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A Distributed Algorithm to Determine Lower and Upper Bounds in

Branch and Bound for Hybrid Model Predictive Control

Amir Firooznia1, Romain Bourdais2, and Bart De Schutter1

Abstract— In this work, a class of model predictive control
problems with mixed real-valued and binary control signals
is considered. The optimization problem to be solved is a
constrained Mixed Integer Quadratic Programming (MIQP)
problem. The main objective is to derive a distributed algorithm
for limiting the search space in branch and bound approaches
by tightening the lower and upper bounds of objective function.
To this aim, a distributed algorithm is proposed for the convex
relaxation of the MIQP problem via dual decomposition. The
effectiveness of the approach is illustrated with a case study.

I. INTRODUCTION

For simple linear setups, the Model Predictive Control

(MPC) problem can be formulated in the form of a Quadratic

Programming (QP) problem . However, in case of hybrid

systems [1], binary variables are introduced, which implies that

the convex QP problem has to be replaced by a non-convex

Mixed Integer Quadratic Programming (MIQP) optimization

problem. In general, MIQP problems are NP-hard [2].

A commonly used approach for solving MIQP problems

is branch and bound [3]. In this method, the subproblems

are ordered in a tree structure, where at each level one new

integer variable is fixed and a relaxed subproblem is solved.

Depending on the problem, a large number of subproblems

have to be solved and the worst case complexity is known to

be exponential. The efficiency of the branch and bound method

mainly depends on the possibility to efficiently compute tight

bounds on the optimal objective function value during the

branching, which reduces the search space. Commonly QP

relaxations, in which integer constraints are relaxed to interval

constraints, are applied to generate the subproblems that have

to be solved in the nodes to produce the bounds in the branching

procedure. However, it has been shown that is possible to use

Semi-Definite Programming (SDP) to compute tighter bounds

for integer programming problems [4]. SDP relaxations have

previously been proposed for control of systems with binary

inputs in [5], [6]. In [4], [7], different relaxations applicable to a

hybrid MPC problem with binary control signals are compared.

The result is that the standard SDP relaxation usually gives

the best bound and is the most computationally demanding,

while the QP relaxation gives the worst bound and is the

least computationally demanding. The equality constrained

relaxation presented in [4] often gives a better bound than the

QP relaxation and is much less computationally demanding

compared to the standard SDP relaxation. Furthermore, any
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small improvements in the bounds can reduce the size of branch

and bound tree significantly.

Due to possible large number of the involved interconnected

subsystems, which can result in huge number of variables and

the inherent complexity, combinatorial explosion makes the

MPC optimization problem for these systems difficult to solve

and even sometimes infeasible for online implementation. The

recent trend of research is to propose distributed algorithms

for optimization in which the subsystems solve reduced op-

timization problems and interact with each other to obtain a

solution close enough to the global value. To this purpose,

communication between subsystems is required, and a coor-

dination mechanism has to be developed. Different techniques

have been developed to solve a global optimization problem

using a decomposed scheme [8]–[16]. However, efficient dis-

tributed schemes in the hybrid systems context are still an

open challenge [17]. In [18], a distributed method based on

price decomposition is presented. As the convexity property is

lost by the binary nature of the decision variables, a duality

gap occurs while applying the dual decomposition [19]; so, a

recursive procedure to find the optimal solution is proposed,

which requires many iterations.

In this paper, a class of interconnected systems governed by

real and binary inputs is considered in which the subsystems

are linked to each other. This can be seen as a particular case of

hybrid systems. Applications of such systems include finance,

manufacturing systems, network and transportation problems,

electricity networks, and so on. Suppose that the objective

criterion is a quadratic function, with equality constraints rep-

resenting the system dynamics, hyperboxes and binary con-

straints on the inputs. Branch and bound method can be used

to solve the centralized hybrid MPC problem, which can be

cast in MIQP formulation. A large number of subsystems and

the corresponding binary inputs correspond to a huge decision

space, which will lead to an excessive number of branches.

To overcome this difficulty, the idea is to make use of the

tighter bounds provided by the SDP relaxation compared to

the QP relaxation so as to reduce the size of the tree that has

to be explored. However, as shown in [4], the price for tighter

bounds comes along with a higher computational burden. The

main contribution in this paper is to define a mechanism that

compensates for this drawback, by distributing the computation

load of calculating bounds over the subsystems. The distributed

structure can be obtained using dual decomposition to relax the

complicating constraints. Since the SDP relaxation problem is

already convexified, strong duality conditions are ensured. So,

the duality gap is absent and convergence is guaranteed.

The paper is organized as follows. Section II, introduces the

system under study and formulates the centralized hybrid MPC



problem. Moreover, the centralized QP and SDP relaxations of

the original problem are obtained for later comparison. In Sec-

tion III, the SDP relaxation is distributed over the subsystems

via a dual decomposition method and distributed algorithms

are presented to find lower and upper bounds. In Section IV,

the effectiveness of the proposed algorithm is illustrated with a

case study.

II. PROBLEM STATEMENT

A. Interconnected Dynamical Hybrid Model

We consider the following interconnected system:

x1(k) = A11x1(k − 1) +
∑

i∈I

B1iui(k) (1)

xj(k) = Ajjxj(k − 1) +Bjjuj(k) for j ∈ I \ {1} (2)

xi(0) = xi,0 for i ∈ I (3)

u1(k) ∈ ×
1,...,m1

[u1,min, u1,max] (4)

uj ∈ {0, 1}
mj for j ∈ I \ {1} (5)

where I := {1, . . . , Nsys}, Nsys is the number of subsystems,

xi(k) ∈ R
ni for i ∈ I and u1,min, u1,max ∈ R. Here,

H = ×1,...,ℓ[a, b] defines a hyperbox in R
ℓ over the interval

[a, b], i.e., H = [a, b] × · · · × [a, b]. In the given formulation,

the first subsystem with mixed-integer inputs can be considered

as a producer and the rest of subsystems can be treated as

consumers. The interconnection among the subsystems is due

to the nature of producer, which interacts with consumers

(see [20]). The corresponding optimization problem can be

formulated within the framework of mixed-integer problems.

B. Centralized MIQP Problem

Let us define:

X̃i :=






xi(1)
...

xi(Np)




 , Ũi :=






ui(1)
...

ui(Np)




 for i ∈ I, (6)

X̃ :=






X̃1

...

X̃Nsys




 , Ũ :=






Ũ1

...

ŨNsys




 , (7)

with Np the prediction horizon. We consider the following

quadratic cost function designed for reference tracking while

penalizing the energy consumption of the system:

J(X̃, Ũ) :=
∑

k∈K

∑

i∈I

1

2
(xi(k)− xi,ref(k))

TQx,i(xi(k)− xi,ref(k))

+
1

2
ui(k)

TQu,iui(k), (8)

where K := {1, . . . , Np}, Qx,i ∈ S
ni

+ and Qu,i ∈ S
mi

++

for i ∈ I with S
n
+ and S

n
++ the sets of positive semi-

definite and positive definite symmetric matrices of size

n×n, respectively. Then, we formulate the centralized MIQP

problem as follows:

min
X̃MIQP,ŨMIQP

J(X̃MIQP, ŨMIQP)

s.t. (1)− (5)
(9)

with the optimal value J(X̃⋆
MIQP, Ũ

⋆
MIQP). Suppose N :=

∑

i∈I ni and M :=
∑

i∈I mi. Here, the total number of

decision variables is (N +M)Np, of which (M −m1)Np

are binary.

C. QP Relaxation of the Centralized Problem

The QP relaxation of constraint (5) is equivalent to:

uj,QP ∈ ×
1,...,mj

[0, 1] for j ∈ I \ {1} (10)

Define X̃i,QP, X̃QP, Ũi,QP, and ŨQP similar to (6)-(7). So,

problem (9) can be relaxed for the following QP problem:

min
X̃QP,ŨQP

J(X̃QP, ŨQP)

s.t. (1)− (4), (10)
(11)

with the optimal value J(X̃⋆
QP, Ũ

⋆
QP). Here, the total number

of decision variables is (N+M)Np, of which none is binary.

Obviously, the optimal value of the relaxed problem gives a

lower bound for the original MIQP problem, i.e., we have

J(X̃⋆
QP, Ũ

⋆
QP) ≤ J(X̃

⋆
MIQP, Ũ

⋆
MIQP) (12)

D. SDP Relaxation of the Centralized Problem

Now we define the following structure for the inputs:

Ũc := Ũ1 , Ũb :=






Ũ2

...

ŨNsys




⇒ Ũ :=

[
Ũc

Ũb

]

(13)

where Ũc is the vector of real inputs (corresponding to

the producer) while Ũb is the vector of binary inputs

(corresponding to the consumers). Now, consider Ṽ =
[

Ṽ T
c Ṽ T

b

]T
in which Ṽc has the same nature as in Ũc while

the elements in the vector Ṽb can take any real value between

0 and 1. Moreover, consider the following new cost function:

J̄(X̃, Ṽ ,W) :=
1

2
(X̃ − X̃ref)

T Q̃x(X̃ − X̃ref)

+
1

2
Ṽ T
c Q̃u,1Ṽc +

1

2
trace(Q̃u,bW)

(14)

where we have:

Q̃x,i := diag(Qx,i, . . . , Qx,i
︸ ︷︷ ︸

Np times

) for i ∈ I (15)

Q̃u,i := diag(Qu,i, . . . , Qu,i
︸ ︷︷ ︸

Np times

) for i ∈ I (16)

Q̃x := diag(Q̃x,1, . . . , Q̃x,Nsys
) (17)

Q̃u,b := diag(Q̃u,2, . . . , Q̃u,Nsys
) (18)

where the matrix variable W ∈ S
nw

+ with nw = nb satisfies

the following conditions:

diag(W) = Ṽb (19)
[
W Ṽb
Ṽ T
b 1

]

� 0 (20)



where the off-diagonal elements of W are extra added

variables. Assume W has the following structure:































W2(1) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆
. . . ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ W2(Np) ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆
. . . ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ WNsys (1) ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆
. . . ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ WNsys (Np)































(21)

where Wj(k) ∈ S
mj

+ for j ∈ I \ {1} and k ∈ K and ⋆ is

used to denote the remaining off-diagonal (and symmetric)

variables within W . Since Q̃u,b in (14) is block-diagonal,

trace(Q̃u,bW) will only include the corresponding block-

diagonal elements of W and the off-diagonal blocks of W
will not be present in the objective function. Therefore, we

can rewrite the last element in the objective function (14) in

terms of only block-diagonal elements of W as follows:

trace(Q̃u,bW) =
∑

k∈K

∑

j∈I\{1}

trace(Q̃u,jWj(k)) (22)

Thus, the off-diagonal elements (denoted by ⋆) are not

present in the cost (14) and the cost becomes decomposable.

Moreover, based on Lemma 1 in appendix such off-diagonal

elements resulting in a positive semi-definite W exist if and

only if (ii) in the lemma is satisfied and therefore (20) can be

decomposed into smaller LMIs only containing the diagonal

elements.

Hence, we formulate the relaxed SDP problem as follows:

min
X̃,Ṽ ,W

J̄(X̃, Ṽ ,W) (23)

s.t. x1(k) = A11x1(k − 1) +
∑

i∈I

B1ivi(k) (24)

xj(k) = Ajjxj(k − 1) +Bjjvj(k) for j ∈ I \ {1} (25)

xi(0) = xi,0 for i ∈ I (26)

v1(k) ∈ ×
1,...,m1

[u1,min, u1,max] (27)

diag(Wj(k)) = vj(k) (28)
[

Wj(k) vj(k)

(vj(k))
T 1

]

� 0 for j ∈ I \ {1} (29)

with the optimal value J̄(X̃⋆
SDP, Ṽ

⋆
SDP,W

⋆
SDP). Here,

the total number of decision variables is (N + M +
∑

j∈I\{1} (m
2
j −mj)/2)Np, of which none is binary and

which grows linearly with Np.

Exploiting the binary nature of the decision variables

stacked in Ũb, it can be shown that J(X̃⋆
SDP, Ṽ

⋆
SDP) ≤

J̄(X̃⋆
SDP, Ṽ

⋆
SDP,W

⋆
SDP) (for a complete treatment see Sec-

tion 3.3 in [7]). Moreover, since the pair (X̃⋆
QP, Ũ

⋆
QP) is the

solution for (11), J(X̃⋆
QP, Ũ

⋆
QP) ≤ J(X̃⋆

SDP, Ṽ
⋆
SDP) neces-

sarily holds. Note that the number of decision variables of the

SDP problem is larger compared to the QP relaxation tech-

nique (with the difference (
∑

j∈I\{1} (m
2
j −mj)/2)Np).

Moreover, we have:

J(X̃⋆
QP, Ũ

⋆
QP) ≤ J̄(X̃⋆

SDP, Ṽ
⋆
SDP,W

⋆
SDP) ≤ J(X̃⋆

MIQP, Ũ
⋆
MIQP)

(30)

and due to the latter inequality SDP relaxation yields a tighter

lower bound for the MIQP problem. Moreover, as we will

explain in the next section, the complicating constraint (24),

can be relaxed via Lagrangian relaxation to decompose the

computation load into each subsystem.

III. DISTRIBUTED ALGORITHM TO FIND BOUNDS USING

DUAL DECOMPOSITION

A. Lagrangian Dual Problem and Distributed Structure

Our goal is to distribute the primal SDP relaxed optimiza-

tion problem (23)-(29) into local subproblems. Note that the

objective function can be decomposed into a sum of local

functions, but there exists global complicating constraint

(24). We will apply the Lagrangian relaxation technique to

separate the complicating constraint. Let us define the dual

variable Λ = [λT (1), . . . , λT (Np)]
T , which is also called

the Lagrangian multiplier vector associated with (24) and

consider the Lagrangian function associated to problem (23)-

(29), which can be partitioned into multiple sub-functions as

follows:

L(X̃, Ṽ ,W; Λ) := J̄(X̃, Ṽ ,W)

+
∑

k∈K

λT (k)

(

x1(k)−A11x1(k − 1)−B11v1(k)

−
∑

j∈I\{1}

B1jvj(k)

)

=
1

2
(X̃1 − X̃1,ref)

T Q̃x,1(X̃1 − X̃1,ref) +
1

2
Ṽ T
1 Q̃u,1Ṽ1

+
∑

k∈K

λT (k) (x1(k)−A11x1(k − 1)−B11v1(k))

︸ ︷︷ ︸

=:LSDP,1

+
∑

j∈I\{1}

(

1

2
(X̃j − X̃j,ref)

T Q̃x,j(X̃j − X̃j,ref)

+
∑

k∈K

1

2
trace

(

Q̃u,jWj(k)
)

− λT (k)B1jvj(k)

)

︸ ︷︷ ︸

=:LSDP,j

=LSDP,1(X̃1, Ṽ1; Λ) +
∑

j∈I\{1}

LSDP,j(X̃j , Ṽj ,Wj ; Λ)

(31)

in which the distributed local j-th Lagrangian function is

denoted by LSDP,j(X̃j , Ṽj ,Wj ; Λ). The structure exploited

is a classic one for distributed optimization [21]; it is com-

posed of Nsys parallel MPC optimization corresponding to

each subsystem and a coordinator for ensuring the consensus.

The structure is illustrated in Figure 1. In this way, we obtain

a decomposed problem where each subsystem (producer or

consumer) has to solve its own optimization for some Λ
and then negotiate the value of Lagrangian multiplier with

other agents through the coordinator to update Λ. In other

words, for a given Lagrangian multiplier Λ, subsystems have

to solve their own optimization problem (with respect to the

corresponding local Lagrangian functions) simultaneously.



P1 C2 Cj CNsys

Λ Λ Λ Λ
X̃1

Ṽ1

X̃2 X̃j X̃Nsys

Ṽ2 Ṽj ṼNsys

Coordinator

Fig. 1. Distributed structure for Nsys subsystems where P1 corresponds
to the producer as the first subsystem and Cj denotes the consumers.

For the producer the following minimization subproblem has

to be solved with respect to the primal variables X̃1, Ṽ1:

Φ1(Λ) := min
X̃1,Ṽ1

LSDP,1(X̃1, Ṽ1; Λ)

s.t. x1(0) = x1,0

v1(k) ∈ ×
1,...,m1

[u1,min, u1,max]

(32)

and each consumer j ∈ I \ {1} needs to solve its own

minimization problem with respect to the primal variables

X̃j , Ṽj ,Wj :

Φj(Λ) := min
X̃j ,Ṽj ,Wj

LSDP,j(X̃j , Ṽj ,Wj ; Λ)

s.t. xj(k) = Ajjxj(k − 1) +Bjjvj(k),

xj(0) = xj,0,

diag(Wj(k)) = vj(k)
[
Wj(k) vj(k)

(vj(k))
T

1

]

� 0

(33)

The following Lagrangian dual problem has to be solved to

obtain the optimal dual variable Λ⋆:

max
Λ

Φ(Λ) (34)

where the overall Lagrangian dual function is denoted by

Φ(Λ) =
∑

i∈I

Φi(Λ) (35)

From the standard duality theory, and due to the fact that

strong duality holds for the SDP convex problem (23)-

(29), solving the corresponding optimization is equivalent

to solving the unconstrained maximization in (34). One

common approach to solve (34) is to use a subgradient

method [21]. The resulting distributed algorithm is described

in Algorithm 1. In this case (with relaxed variables), the

iteration algorithm will converge to the maximum of the dual

function. Therefore, the convergence to the global solution of

the SDP problem (23)-(29) is ensured due to the convexity

of the problem. Moreover, in Algorithm 1, the distributed

part is realized in the sense that subsystems will solve their

minimization problems in parallel at each iteration. The rest

of the procedure is ensured by the coordinator that has a

central role but that does not perform any optimization.

B. Assigning the Lower Bound

Let us denote the primal and dual variable tu-

ple obtained by Algorithm 1 after iteration p with

Initialization: p← 1, Λp ← 0;

while Convergence criterion is NOT satisfied do

(X̃⋆
1,p, Ṽ

⋆
1,p)← Solve Φ1(Λp);

for j ∈ I \ {1} do

(X̃⋆
j,p, Ṽ

⋆
j,p,W

⋆
j,p)← Solve Φj(Λp);

end

Send X̃⋆
1,p, Ṽ

⋆
1,p, . . . , Ṽ

⋆
Nsys,p

to the coordinator

agent;

Evaluate convergence criterion;

if Convergence criteria is satisfied then

Λ⋆ ← Λp;

(X̃⋆
1 , Ṽ

⋆
1 )← (X̃⋆

1,p, Ṽ
⋆
1,p);

(X̃⋆
j , Ṽ

⋆
j ,W

⋆
j )← (X̃⋆

j,p, Ṽ
⋆
j,p,W

⋆
j,p) for

j ∈ I \ {1};
Φ(Λ⋆)←

∑

i∈I Φi(Λ
⋆);

exit while loop;

end

Λp+1 ← Update Λp using subgradient method;

p← p+ 1;
end

return Λ⋆, Φ(Λ⋆), X̃⋆, Ṽ ⋆, W⋆;

Algorithm 1: Distributed solution for the Lagrangian

dual problem.

(X̃DSDP,p, ṼDSDP,p,WDSDP,p; ΛDSDP,p) and similarly de-

note the optimal primal and dual variable tuple by

(X̃⋆
DSDP,p, Ṽ

⋆
DSDP,p,W

⋆
DSDP,p; Λ

⋆
DSDP,p). Due to the conver-

gence property discussed above, can write:

J̄(X̃DSDP,p, ṼDSDP,p,WDSDP,p) ≥ J̄(X̃⋆
SDP, Ṽ

⋆
SDP,W

⋆
SDP)

J̄(X̃⋆
DSDP, Ṽ

⋆
DSDP,W

⋆
DSDP) = J̄(X̃⋆

SDP, Ṽ
⋆
SDP,W

⋆
SDP)

(36)

Moreover, we have:

Φ(ΛDSDP,p) ≤ J̄(X̃
⋆
SDP, Ṽ

⋆
SDP,W

⋆
SDP)

Φ(Λ⋆
DSDP) = J̄(X̃⋆

SDP, Ṽ
⋆
SDP,W

⋆
SDP)

(37)

Thus, using (30) and (37) we obtain

J(X̃⋆
QP, Ũ

⋆
QP) ≤ Φ(Λ⋆

DSDP) ≤ J(X̃
⋆
MIQP, Ũ

⋆
MIQP) (38)

In other words, Φ(Λ⋆
DSDP) yields a tighter lower bound -

compared to the one obtained using QP relaxation - for

the centralized problem, and it can be computed using a

distributed structure.

C. Assigning an Upper Bound

To assign an upper bound to the centralized MIQP prob-

lem (9) at each node within a branch and bound method,

one simple method is to assign random binary inputs for

consumers and to solve the resulting QP problem for the

producer (see (42) in appendix). Any answer found this way

will provide an upper bound. This procedure can be repeated

several times and we can use the lowest upper bound found.

However, when the number of subsystems (and as a result

the number of binary decision variables) increases, random

selection of variables within the search space is less likely

to provide a good upper bound, especially during the first

branching stage where no preliminary warm start exists.



However, a potentially more efficient approach is to use the

intermediate obtained results in Algorithm 1. To this aim,

at each iteration p, while the convergence criterion is not

yet satisfied, the SDP relaxed variables Vj,p for j ∈ I \ {1}
can be rounded to the corresponding binary variable 0 or

1, to form a vector denoted by V j,p, which can be used in

the producer problem as the input from the consumers side.

Then, the resulting QP problem can be solved to give an

upper bound. We compare the obtained bound with the one

obtained in the previous iteration p−1 and keep the minimum

as the upper bound, which makes sure the upper bound

converge to some steady state value. This algorithm can be

implemented within Algorithm 1 with some modifications to

form a more complete Algorithm 2. The output of Algorithm

2 is the lower bound Φ(Λ⋆
DSDP) and upper bound Ψ⋆

DSDP

found via distributed structure.

Initialization: p← 1, Λp ← 0, Ψ⋆ ←∞;

while Convergence criterion is NOT satisfied do

(X̃⋆
1,p, Ṽ

⋆
1,p)← Solve Φ1(Λp);

for j ∈ I \ {1} do

(X̃⋆
j,p, Ṽ

⋆
j,p,W

⋆
j,p)← Solve Φj(Λp);

V j,p ← Round(Ṽ ⋆
j,p)

end

(X̃⋆, Ũ⋆
c )← Solve (42) with ĴP(X̃, Ũc,V j,p);

ψp ← ĴP(X̃
⋆, Ũ⋆

c ,V j,p);
Ψ⋆ ← min(ψp,Ψ

⋆);

Send X̃⋆
1,p, Ṽ

⋆
1,p, . . . , Ṽ

⋆
Nsys,p

to the coordinator

agent;

Evaluate convergence criterion;

if Convergence criterion is satisfied then

Λ⋆ ← Λp;

(X̃⋆
1 , Ṽ

⋆
1 )← (X̃⋆

1,p, Ṽ
⋆
1,p);

(X̃⋆
j , Ṽ

⋆
j ,W

⋆
j )← (X̃⋆

j,p, Ṽ
⋆
j,p,W

⋆
j,p) for

j ∈ I \ {1};
Φ(Λ⋆)←

∑

i∈I Φi(Λ
⋆);

exit while loop;

end

Λp+1 ← Update Λp using subgradient method;

p← p+ 1;
end

return Λ⋆, Φ(Λ⋆), Ψ⋆, X̃⋆, Ṽ ⋆, W⋆;

Algorithm 2: Modified distributed solution for the La-

grangian dual problem.

IV. SIMULATION RESULTS

To illustrate our approach, let us consider a case study

related to the producer and consumers case. Table I lists

the parameters of this case study. All system matrices are

built by the MATLAB random system generator drss and

the weighing matrices are considered as full positive (semi)-

definite.

In the first simulation, the optimal cost functions for the

centralized MIQP problem, the QP relaxation, and the SDP

relaxation problems are compared as tabulated in Table II.

As can be seen the results conform to inequality (30).

Nsys 3
n1 = n2 = n3 2
m1 1
m2 = m3 3
[
u1,min, u1,max

]
[−2, 2]

Np 3

TABLE I

PARAMETERS FOR SIMULATION.

Method Optimal cost

original MIQP 9.0788
QP relaxation 7.1960
SDP relaxation 7.9701

TABLE II

SIMULATION RESULTS FOR SECTION II.

Next, Algorithm 1 is used to find a solution for the

Lagrangian dual problem of Section III and the results are

depicted in Figure 2. As can be seen, relations (36) and (37)

both hold and the dual Lagrangian function converges to the

lower bound obtained by centralized SDP.

In the last simulation, Algorithm 2 is used to produce the

lower and upper bounds for the original centralized MIQP

problem and the results are illustrated in Figure 3. Moreover,

in this special case, the upper bound has converged to the

centralized MIQP solution, which does not necessarily hold

in general.

V. CONCLUSIONS

A distributed procedure has been proposed to determine a

lower bound and an upper bound of the MIQP optimization

problem corresponding to a class of interconnected hybrid

systems in order to limit the search space in branch and

bound method. The lower bound is obtained using a SDP

relaxation of the original problem, which is solved using a

dual decomposition approach. As the SDP relaxation defines

a strong convex problem, the convergence of the gradient

method is ensured. The upper bound is obtained by using the

rounded values of the relaxed problem. Simulation results for

a case study show how the algorithms work.

In this work, consumers can only interact with the pro-

ducer. A more general setting involving consumers inter-

p

2 4 6 8 10 12 14 16
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15

20

25

30

Centralized SDP cost

Distributed SDP dual Lagrangian

Distributed SDP cost

Fig. 2. Evolution of the distributed SDP optimization problem cost and
the corresponding dual Lagrangian value. Note that convergence to the
centralized solution occurs.
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Fig. 3. Evolution of the lower and upper bounds found by Algorithm 2
and comparison with the centralized solution.

connected to each other in a general network topology will

be considered in future work. Another direction will be

to investigate the upper bound evolution more closely to

improve the upper bound in the provided algorithm and

to determine the tightness of the provided bounds more

precisely. We will also assess the efficiency of the approach.

In addition, we will develop a branch and bound method

based on the bounds obtained in this work.

APPENDIX

Lemma 1 ( [7]): For given vectors pi ∈ R
dim(pi) and

matrices Pii ∈ S
dim(pi)
+ for i, j = 1, . . . , q and i 6= j, the

following statements are equivalent:

(i)∃Pij ∈ R
dim(pi)×dim(pj) for i, j = 1, . . . , q, i 6= j :










P11 . . . P1q p1
...

. . .
...

...

PT
1q . . . Pqq pq
pT1 . . . pTq 1











� 0 (39)

(ii)

[

P11 p1
pT1 1

]

� 0, . . . ,

[

Pqq pq
pTq 1

]

� 0 (40)

Definition 1: Using (13), we can rewrite the original cost

function in (8) as J(X̃, Ũ) = Ĵ(X̃, Ũc, Ũb). Then, for a

given consumer input Ũb = [ŨT
b,2, . . . , Ũ

T
b,Nsys

]T , define the

producer cost function as follows:

Ĵ(X̃, Ũc,Ũb) =
1

2
(X̃1 − X̃1,ref)

T
Q̃x,1(X̃1 − X̃1,ref)+

+
1

2
Ũ

T
c Q̃u,1Ũc

+
∑

j∈I\{1}

1

2
(X̃j − X̃j,ref)

T
Q̃x,j(X̃j − X̃j,ref)

+
1

2
Ũ

T
b,jQ̃u,jŨb,j

(41)

Then for a given Ũb the producer QP problem can be

formulated as follows:

min
X̃,Ũc

ĴP(X̃, Ũc, Ũb)

s.t. (1)− (4)
(42)

with ĴP used to denote the cost of the producer problem.
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