figure

3, which is obtained by solving the train scheduling problem
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Fig. 3. The train schedule of scenario 5 with 6 trains and 7 stations obtained
by the sequential quadratic programming approach
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Fig. 4. Performance comparison of the solution approaches for the real-
time train scheduling problem. In order to visualize the scenarios of which
the computation cannot finish within 5 hours, the performance indices fopt

calculated using (19) of these scenarios are set larger than 3.5.

for 6 trains (i.e., train i ∈ {1,2, . . . ,6}) and 7 stations (i.e.,

station j ∈ {1,2, . . . ,7}) using the SQP approach. In addition,

the corresponding running times, dwell times, and departure

times are given in Table IV. The model formulation in this

paper allows the presence of waiting passengers at platforms

at the beginning of the scheduling period and allows trains to

be running somewhere on the transit line. In this case study,

we consider the train schedule at the start of a day. Train 0

is the first train entering the urban rail transit line for that

day. There are no passengers left by train 0 because not too

many passengers wait for the first train in the morning. As we

can observe from Figure 3, the departure headways between

train 1, train 2, and train 3 at station 1 are larger than those

between the later trains. This is because of the schedule of

train 0, which stops at each station with a dwell time of 120

s. Therefore, in order to satisfy the headway constraints at all

stations, the departure headway at the station 1 must be much

larger than the minimum headway 90 s.

In order to compare the performance of the schedules

obtained by different approaches proposed in this paper, a

reference schedule with a fixed departure headway defined,

where the schedule of trains is the same as train 0 but with

a constant departure headway 210 s, which is essentially the

sum of the minimum headway and the maximum dwell time.



9

TABLE IV
DEPARTURE TIMES, ARRIVAL TIMES, AND DWELL TIMES OF THE TRAIN SCHEDULE WITH 6 TRAINS AND 7 STATIONS OBTAINED BY THE SEQUENTIAL

QUADRATIC PROGRAMMING APPROACH

Station 1 2 3 4 5 6 7

Running time 87.7 85.7 121.7 129.7 132.7 88.7 -
Train 0 Dwell time 120 120 120 120 120 120 -

Departure time 120 327.7 533.4 775.0 1024.7 1277.4 -

Running time 105.3 102.8 146.0 155.7 159.2 106.5 -
Train 1 Dwell time 150.0 55.3 95.7 102.2 85.4 49.6 -

Departure time 360.0 520.6 719.0 967.2 1208.2 1417.0 -

Running time 105.3 102.8 146.0 155.7 159.2 106.5 -
Train 2 Dwell time 150.0 10.6 117.3 60.6 49.6 50.1 -

Departure time 600.0 715.9 935.9 1142.5 1347.8 1557.2 -

Running time 105.3 102.8 146.0 155.7 159.2 106.5 -
Train 3 Dwell time 139.5 11.4 37.6 49.8 50.0 55.2 -

Departure time 829.5 946.2 1086.6 1282.3 1487.9 1702.3 -

Running time 105.3 102.8 146.0 155.7 159.2 106.5 -
Train 4 Dwell time 57.2 8.7 32.9 50.0 55.2 52.4 -

Departure time 976.7 1090.7 1226.3 1442.3 1633.1 1844.7 -

Running time 105.3 102.8 146.0 155.7 159.2 106.5 -
Train 5 Dwell time 20.8 20.8 50.0 55.2 53.4 46.9 -

Departure time 1087.5 1213.6 1336.3 1567.4 1775.5 1981.6 -

Running time 105.3 102.8 146.0 155.7 159.2 106.5 -
Train 6 Dwell time 20.8 50.0 55.2 52.4 46.9 46.9 -

Departure time 1198.3 1353.5 1511.5 1709.8 1912.4 2118.5 -
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Fig. 5. The computation time of the solution approaches for the real-time
train scheduling problem. In order to visualize the scenarios of which the
computation cannot finish within 5 hours, the computation time of these
scenarios are set larger than 4×104 s.

Since the train scheduling problem is nonlinear and non-

convex, multi-start methods should be applied. Hence, we have

selected 10 feasible random initial points for the pattern search

method, the SQP algorithm, and the ICP approach. When

we solve the MINLP problem using bi-level optimization

approach, the fmincon function in the lower optimization is

executed for 10 feasible random initial points. For the MILP

approach, only one feasible random initial point is needed to

obtain the global minimum of the MILP problem.

The control performance fopt and the computation time of

these methods for the 9 scenarios are shown in Figure 4 and

Figure 5. The value of the objective function is influenced

by the nominal values and the weight λ in (19). A smaller

value of the objective function means a better performance

since we solve a minimization problem. Note that in the MILP

approach the nonlinear objective function is approximated by

piecewise affine functions. However, the objective value of the

original nonlinear objective function is calculated here using

the optimal schedule obtained by the MILP approach. We set

the upper bound of the computation time as five hours. If the

computation cannot finish within 5 hours, no results are re-

ported, so we cannot determine the control performance index.

In order to visualize the scenarios of which the computation

cannot finish within 5 hours, we set the total performance

index of these scenarios larger than 3.5 as shown in Figure 4

and set the computation time larger than 4× 104 s as shown

in Figure 5. It is noted that only the performance indices of

the SQP algorithm and the ICP algorithm are reported for

scenario 9 as shown in Figure 4, and the calculation of other

algorithms for scenario 9 cannot finish within 5 hours. It is

observed that the reference schedule has the worst control

performance but also the lowest computation time. In addition,

the performance of the MILP approach is worse compared

with the other solution approaches that have similar control

performance. It is observed from Figure 5 that the computation

time of the ICP approach is higher than that of the SQP method

for the smaller-sized train scheduling problems, i.e., scenario

1 to 4. However, for scenario 5 to 9, the computation time

of the ICP approach is the smallest among all the solution

approaches except the reference approach. For instance, the

computation time of the ICP approach is just half of that of

the SQP approach for scenario 9, where the computation time

of the ICP approach and the SQP approach are around 66.701 s

and 131.589 s, respectively. Furthermore, the values of the

objective function of the random starting points, the solutions

obtained by the ICP approach, and the solutions obtained by

the SQP approach are illustrated in Table V. It can be observed

that the function values of the random starting points are much

higher compared with those of the solutions obtained by the

ICP approach. In addition, we can observe that the function

values of the ICP approach are quite close to those of the

solutions of the SQP approach.

In order to evaluate the sensitivity to the weight in (19),
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TABLE V
THE OBJECTIVE FUNCTION VALUES OF THE INITIAL POINTS, THE OBTAINED SOLUTIONS BY THE ICP APPROACH, AND THE OBTAINED SOLUTIONS BY

THE SEQUENTIAL QUADRATIC PROGRAMMING APPROACH

Scenario 1 2 3 4 5 6 7 8 9

Initial Point 3.043 2.797 3.113 2.305 2.122 2.657 2.391 3.005 2.220
Solution of ICP 1.541 1.549 1.792 1.375 1.265 1.569 1.527 1.900 1.500
Solution of SQP 1.496 1.540 1.781 1.366 1.240 1.544 1.476 1.707 1.320

TABLE VI
THE ENERGY CONSUMPTION AND PASSENGER TRAVEL TIME FOR

DIFFERENT WEIGHTS IN OBJECTIVE FUNCTION (19)

Weight λ [-] Energy consumption [J] Passenger travel time [s]

0.1 4.005 ·109 2.294 ·107

1 4.019 ·109 2.265 ·107

10 4.318 ·109 2.212 ·107

Table VI gives the energy consumption and the passenger

travel time obtained by the ICP approach for the weight taking

values 0.1, 1, and 10. We can observe that with an increasing

weight, the energy consumption increases and the passenger

travel time decreases.

The performance of the schedule obtained by the ICP

approach is close to the best performance of the schedules

we obtained using alternative approaches. For smaller-sized

train scheduling problems, the computation time of the SQP

approach is the smallest except the reference approach, while

for larger-sized train scheduling problems, the ICP approach

produces a better trade-off between performance and compu-

tational complexity.

Remark. When calculating the optimal train schedule using a

train operation model with three phases, the energy consump-

tion is 4.077 ·109 J without the regenerative braking scheme.

However, the energy consumption of the obtained schedule

using the mean speed method in [27], [36], the energy

consumption in the objective is 9.5172 · 108 J, which is only

23.34% of that based on the three phases operation model.

In addition, when optimizing the train schedule including the

regenerative energy Edec
i, j in (14), the energy consumption is

2.0193 ·109 J (i.e., 49.53% of the energy consumption without

regenerative braking) with the energy recovery rate ηi, j = 0.7
and εi, j = 0 for all i and j. Due to the short distances between

stations in urban rail transit, the running times and distances

of the acceleration phase and deceleration phase cannot be

ignored anymore. Therefore, it is important to use an operation

model with three phases for train scheduling.

VI. CONCLUSIONS

In the current paper, the real-time train scheduling problem

for urban rail transit systems has been considered. We have

proposed a new iterative convex programming (ICP) approach

to solve this train scheduling problem. In addition, we have

compared the ICP approach with a gradient-free nonlinear

programming approach (in particular pattern search method),

gradient-based nonlinear programming approach (in particular

sequential quadratic programming (SQP)), a mixed integer

nonlinear programming (MINLP) approach, and a mixed

integer linear programming (MILP) approach. Furthermore,

the resulting MINLP problem is solved by the following

three methods: the existing MINLP solver, a brute force bi-

level optimization method, and a bi-level optimization with

a genetic algorithm for the high-level integer optimization. A

reference schedule with a fixed headway is also included in the

case study, which shows that the reference schedule has the

lowest computation time and the worst control performance.

The optimal solutions obtained by the ICP approach, the

pattern search method, the SQP approach, and the MINLP

approach are close to each other for the train scheduling

problem. The ICP approach can provide a better trade-off

between performance and computational complexity.

Since the urban rail transit lines are operated with high

frequency and are physically separated from each other, rail

operators can schedule trains for each line in an optimal way

based on the current passenger demands. Therefore we will

apply the solution approaches proposed in this paper to solve

the train scheduling problem in a rolling horizon way and

will compare the performance with that of the train schedule

used in practice. In our future work, we will consider train

scheduling for an urban rail transit network where the origins

and destinations of the passengers and the passenger transfer

behavior from one line to the other will be characterized.

Hierarchical optimization techniques, distributed optimization

techniques, and fast optimization methods can be investigated

for train scheduling in an urban rail transit network [52], [53].

Furthermore, we will investigate the effect of more detailed

models (modeling the operation of trains in terminals, short

turns, the distribution of on-board passengers and waiting

passengers at platforms, the passengers appearing at platforms

after the last train has passed, the passenger flows as described

by origin-destination matrices) on the trade-off between per-

formance and computational complexity. Moreover, an exten-

sive comparison and assessment of the approaches proposed

in this paper for a wide range of set-ups and scenarios will

be a topic for future work. We will also characterize under

what circumstances the ICP approach gives good initial results,

characterize the convergence rate of the ICP approach, and

also characterize the degree of optimality of the obtained

solutions. Furthermore, in this paper we use the default settings

for various algorithms as these have been shown to perform

sufficiently well for a wide range of problems. The case

study gives a general indication about the relative ranking and

potential of various approaches and our results. In our future

work, we will investigate this in more detail in order to obtain

extra performance gains by choosing different settings and

tuning all the parameters of the different solution approaches

for a wide range of set-ups and scenarios.
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APPENDIX A

TRANSFORMATION OF THE PRODUCT OF BINARY-VALUED

VARIABLES AND REAL-VALUED VARIABLES

The product of binary-valued variable δ and real-valued

affine function f̃ (x̃) of x̃ can be replaced by an auxiliary real-

valued variable z= δ f̃ (x̃), which satisfies [δ = 0]⇒ [z= 0] and

[δ = 1]⇒ [z = f̃ (x̃)] [45], [54]. Then z = δ f̃ (x̃) is equivalent

to














z≤ M̃δ ,
z≥ m̃δ ,

z≤ f̃ (x̃)− m̃(1−δ ),
z≥ f̃ (x̃)− M̃(1−δ ),

(24)

where M̃ = max
x̃∈χ

f̃ (x̃) and m̃ = min
x̃∈χ

f̃ (x̃) with χ is the set of

feasible x̃.

APPENDIX B

THE PRODUCT OF TWO REAL-VALUED VARIABLES

The product of two real-valued variables xy can be rewritten

as

xy =
1

4
(x+ y)2−

1

4
(x− y)2. (25)

Define φ = x+y and ξ = x−y. Then we have xy= 1
4
φ 2+ 1

4
ξ 2,

where the quadratic terms φ 2 and ξ 2 can be approximated by

a piecewise affine function of the following form:

fPWA(z) =

{

α1z+β1 for z≤ Z1,
α2z+β2 for z > Z1.

(26)

For each nonlinear term in the objective function, the values of

α , β , and Z are optimized based on least-squares optimization.

Furthermore, the approximation error can be reduced by fo-

cusing on the interesting part of the domain, which is done by

introducing a weight function in the least-squares optimization.

By introducing the binary variables and auxiliary variables,

the product xy can be recast as a linear expression with linear

constraints (see [33], [54] for more information).

APPENDIX C

EXTENSION: TRAIN SCHEDULING MODEL WITH

STOP-SKIPPING

In this appendix, train scheduling with stop-skipping is

considered, where trains may skip some stations to reduce the

passenger travel time and energy consumption. In practice, the

SEPTA line in Philadelphia and the rail system in Santiago,

Chile, apply the stop-skipping schedule based on empirical

analysis. The stop-skipping strategy that already exists in

operational scheduling is mostly static, e.g. the A/B skip-stop

strategy, where stations are divided into three types: A, B,

and AB; A train services stop at A stations and AB stations,

while B train services stop at B stations and AB stations.

Major stations are usually labeled with the type AB; so all

trains stop there. Now we show how the model of Section II

can be extended to include dynamic stop-skipping, where the

stop-skipping stations are not fixed, but are optimized based

on the passenger demand. With the help of the information

provided via smart mobile devices and the real-time displays

and announcements at stations, we assume that passengers

can obtain enough information and board the right train. In

the long run, both the passengers and the rail operator can

get benefits from stop-skipping. The rail operator can benefit

from the shorter cycle times, increased operating speed, and

less energy consumption. For most of the passengers, the travel

time is shortened and the on-board environment will be better,

i.e., lower train occupation. However, the passengers at the

skipped stations experience longer waiting time and thus a

longer total travel time. Therefore, the skipping of trains at

stations should be carefully coordinated to benefit passengers.

For example, additional constraints can be considered by the

scheduling of trains, such as two successive trains cannot skip

the same station. In this case, the waiting time of passengers

will be limited to an acceptable value.

Section C-A extends the train scheduling model in Section

II to the model with stop-skipping. Section C-B describes the

multi-objective cost function and the constraints of the real-

time train scheduling problem with stop-skipping. Section C-C

proposes that the problem with stop-skipping can be solved

using the MINLP approach and the MILP approach in Section

IV. The performance of the solution approaches is compared

through a case study in Section C-D. A short discussion on

train scheduling with stop-skipping is given in Section C-E.

A. Train scheduling model with stop-skipping

We introduce a binary variable yi, j to indicate whether train

i stops at station j or not:

yi, j =

{

1 if train i stops at station j,

0 if train i skips station j.
(27)

Hence, instead of (1) we get

di, j = ai, j + yi, jτi, j. (28)

Since train i may skip station j or station j+ 1, the running

distance of the speed holding phase is then rewritten as

shold = s j− yi, j

v2
i, j

2aacc
i, j

− yi, j+1

v2
i, j

2adec
i, j

, (29)

which means that if train i skips station j, then train i will

run with the holding speed vi, j in the running distance of the

acceleration phase. Similarly, if train i skips station j+1, train

i will run with the holding speed vi, j in the distance of the

deceleration phase. Note that we have

(1− yi, j+1)(vi, j+1− vi, j) = 0, (30)

since when train i skips station j + 1, i.e., yi, j+1 = 0, the

operation of the train between station j and station j+2 only

contains three phases.

Remark. For the sake of simplicity of the expressions, now

we assume that a train can skip all the stations. However,

in practice, if the passenger alighting percentage and the

passenger arrival rate are high, the train will not skip that

station. This is conceptually equivalent to yi, j = 1 if ρ j is high.

The running time of train i for segment j can be written as

ri, j =
s j

vi, j
+ yi, j

vi, j

2aacc
i, j

− yi, j+1

vi, j

2adec
i, j

. (31)
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The remaining capacity of train i at station j immediately after

the passengers alight is reformulated as

n
remaining
i, j =Ci,max−ni, j−1(1− yi, jρ j)

instead of (7). Instead of (8), the number of passengers

boarding train i at station j can be calculated using

n
boarding
i, j = min

(

n
remaining
i, j ,yi, jw

waiting
i, j

)

, (32)

where yi, jw
waiting
i, j is the number of passengers who want to get

on train i at station j. Furthermore, the number of passengers

at station j immediately after the departure of train i can be

computed by (9). Instead of (10), the number of passengers

on train i when it departs from station j is reformulated as

ni, j = ni, j−1(1− yi, jρ j)+n
boarding
i, j . (33)

Compared with the standard model proposed in Section II, a

binary variable is introduced for each train at each station

to indicate whether a train stops or skips at a station for

train scheduling with stop-skipping. The calculation of number

of passengers, running times, etc. is related with the binary

variable.

B. The real-time train scheduling problem with stop-skipping

For the real-time train scheduling problem with stop-

skipping, the total energy consumption can be calculated as

Etotal =
I

∑
i=1

J

∑
j=1

(yi, jE
acc
i, j +Ehold

i, j + yi, j+1Edec
i, j ). (34)

In addition, the passenger in-vehicle time for train i running

from station j to j+1 is reformulated as

tin-vehicle,i, j = ni, jri, j + yi, j+1ni, j(1−ρ j+1)τi, j+1 (35)

instead of (17). The total travel time for the stop-skipping

problem can then be calculated by (18). The weighted sum

strategy to solve the multi-objective optimization shown in

(19) can also be used for the train scheduling problem with

stop-skipping. The constraints of the train scheduling problem

with stop-skipping are shown in (2), (4)-(6), (9), (11), (28),

and (30)-(33).

C. Solution approaches for the scheduling problem with stop-

skipping

In the train scheduling model with stop-skipping, binary

variables are introduced to indicate whether a train stops at a

station or not. The MINLP approach and the MILP approach

in Section IV-B can be directly applied to solve the train

scheduling problem with stop-skipping since they can easily

deal with binary variables. For the MILP approach, the nonlin-

ear constraint (30) need to be rewritten as PWA constraints,

where the nonlinear terms yi, j+1vi, j+1 and yi, j+1vi, j can be

transformed into PWA constraints based on the transformation

given in Appendix A. The corresponding solvers and solution

methods for the resulting MINLP and MILP problem can be

used to solve the problem with stop-skipping.

0 500 1000 1500 2000 2500
1

2

3

4

5

6

7

Time (s)

S
ta

ti
o
n
 n

u
m

b
e
r

 

 

Train 0

Train 1

Train 2

Train 3

Train 4

Train 5

Train 6

Fig. 6. The train schedule of scenario 5 with 6 trains and 7 stations for train
scheduling with stop-skipping obtained by the bi-level optimization method
with a genetic algorithm for the high-level optimization

D. Case study with stop-skipping

Now we consider the real-time train scheduling problem

with stop-skipping, where a train may skip several small

stations to reduce the passenger travel time and energy con-

sumption. According to the information given in Table I,

station 2 and station 5 are small stations since the passenger

arrival rate and the passenger alighting proportion are smaller

compared with other stations. In this case study, we allow

trains to skip station 2 or/and station 5. We apply the MINLP

approach and the MILP approach to solve the train scheduling

problem with stop-skipping. The resulting MINLP problem is

solved using a branch-and-bound algorithm, the brute force bi-

level method, and the bi-level method with a genetic algorithm

for the high-level binary optimization. The corresponding

solvers and settings of these methods are chosen the same

as those mentioned in Section V.

The schedule of trains with stop-skipping for scenario 5 with

6 trains and 7 stations is shown in Figure 6 and the correspond-

ing running times, dwell times, and departure times are given

in Table VII, which is obtained by the bi-level method with a

genetic algorithm for the high-level optimization. In addition,

the schedule of train 0 shown as the red line in Figure 6 is

the same as that in Figure 3. It can be observed that train 3

and train 5 skip station 2 and train 2 and train 5 skip station

5 since trains are allowed to skip the small stations 2 and

5. Furthermore, the headways between trains at stations are

influenced by the skipping of trains at station 2 and station 5

in order to satisfy the headway constraints at all stations.

The performance index and the computation time of the

MINLP approach and the MILP approach for the 9 scenarios

with stop-skipping are shown in Figure 7 and Figure 8. The

reference schedule which has the lowest computation time and

the worst performance is the same as that in Section V. Due to

the errors introduced by the piecewise affine approximations

of nonlinear terms in the objective function, the performance

index of the MILP approach is much higher than other solution

methods. The performance of the direct MINLP approach, the

brute force bi-level optimization, and the bi-level optimization

with a genetic algorithm for the real-time train scheduling

problem with stop-skipping is similar to each other. However,
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TABLE VII
DEPARTURE TIMES, ARRIVAL TIMES, AND DWELL TIMES OF THE TRAIN SCHEDULE WITH STOP-SKIPPING FOR 6 TRAINS AND 7 STATIONS OBTAINED BY

THE BI-LEVEL APPROACH

Station 1 2 3 4 5 6 7

Running time 87.7 85.7 121.7 129.7 132.7 88.7 -
Train 0 Dwell time 120 120 120 120 120 120 -

Departure time 120 327.7 533.4 775.0 1024.7 1277.4 -

Running time 105.3 102.8 146.0 155.7 159.2 106.5 -
Train 1 Dwell time 150.0 55.3 95.7 106.0 81.5 49.6 -

Departure time 360.0 520.6 719.0 971.0 1208.2 1417.0 -

Running time 105.3 102.8 146.0 145.1 148.7 101.3 -
Train 2 Dwell time 140.7 10.3 108.2 150.0 0 49.6 -

Departure time 590.7 706.3 917.2 1213.2 1358.4 1556.6 -

Running time 95.6 87.6 146.0 155.7 159.2 106.5 -
Train 3 Dwell time 143.4 0 150.0 61.7 9.7 49.6 -

Departure time 824.1 919.7 1157.2 1364.9 1530.3 1739.1 -

Running time 105.3 102.8 146.0 151.9 155.5 106.5 -
Train 4 Dwell time 61.7 63.4 61.7 53.3 13.4 52.6 -

Departure time 975.8 1144.5 1308.9 1508.2 1673.6 1881.7 -

Running time 95.6 87.6 146.0 145.1 148.7 101.3 -
Train 5 Dwell time 150.0 0 76.9 56.1 0 52.9 -

Departure time 1215.8 1311.3 1475.8 1677.9 1823.0 2024.5 -

Running time 105.3 102.8 146.0 155.7 159.2 106.5 -
Train 6 Dwell time 20.8 31.2 56.1 44.9 12.1 56.8 -

Departure time 1326.6 1463.0 1621.9 1812.8 1980.5 2196.5 -
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Fig. 7. Performance comparison of the solution approaches for the real-time
train scheduling problem with stop-skipping. In order to visualize the scenarios
of which the computation cannot finish within 5 hours, the performance
indices fopt calculated using (19) of these scenarios are set larger than 3.5.

the brute force bi-level approach can only report the results for

scenario 1 and 2, and the MINLP solver can only report the

results for scenarios 1 to 3. Since for the other scenarios, the

computation of the brute force bi-level approach and the direct

MINLP approach cannot finish within 5 hours. In addition, the

bi-level optimization approach with a genetic algorithm for the

high-level optimization cannot finish the calculation within

5 hours for scenarios 8 and 9. Therefore, the performance

indices of the MINLP approach and the MILP approach are

set higher than 3.5 as shown in Figure 7. It is observed

that the MILP approach needs less computation effort but at

the cost of much less optimal performance indices. The bi-

level optimization methods with a genetic algorithm requires

a longer computation time, but it has a better performance.

The comparison of the performance index for train schedul-

ing without stop-skipping and train scheduling with stop-

skipping, obtained by the bi-level optimization approach with

a genetic algorithm for the high-level integer optimization, is
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Fig. 8. The computation time of the solution approaches for the real-time train
scheduling problem with stop-skipping. In order to visualize the scenarios of
which the computation cannot finish within 5 hours, the computation time of
these scenarios are set larger than 4×104 s.

given in Table VIII. Skipping some small stations can reduce

the travel time of most passengers due to the zero dwell

time at small stations and lower running times. Hence, the

performance of train scheduling with stop-skipping is better

than that of train scheduling without stop-skipping. In addition,

the energy consumption is also reduced since some trains do

not need to decelerate and accelerate again at those small

stations.

E. Discussion

The real-time train scheduling model with stop-skipping has

been formulated by introducing binary variables to indicate

whether a trains stops at a station or not. The MINLP approach

and the MILP approach are applied to solve this scheduling

problem since they can handle integer variables. The case

study shows that the control performance of the MILP ap-
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TABLE VIII
COMPARISON OF THE TOTAL PERFORMANCE INDEX FOR TRAIN SCHEDULING WITH AND WITHOUT STOP-SKIPPING USING THE BI-LEVEL OPTIMIZATION

WITH A GENETIC ALGORITHM FOR THE HIGH-LEVEL INTEGER OPTIMIZATION

Scenario index 1 2 3 4 5 6 7 8 9

Without stop-skipping 1.500 1.473 1.713 1.360 1.246 1.532 1.407 – –

With stop-skipping 1.086 1.402 1.689 1.175 1.159 1.413 1.404 – –

proach is worse than that of the MINLP approach, which

includes 3 submethods, i.e., a MINLP approach, a brute force

bi-level optimization, and a bi-level optimization approach

with a genetic algorithm. Among these 3 submethods, the bi-

level approach with a genetic algorithm offers the best trade-

off between performance and computational efficiency. The

computation of this approach is still tractable for small-sized

problem (up to, i.e., 20 stations and 10 trains) using parallel

processing. However, this approach is too slow for large-scale

real-time applications. So in the future, new approaches need

to be investigated to solve the train scheduling problem with

stop-skipping efficiently.
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