
Delft University of Technology
Delft Center for Systems and Control

Technical report 15-025

Properties of applying a resource
allocation coordination algorithm to
optimization problems with discrete

decision variables∗

R. Luo, R. Bourdais, T.J.J. van den Boom, and B. De Schutter

September 2015

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/15_025.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/15_025.html


Properties of applying a resource allocation coordination

algorithm to optimization problems with discrete decision

variables

Renshi Luo, Romain Bourdais, Ton J.J. van den Boom, Bart De Schutter

Abstract

This addendum contains the proof of the optimality conditions and the proof of the oscillation

detecting conditions for discrete decision variables when the resource allocation coordination algorithm

is directly applied to optimization problems with discrete decision variables. Those conditions are used

in the paper “Multi-agent model predictive control based on resource allocation coordination for a class

of hybrid systems with limited information sharing” by R. Luo, R. Bourdais, T.J.J. van den Boom and

B. De Schutter, Engineering Applications of Artificial Intelligence, vol. 58, pp. 123–133, 2017.

1 Questions needed to be answered

In this document, we will explain:

• Whether the global optimum is found if none of the decision variables oscillates

• How to detect oscillations of discrete decision variables

2 Answer to question 1

We consider

min
u

N

∑
i=1

fi(ui) (1)

subject to

ui ∈ Di

N

∑
i=1

gi(ui)≤ r

We assume:

• ui is a scalar

• fi(·) is a convex function

• gi(·) is a monotonically strictly increasing function.

• Di is a finite discrete set
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By defining

• if fi(·) is strictly convex, then

xbest
i = arg min

ui∈Di

fi(ui)

• if fi(·) is not strictly convex, then

f best
i = min

ui∈Di

fi(ui)

ubest
i = min

ui∈Di, fi(ui)= f best
i

ui

three cases can occur:

case 1: ∑N
i=1 gi(u

best
i )< r

case 2: ∑N
i=1 gi(u

best
i ) = r

case 3: ∑N
i=1 gi(u

best
i )> r

Decompose the overall problem into N subproblems:

• if fi(·) is strictly convex, then subproblem i is defined by

min
ui

fi(ui)

subject to

ui ∈ Di

gi(ui)≤ θi (2)

• if fi(·) is not strictly convex, then subproblem i is defined by

min
xi

fi(ui)

subject to

ui ∈ Di

gi(ui)≤ θi

ui ≤ ubest
i

with ∑N
i=1 θi = r.

Before applying the resource allocation coordination method to the three cases, we want to stress for any

subproblem that given θi

• if θi ≥ gi(u
best
i ), constraint gi(ui) ≤ θi does not pose any restriction. Therefore, u∗i = ubest

i and1

λi = 0.

1When θi = gi(u
best
i ), the corresponding λi is free. However, in that case we set it equal to 0 by definition.
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• θi < gi(u
best
i )→ u∗i < ubest

i → λi =−
f
′
i (u

∗
i )

g
′
i (u

∗
i )

> 0 with f
′

i (u
∗
i )< 0 since fi(u

∗
i )> fi(u

best
i ) and fi(·) is

convex and with g
′

i(u
∗
i )> 0 since gi(u

∗
i ) is a monotonically strictly increasing function.

where u∗i is the solution of subproblem i with θi given and λi is the Lagrange multiplier corresponding to

the constraint gi(ui)≤ θi in the subproblem.

Note that if the resource allocation coordination method is used, the resource allocation at each iteration

is updated by

θ
(z+1)
i = θ

(z)
i +ξ (z)

(

λ
(z)
i −

1

N

N

∑
j=1

λ
(z)
j

)

(3)

with

ξ (z)
> 0, lim

z→+∞
ξ (z) = 0,

+∞

∑
z=1

ξ (z) =+∞,

+∞

∑
z=1

(ξ (z))2
<+∞

In the following, I will start with N = 2 to prove some properties of the evolution of θ
(z)
i and u

∗,(z)
i when

the resource allocation coordination is used.

2.1 For case 1

In this case, ∑2
i=1 gi(u

best
i )< r. Since ∑2

i=1 θi = r, we consider the following three modes:

• mode 1.1: θ
(z)
1 > g1(u

best
1 ) and θ

(z)
2 < g2(u

best
2 )

• mode 1.2: θ
(z)
1 < g1(u

best
1 ) and θ

(z)
2 > g2(u

best
2 )

• mode 1.3: θ
(z)
1 ≥ g1(u

best
1 ) and θ

(z)
2 ≥ g2(u

best
2 )

The mode transition diagram of case 1 is shown in Figure 1.

Definition: A persistent mode is such a mode that once it has been reached, the system stays in that mode.

Proposition 2.1.1: Let δ2 = min
u2∈D2, u2<ubest

2

−
f
′
2(u2)

g
′
2(u2)

, then λ
(z)
2 ≥ δ2 > 0 holds for all z in mode 1.1.

Proof:

Since −
f
′
2(u2)

g
′
2(u2)

> 0 holds for all u2 < ubest
2 and u2 ∈ D2, it is directly proved that δ2 > 0.

If mode 1.1 is active at any step z, then θ
(z)
2 < g2(u

best
2 ). Therefore, u

∗,(z)
2 < ubest

2 . Also note that u
∗,(z)
2 ∈D2.

Hence, λ
(z)
2 =−

f
′
2(u

∗,(z)
2 )

g
′
2(u

∗,(z)
2 )

≥ δ2 always holds. �

Proposition 2.1.2: Mode 1.1 is not persistent.

Proof:

Let us now assume that the system stays in mode 1.1 from step z0 on and show that this leads to a contra-

diction.
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mode 1.1 mode 1.2

mode 1.3

persistent

not persistent not persistent

Figure 1: Mode transition diagram of case 1 with the final mode marked in red

If the system in mode 1.1 at step z0, then θ
(z0)
1 > g1(u

best
1 ) and θ

(z0)
2 < g2(u

best
2 ). In this mode, u

∗,(z0)
1 =

ubest
1 , λ

(z0)
1 = 0 and u

∗,(z0)
2 < ubest

2 , λ
(z0)
2 > 0. According to (3), in this mode, at step z0 +1

θ
(z0+1)
1 = θ

(z0)
1 −

1

2
·ξ (z0) ·λ

(z0)
2

θ
(z0+1)
2 = θ

(z0)
2 +

1

2
·ξ (z0) ·λ

(z0)
2

Since ∑+∞
z=z0

ξ (z) = +∞ and λ
(z)
2 ≥ δ2 > 0 holds for all z in mode 1.1, it is straightforwardly derived that

at a certain step z0 +K with K ≥ 1, either θ
(z0+K)
1 > g1(x

best
1 ) or θ

(z0+K)
2 < g2(x

best
2 ) does not hold. This

contradicts the condition of mode 1.1. Therefore, mode 1.1 is not persistent and the system will definitely

switch to other modes. �

Proposition 2.1.3: Let δ1 = min
u1∈D1, u1<ubest

1

−
f
′
1(u1)

g
′
1(u1)

, then λ
(z)
1 ≥ δ1 > 0 holds for all z in mode 1.2.

Proof:

The proof of this proposition is similar to the one of Proposition 2.1.1.

Proposition 2.1.4: Mode 1.2 is not persistent.

Proof:

The proof of this proposition is similar to the one of Proposition 2.1.2.

Proposition 2.1.5: Mode 1.3 is persistent.

Proof:

Suppose the system is in mode 1.3 at step z0, then we show that the system stay in mode 1.3 for all z > z0.

If the system is in mode 1.3 at step z0, then θ
(z0)
1 ≥ g1(u

best
1 ) and θ

(z0)
2 ≥ g2(u

best
2 ) at step z0. In this mode,
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u
∗,(z0)
1 = ubest

1 , λ
(z0)
1 = 0 and u

∗,(z0)
2 = ubest

2 , λ
(z0)
2 = 0. According to (3), at step z0 +1

θ
(z0+1)
1 = θ

(z0)
1

θ
(z0+1)
2 = θ

(z0)
2

It is clear that θ
(z)
1 = θ

(z0)
1 and θ

(z)
2 = θ

(z0)
2 holds for all z > z0. Therefore, mode 1.3 is persistent. Besides,

the overall optimal solution [ubest
1 ubest

2 ]T is directly attained in this mode.

Proposition 2.1.6: There exists an M > 0 such that at z ≥ M, mode 1.3 is active i.e., θ
(z)
1 ≥ g1(u

best
1 ) and

θ
(z)
2 ≥ g2(u

best
2 ).

Proof:

Let us assume mode 1.3 will never be reached and show that this leads to a contradiction.

Define λ max
2 = max

x2∈D2, u2<ubest
2

−
f
′
2(u2)

g
′
2(u2)

. Since limz→+∞ ξ (z) = 0, given ε =
2
(

r−∑2
i=1 gi(u

best
i )

)

λ max
2

, there exists an

M > 0 such that ξ (z) < ε hold for all z ≥ M.

If mode 1.3 will never be reached, since mode 1.1 and mode 1.2 have been proved to be not persistent,

there are always mode switches either from mode 1.1 to mode 1.2 or from mode 1.2 to mode 1.1. Assume

there is a switch from mode 1.1 to mode 1.2 at some step z1 with z1 > M (i.e. at step z1 mode 1.1 is active

and at step z1 + 1 mode 1.2 is active). Then according to the conditions of mode 1.1 and mode 1.2, we

have

θ
(z1)
1 > g1(u

best
1 ), θ

(z1)
2 < g2(u

best
2 )

θ
(z1+1)
1 < g1(u

best
1 ), θ

(z1+1)
2 > g2(u

best
2 )

Hence we have

θ
(z1+1)
1 −θ

(z1)
1 < θ

(z1+1)
1 −g1(u

best
1 )< 0

0 < θ
(z1+1)
2 −g2(u

best
2 )< θ

(z1+1)
2 −θ

(z)
2

Since mode 1 is active at step z1, we have θ
(z1+1)
1 −θ

(z1)
1 =− 1

2
·ξ (z1) ·λ

(z1)
2 and θ

(z1+1)
2 −θ

(z1)
2 = 1

2
·ξ (z1) ·

λ
(z1)
2 (see proof of Proposition 2.1.1). As a consequence we have

−
1

2
·ξ (z1) ·λ

(z1)
2 < θ

(z1+1)
1 −g1(u

best
1 )< 0

0 < θ
(z1+1)
2 −g2(u

best
2 )<

1

2
·ξ (z1) ·λ

(z1)
2

So

−
1

2
·ξ (z1) ·λ

(z1)
2 < θ

(z1+1)
1 +θ

(z1+1)
2 −g1(u

best
1 )−g2(u

best
2 )<

1

2
·ξ (z1) ·λ

(z1)
2

Since θ
(z1)
2 < g2(u

best
2 ), u

∗,(z1)
2 < ubest

2 . Then λ
(z1)
2 =−

f
′
2(u

∗,(z1)
2 )

g
′
2(u

∗,(z1)
2 )

< λ max. Therefore, we have

θ
(z1+1)
1 +θ

(z1+1)
2 −g1(u

best
1 )−g2(u

best
2 )<

1

2
·ξ (z1) ·λ max

2
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If the switch happens at z1 > M, we have

θ
(z1+1)
1 +θ

(z1+1)
2 −g1(u

best
1 )−g2(u

best
2 )<

1

2
· ε ·λ max

2

so

θ
(z1+1)
1 +θ

(z1+1)
2 −g1(u

best
1 )−g2(u

best
2 )< r−

2

∑
i=1

gi(u
best
i )

Since θ
(z1+1)
1 +θ

(z1+1)
2 = r, we have

g1(u
best
1 )+g2(u

best
2 )>

2

∑
i=1

gi(u
best
i )

Clearly, it is a contradiction. Therefore, the assumption that mode 1.3 is never reached does not hold. �

Proposition 2.1.7: There exists an M > 0 such that the global optimum [ubest
1 ubest

2 ]T is attained at z = M.

Proof:

According to Proposition 2.1.6, there exists an M > 0 such that at any z ≥ M, θ
(z)
1 ≥ g1(u

best
1 ) and θ

(z)
2 ≥

g2(u
best
2 ). Therefore, we have θ

(M)
1 ≥ g

(M)
1 (ubest

1 ), θ
(M)
2 ≥ g2(u

best
2 ) and u

∗,(M)
1 = ubest

1 , u
∗,(M)
2 = ubest

2 . Since

f1(u
best
1 )≤ f1(u1) holds for all u1 ∈ D1 and f2(u

best
2 )≤ f2(u2) holds for all u2 ∈ D2, it is directly derived

that [ubest
1 ubest

2 ]T is the global optimum. Finally, since u
∗,(z)
1 = ubest

1 , u
∗,(z)
2 = ubest

2 holds for all z ≥ M, the

global optimum is attained at z = M. �

Graph-aided explanation

Given finite discrete set Di, for any ui ∈ Di, if ui ≥ ubest
i , we have the corresponding λi = 0. Actually, by

definition, we have

λi =







−
f
′
i (ui)

g
′
i (ui)

, if ui ∈ Di,ui < ubest
i

0, if ui ∈ Di,ui ≥ ubest
i

Without loss of generality, let

D1 = {u1,n1
, u1,n1−1, ..., u1,1, ubest

1 , u1,n1+2, ..., u1,n1+m1
, u1,n1+m1+1}, n1 ≥ 0, m1 ≥ 0

D2 = {u2,n2
, u2,n2−1, ..., u2,1, ubest

2 , u2,n2+2, ..., u2,n2+m2
, u2,n2+m2+1}, n2 ≥ 0, m2 ≥ 0

with

u1,n1
< u1,n1−1 < u1,1 < xbest

1 < u1,n1+2 < u1,n1+m1
< u1,n1+m1+1

u2,n2
< u2,n2−1 < u2,1 < ubest

2 < u2,n2+2 < u2,n2+m2
< u2,n2+m2+1

Depending on different fi(·), gi(·), Di, values of λi can be different. Without loss of generality, the values

of λ1 and λ2 along with θ1 and θ2 are shown in Figure 2.
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...

...

...

...

θ1

λ1

g1(u
best
1 )g1(u1,2)g1(u1,5)g1(u1,7) θ2

λ2

g2(u
best
2 )g2(u2,2)g2(u2,5)g2(u2,7)

Figure 2: Values of λ1 and λ2 along the axis of θ1 and θ2

...

...

θ2 = r−θ1

λ2

g2(u
best
2 ) g2(u2,2) g2(u2,5) g2(u2,7)

θ1

Figure 3: Values of λ2 along the axis of θ1

In the resource allocation coordination method, at any step z, no matter what is the value of θ
(z)
1 , we have

θ
(z)
2 = r−θ

(z)
1

Therefore, given r, the values of λ2 along with θ2 can be expressed as that shown in Figure 3.

Further, in this case g1(u
best
1 )+g2(u

best
2 )< r, the values of λ1 and λ2 along with θ1 is shown in Figure 4.

Since in the resource allocation coordination method, the update of θ
(z+1)
1 and θ

(z+1)
2 is done by

θ
(z+1)
1 = θ

(z)
1 + ε(z)

λ
(z)
1 −λ

(z)
2

2

θ
(z+1)
2 = θ

(z)
2 + ε(z)

λ
(z)
2 −λ

(z)
1

2

with diminishing step size ε(z), it can be easily derived from Figure 4 that no matter what are the values of

θ
(1)
1 and θ

(1)
2 , as the iteration step z increases, θ

(z)
1 and θ

(z)
2 will reach a point within the deepened segment

with a finite z and stay at that point afterwards. In the deepened segment, we have θ
(z)
1 ≥ g

(z)
1 (ubest

1 ),

θ
(z)
2 ≥ g2(u

best
2 ) and u

∗,(z)
1 = ubest

1 , u
∗,(z)
2 = ubest

2 with [ubest
1 ubest

2 ]T being the global optimum.
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...

...

...

...

θ1

λ1

g1(u
best
1 )g1(u1,2)g1(u1,5)g1(u1,7)θ2 = r−θ1

λ2

g2(u
best
2 )g2(u2,2) g2(u2,5) g2(u2,7)

Figure 4: Values of λ1 and λ2 along the axis of θ1

mode 2.1 mode 2.2

mode 2.3

not persistent not persistent

persistent

Figure 5: Mode transition diagram of case 3 with the final state marked in red

2.2 For case 2

In this case, ∑2
i=1 gi(u

best
i ) = r. Since ∑2

i=1 θi = r, we consider the following three modes:

• mode 2.1: θ
(z)
1 > g1(u

best
1 ) and θ

(z)
2 < g2(u

best
2 )

• mode 2.2: θ
(z)
1 < g1(u

best
1 ) and θ

(z)
2 > g2(u

best
2 )

• mode 2.3: θ
(z)
1 = g1(u

best
1 ) and θ

(z)
2 = g2(u

best
2 )

The mode transition diagram of case 2 is shown in Figure 5.

Proposition 2.2.1: Mode 2.1 is not persistent.

Proof:

The proof of this proposition is similar to the one of Proposition 2.1.2.

Proposition 2.2.2: Mode 2.2 is not persistent.

Proof:

The proof of this proposition is similar to the one of Proposition 2.1.4.
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Proposition 2.2.3: Mode 2.3 is persistent.

Proof:

The proof of this proposition is similar to the one of Proposition 2.1.5. The overall optimal solution

[ubest
1 ubest

2 ]T is attained in this mode.

Lemma 2.2.4: In mode 2.1, |θ
(z)
1 −g1(u

best
1 )| and |θ

(z)
2 −g2(u

best
2 )| are strictly decreasing as functions of

z.

Proof:

If mode 2.1 is active at step z0, we have θ
(z0)
1 > g1(u

best
1 ) and θ

(z0)
2 < g2(u

best
2 ) and

θ
(z0+1)
1 = θ

(z0)
1 −

1

2
·ξ (z0) ·λ

(z0)
2

θ
(z0+1)
2 = θ

(z0)
2 +

1

2
·ξ (z0) ·λ

(z0)
2

If mode 2.1 is still active at step z0+1, we have θ
(z0+1)
1 > g1(u

best
1 ) and θ

(z0+1)
2 < g2(u

best
2 ). Then we have

|θ
(z0+1)
1 −g1(u

best
1 )|− |θ

(z0)
1 −g1(u

best
1 )|

=θ
(z0+1)
1 −g1(u

best
1 )−

(

θ
(z0)
1 −g1(u

best
1 )

)

=θ
(z0+1)
1 −θ

(z0)
1

=−
1

2
·ξ (z0) ·λ

(z0)
2

<−
1

2
·ξ (z0) ·δ2 < 0

and

|θ
(z0+1)
2 −g2(u

best
2 )|− |θ

(z0)
2 −g2(u

best
2 )|

=g2(u
best
2 )−θ

(z0+1)
2 −

(

g2(u
best
2 )−θ

(z0)
2

)

=θ
(z0)
2 −θ

(z0+1)
2

=−
1

2
·ξ (z0) ·λ

(z0)
2

<−
1

2
·ξ (z0) ·δ2 < 0

where δ2 is the same as before. �

Lemma 2.2.5: In mode 2.2, |θ
(z)
1 −g1(u

best
1 )| and |θ

(z)
2 −g2(u

best
2 )| are strictly decreasing as functions of

z.

Proof: the proof of this lemma is similar to the one of Lemma 2.3.4.

Proposition 2.2.6: Given σmax = max{σ1,σ2}, θ
(1)
1 and θ

(1)
2 , a large integer K and a small real number

ε = σmax

2
ξ (K), there exists an M > K such that |θ

(z)
1 −g1(u

best
1 )|< ε and |θ

(z)
2 −g2(u

best
2 )|< ε hold for all

z > M.

Proof:
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If there is a switch from mode 2.1 to mode 2.2 at step z0, we have θ
(z0)
1 > g1(u

best
1 ) and θ

(z0)
2 < g2(u

best
2 )

and θ
(z0+1)
1 < g1(u

best
1 ) and θ

(z0+1)
2 > g2(u

best
2 ), and also

|θ
(z0)
1 −g1(u

best
1 )|

=θ
(z0)
1 −g1(u

best
1 )

<θ
(z0)
1 −θ

(z0+1)
1

<
1

2
·ξ (z0)λ

(z0)
2

<
1

2
·ξ (z0)σmax

and

|θ
(z0+1)
1 −g1(u

best
1 )|

=g1(u
best
1 )−θ

(z0+1)
1

<θ
(z0)
1 −θ

(z0+1)
1

<
1

2
·ξ (z0)λ

(z0)
2

<
1

2
·ξ (z0)σmax

and

|θ
(z0)
2 −g2(u

best
2 )|

=g2(u
best
2 )−θ

(z0)
2

<θ
(z0+1)
2 −θ

(z0)
2

<
1

2
·ξ (z0)λ

(z0)
2

<
1

2
·ξ (z0)σmax

and

|θ
(z0+1)
2 −g2(u

best
2 )|

=θ
(z0+1)
2 −g2(u

best
2 )

<θ
(z0+1)
2 −θ

(z0)
2

<
1

2
·ξ (z0)λ

(z0)
2

<
1

2
·ξ (z0)σmax
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Likewise, if there is a switch from mode 2.2 to mode 2.1 at step z0, we also have

|θ
(z0)
1 −g1(u

best
1 )|<

1

2
·ξ (z0)σmax

|θ
(z0+1)
1 −g1(u

best
1 )|<

1

2
·ξ (z0)σmax

|θ
(z0)
2 −g2(u

best
2 )|<

1

2
·ξ (z0)σmax

|θ
(z0+1)
2 −g2(u

best
2 )|<

1

2
·ξ (z0)σmax

Next, if mode 2.3 is not reached for any z < ∞, then there are repeated mode transitions between mode

2.1 and 2.2 since none of mode 2.1 and 2.2 is persistent. Therefore, no matter what is the value of K,

there exists an M > K such that a mode (no matter it is from mode 2.1 to mode 2.2 or from mode 2.2 to

mode 2.1) switch occurs at step M. Hence, we have

|θ
(M)
1 −g1(u

best
1 )|<

1

2
·ξ (M)σmax

<
1

2
·ξ (K)σmax = ε

|θ
(M+1)
1 −g1(u

best
1 )|<

1

2
·ξ (M)σmax

<
1

2
·ξ (K)σmax = ε

|θ
(M)
2 −g2(u

best
2 )|<

1

2
·ξ (M)σmax

<
1

2
·ξ (K)σmax = ε

|θ
(M+1)
2 −g2(u

best
2 )|<

1

2
·ξ (M)σmax

<
1

2
·ξ (K)σmax = ε

Since we have also proved in Proposition 2.2.4 and 2.2.5 that |θ
(z)
1 − g1(u

best
1 )| and |θ

(z)
2 − g2(u

best
2 )| are

strictly decreasing in mode 2.1 and 2.2, we can conclude that at any step z > M no matter whether the

system in a mode or switch from a mode to another mode, |θ
(z)
1 −g1(u

best
1 )|< ε and |θ

(z)
2 −g2(u

best
2 )|< ε

holds.

Finally, if mode 2.3 is reached at z1 < ∞, no matter what is the value of K, there exists an M > K such

that |θ
(z)
1 − g1(u

best
1 )| < ε and |θ

(z)
2 − g2(u

best
2 )| < ε hold for all z > M. More specifically, if z1 < K,

then for any z > z1, we have |θ
(z)
1 − g1(u

best
1 )| = 0 < ε and |θ

(z)
2 − g2(u

best
2 )| = 0 < ε . Then, by letting

M = K + 1 > z1, for any z > M, we have |θ
(z)
1 − g1(u

best
1 )| = 0 < ε and |θ

(z)
2 − g2(u

best
2 )| = 0 < ε . If

z1 > K, by letting M = z1, for all z > M, we have |θ
(z)
1 −g1(u

best
1 )|= 0 < ε and |θ

(z)
2 −g2(u

best
2 )|= 0 < ε .

�

Proposition 2.2.7: limz→∞ θ
(z)
1 = g1(u

best
1 ) and limz→∞ θ

(z)
2 = g1(u

best
2 ).

Proof:

The proof of this proposition can be directly derived from Proposition 2.2.6 with K = ∞.

Graph-aided explanation

In this case g1(u
best
1 )+ g2(u

best
2 ) = r, the values of λ1 and λ2 along with θ1 is shown in Figure 6. It can

be easily derived from Figure 6 that no matter what are the values of θ
(1)
1 and θ

(1)
2 , as the iteration step

z goes to infinity, θ
(z)
1 and θ

(z)
2 reach the point where θ

(z)
1 = g

(z)
1 (ubest

1 ), θ
(z)
2 = g2(u

best
2 ). The the global

optimum [ubest
1 ubest

2 ]T is attained when z goes to infinity.

11



...

...

...

...

θ1

λ1

g1(u
best
1 )g1(u1,2)g1(u1,5)g1(u1,7)θ2 = r−θ1

λ2

g2(u
best
2 )

g2(u2,2) g2(u2,5) g2(u2,7)

Figure 6: Values of λ1 and λ2 along the axis of θ1

mode 3.1 mode 3.2

mode 3.3

not persistent

mode 3.1 mode 3.2

mode 3.3

or

not persistent

not persistent

not persistent not persistent

not persistent

mode 3.1 mode 3.2

mode 3.3

not persistent not persistent

persistent

or

Figure 7: Mode transition diagram of case 2 with the final state marked in red

2.3 For case 3

In this case, ∑2
i=1 gi(u

best
i )> r. Since ∑2

i=1 θi = r, we consider the following three modes:

• mode 3.1: θ
(z)
1 ≥ g1(u

best
1 ) and θ

(z)
2 < g2(u

best
2 )

• mode 3.2: θ
(z)
1 < g1(u

best
1 ) and θ

(z)
2 ≥ g2(u

best
2 )

• mode 3.3: θ
(z)
1 < g1(u

best
1 ) and θ

(z)
2 < g2(u

best
2 )

The mode transition diagram of case 3 is shown in Figure 7.

Proposition 2.3.1: Mode 3.1 is not persistent.

Proof: the proof of this proposition is similar to the one of Proposition 2.1.2.

Proposition 2.3.2: Mode 3.2 is not persistent.

Proof: the proof of this proposition is similar to the one of Proposition 2.1.4.

Proposition 2.3.3: Given
f
′
1(u1)

g
′
1(u1)

6=
f
′
2(u2)

g
′
2(u2)

holds for all u1 ∈ D1 and u2 ∈ D2 with u1 < ubest
1 , u2 < ubest

2

and g1(u1)+g2(u2)≤ r, then either local solution u∗1 or u∗2 will not stay constant.

12



Proof:

Since mode 3.1 is not persistent, given mode 3.1 is active at some step z1 > 0 with u
∗,(z1)
1 = ubest

1 , there

will be a switch from 3.1 to either mode 3.2 or mode 3.3. Assume the switch happens at step z2 with

z2 > z1, we have u
∗,(z2)
1 < ubest

1 . Therefore, u
∗,(z2)
1 6= u

∗,(z1)
1 .

Since mode 3.2 is not persistent, given mode 3.2 is active at some step z3 > 0 with u
∗,(z3)
2 = ubest

2 , there

will be a switch from 3.2 to either mode 3.1 or mode 3.3. Assume the switch happens at step z4 with

z4 > z3, we have u
∗,(z4)
2 < ubest

2 . Therefore, u
∗,(z4)
2 6= u

∗,(z3)
2 .

If mode 3.3 is not persistent, given mode 3.3 is active at some step z5 with u
∗,(z5)
1 < ubest

1 and u
∗,(z5)
2 < ubest

2 ,

there will be a switch from 3.3 to either mode 3.1 or mode 3.2. If the switch is from mode 2.3 to mode 2.1

and happens at step z6 with z6 > z5, we have u
∗,(z6)
1 = ubest

1 and then u
∗,(z6)
1 6= u

∗,(z5)
1 . If the switch is from

mode 3.3 to mode 3.2 and happens at z7 with z7 > z5, we have u
∗,(z7)
2 = ubest

2 and then u
∗,(z7)
2 6= u

∗,(z5)
2 .

If mode 3.3 is persistent, given mode 3.3 is active at step some step z8, we have u
∗,(z8)
1 < ubest

1 , λ
(z8)
1 > 0

and u
∗,(z8)
2 < ubest

2 , λ
(z8)
2 > 0. According to (3), in this mode, at step z8 +1

θ
(z8+1)
1 = θ

(z8)
1 −

λ
(z8)
2 −λ

(z8)
1

2
·ξ (z8)

θ
(z8+1)
2 = θ

(z8)
2 +

λ
(z8)
2 −λ

(z8)
1

2
·ξ (z8)

Since λ
(z8)
1 =−

f
′
1(u

∗,(z8)
1 )

g
′
1(u

∗,(z8)
1 )

, λ
(z8)
2 =−

f
′
2(u

∗,(z8)
2 )

g
′
2(u

∗,(z8)
2 )

and
f
′
1(u

∗,(z8)
1 )

g
′
1(u

∗,(z8)
1 )

6=
f
′
2(u

∗,(z8)
2 )

g
′
2(u

∗,(z8)
2 )

, we have λ
(z8)
1 6= λ

(z8)
2 . Therefore,

also because ∑+∞
z=z8

ξ (z) =+∞ and λ
(z8+ j)
1 6= λ

(z8+ j)
2 with j ≥ 0, θ

(z8+ j)
1 keeps increasing (or decreasing)

and θ
(z8+ j)
2 keeps decreasing (or increasing) until at step z9 with z9 > z8 either u

∗,(z9)
1 6= u

∗,(z8)
1 or u

∗,(z9)
2 6=

u
∗,(z8)
2 . �

Proposition 2.3.4: Depending on different fi(·), gi(·), Di and θ
(1)
i with i = 1,2, the mode transition

diagram of case 2 can be any of the three kinds shown in Figure 7.

Proof:

The proof will be given in the graph-aided explanation.

Graph-aided explanation

In the case g1(u
best
1 )+ g2(u

best
2 ) > r, depending on different fi(·), gi(·), Di, the graphs of showing the

values of λ1 and λ2 along the axis of θ1 can be different. Without loss of generality, we present three

subcases 3.1, 3.2, and 3.3 in Figure 8, 9 and 10 respectively.

In subcase 3.1 as shown in Figure 8, no matter what are the values of θ
(1)
1 and θ

(1)
2 , as the iteration step

z increases, θ
(z)
1 gets closer to g1(u

best
1 ) and θ

(z)
2 gets closer to r−g1(u

best
1 ). However, if θ

(z)
1 < g1(u

best
1 ),

then u
∗,(z)
1 < ubest

1 and λ
(z)
1 > λ

(z)
2 , and hence according to the update equation of θ1, we have θ

(z+1)
1 > θ

(z)
1 ;

if θ
(z)
1 ≥ g1(u

best
1 ), then u

∗,(z)
1 = ubest

1 and λ
(z)
1 < λ

(z)
2 , and hence θ

(z+1)
1 < θ

(z)
1 . In this subcase, with z goes

to infinity, we have u∗1 oscillating between u1,1 and ubest
1 as indicated a small circle in Figure 8. Besides,

13



...

...

...

...

oscillates

θ1

λ1

g1(u
best
1 )g1(u1,2)g1(u1,5)g1(u1,7)θ2 = r−θ1

λ2

g2(u
best
2 )

g2(u2,5) g2(u2,7)

u∗1

Figure 8: Values of λ1 and λ2 along the axis of θ1 in subcase 3.1

...

...

...

...

oscillates

oscillates

θ1

λ1

g1(u
best
1 )g1(u1,2)g1(u1,5)g1(u1,7)θ2 = r−θ1

λ2

g2(u
best
2 ) g2(u2,2) g2(u2,5) g2(u2,7)

u∗1

u∗2

Figure 9: Values of λ1 and λ2 along the axis of θ1 in subcase 3.2

...

...

...

...

ubest

θ1

λ1

g1(u
best
1 )g1(u1,2)g1(u1,5)g1(u1,7)θ2 = r−θ1

λ2

g2(u
best
2 ) g2(u2,2) g2(u2,5) g2(u2,7)

Figure 10: Values of λ1 and λ2 along the axis of θ1 in subcase 3.3
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it is directly derived from Figure 8 that the oscillation of u∗1 is characterized by

u
∗,(z+1)
1 6= u

∗,(z)
1

sgn
(

∆θ
(z+1)
1

)

6= sgn
(

∆θ
(z)
1

)

with ∆θ
(z+1)
1 = θ

(z+1)
1 −θ

(z)
1 and ∆θ

(z)
1 = θ

(z)
1 −θ

(z−1)
1 .

Note that Figure 8 directly corresponds to the second kind of mode transition diagram in Figure 7. Be-

sides, in Figure 8, if we switch the labels for u1 and u2 by letting u1 be u2 and letting u2 be u1, we have

Figure 8 corresponds to the first kind of mode transition diagram in Figure 7.

In subcase 3.2, as shown in Figure 9, depending on the initial values θ
(1)
1 and θ

(1)
2 and the step size, as the

iteration step z increases, either u∗1 or u∗2 oscillates. Both the oscillations of u∗1 and u∗2 are characterized by

u
∗,(z+1)
i 6= u

∗,(z)
i

sgn
(

∆θ
(z+1)
i

)

6= sgn
(

∆θ
(z)
i

)

Note that Figure 9 corresponds to the third kind of mode transition diagram in Figure 7.

In subcase 3.3, as shown in Figure 10, no matter what are the values of θ
(1)
1 and θ

(1)
2 , as the iteration step z

increases, θ
(z)
1 and θ

(z)
2 will reach a point within the deepened segment with a finite z and stay at that point

afterwards. In the deepened segment, λ
(z)
1 = λ

(z)
2 6= 0 and hence neither of u∗1 and u∗2 oscillate. However,

in this subcase, even though neither u∗1 or u∗2 oscillate, there is no guarantee that the global optimum is

attained. That is to say, when the resource allocation coordination method is applied to problem (1), even

though no oscillation of discrete variables is detected, it is possible the global optimum is not yet attained.

3 Answer to question 2

Proposition 3.1.1: The oscillation of discrete decision variable ui is characterized by u
∗,(z+1)
i 6= u

∗,(z)
i and

sgn
(

∆θ
(z+1)
i

)

6= sgn
(

∆θ
(z)
i

)

.

Proof:

The proof of this proposition has been given in the graph-aid explanation in Section 2.3, especially in the

discussion of subcase 3.1 and subcase 3.2.
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4 General problem

In the previous sections, we have proved some properties of applying the resource allocation coordination

to a simple example with N = 2. To make it general, in this case, we prove the same properties of the

resource allocation coordination method to examples with any N > 2 still hold.

Let us define I
(z)
1 = {i|θi ≥ gi(u

best
i )} and I

(z)
2 = { j|θ j < g j(u

best
j )}. If we define I = {1,2, ...,N}, it is

obvious that I = I
(z)
1 ∪ I

(z)
2 holds for all z.

4.1 For case 1

Proposition 4.1.1: In the case ∑N
i=1 gi(u

best
i )< r, there exists an M ≥ 0 such that at all step z≥M, I

(z)
2 = /0.

Proof:

In this case, with ∑N
i=1 gi(u

best
i )< r, we want to prove that no matter what the values of θ

(1)
i for i ∈ I are,

θ
(z)
i will eventually reach a steady state with θ

(z)
i ≥ gi(u

best
i ) for all i.

In order to prove I2 will eventually be empty, I first assume that I2 will never be empty and then find a

contradiction.

At any step z > 0, we have λ
(z)
1 = 0 for all i ∈ I

(z)
1 and λ

(z)
j > 0 for all j ∈ I

(z)
2 . Now let us define

λ̄ (z) =
1

N

(

∑
j∈I

(z)
2

λ
(z)
j + ∑

i∈I
(z)
1

λ
(z)
i

)

=
1

N
∑

j∈I
(z)
2

λ
(z)
j

If I
(z)
2 6= /0 at step z > 0, we have λ̄ (z) > 0. As defined in Proposition 2.1.1, we define for all i ∈ I

δi = min
ui∈Di, ui<ubest

i

−
f
′

i (ui)

g
′

i(ui)

Further, define

δ min = min
i∈I

δi

Since fi(·) is convex and fi(u
best
i )< fi(ui) holds for ui ∈ Di with ui < ubest

i , we have f ′i (ui)< 0 for ui ∈ Di

with ui < ubest
i . In addition, given gi(·) is monotonically strictly increasing, we have g′i(·)> 0. Therefore,

we have −
f
′
i (ui)

g
′
i (ui)

> 0 holds for ui ∈ Di with xi < ubest
i and it is directly derived that δi > 0 holds for all i ∈ I

and δ min > 0.

Therefore, if I
(z)
2 6= /0 at step z, for every j ∈ I

(z)
2 , we have u

∗,(z)
j < ubest

j and λ
(z)
j =−

f
′
j (u

∗,(z)
j )

g
′
j(u

∗,(z)
j )

≥ δ min. Then

we have

λ̄ (z) ≥
δ min

N
> 0
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Now let us define

σi = max
xi∈Di, ui<ubest

i

−
f
′

i (ui)

g
′

i(ui)
, ∀ i ∈ I

σmax = max
i∈I

σi

Like δi and δ min
i , σi > 0 holds for all i∈ I and σmax > 0. Besides, σmax is finite since I has finite elements.

Therefore, if I
(z)
2 6= /0 at step z, we have for all j ∈ I

(z)
2

λ
(z)
j − λ̄ (z)

< λ
(z)
j ≤ σmax

Now let us define a nonnegative function

J(z) =
N

∑
i=1

(

θ
(z)
i −gi(u

best
i )

)2

then

J(z+1)− J(z)

=
N

∑
i=1

(

θ
(z+1)
i −θ

(z)
i

)(

θ
(z+1)
i +θ

(z)
i −2gi(u

best
i )

)

At any step z, if I
(z)
2 6= /0, we have

J(z+1)− J(z)

= ∑
i∈I

(z)
1

−ξ (z)λ̄ (z)
(

θ
(z+1)
i +θ

(z)
i −2gi(u

best
i )

)

+ ∑
j∈I

(z)
2

ξ (z)
(

λ
(z)
j − λ̄ (z)

)(

θ
(z+1)
j +θ

(z)
j −2g j(u

best
j )

)

=
N

∑
i=1

−ξ (z)λ̄ (z)
(

θ
(z+1)
i +θ

(z)
i −2gi(u

best
i )

)

+ ∑
j∈I

(z)
2

ξ (z)λ
(z)
j

(

θ
(z+1)
j +θ

(z)
j −2g j(u

best
j )

)

Since I
(z)
1 ∪ I

(z)
2 = I = {1,2, ...,N} holds for all z.

Further, since

N

∑
i=1

−ξ (z)λ̄ (z)
(

θ
(z+1)
i +θ

(z)
i −2gi(u

best
i )

)

=−ξ (z)λ̄ (z)
( N

∑
i=1

θ
(z+1)
i +

N

∑
i=1

θ
(z)
i −2

N

∑
i=1

gi(u
best
i )

)

=−2ξ (z)λ̄ (z)
(

r−
N

∑
i=1

gi(u
best
i )

)

≤−2ξ (z) δ min

N

(

r−
N

∑
i=1

gi(u
best
i )

)
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and

∑
j∈I

(z)
2

ξ (z)λ
(z)
j

(

θ
(z+1)
j +θ

(z)
j −2g j(u

best
j )

)

= ∑
j∈I

(z)
2

ξ (z)λ
(z)
j

(

θ
(z)
j +ξ (z)

(

λ
(z)
j − λ̄ (z)

)

+θ
(z)
j −2g j(u

best
j )

)

= ∑
j∈I

(z)
2

(

ξ (z)
)2

λ
(z)
j

(

λ
(z)
j − λ̄ (z)

)

+ ∑
j∈I

(z)
2

2ξ (z)λ
(z)
j

(

θ
(z)
j −g j(u

best
j )

)

< ∑
j∈I

(z)
2

(

ξ (z)
)2

λ
(z)
j

(

λ
(z)
j − λ̄ (z)

)

< ∑
j∈I

(z)
2

(

ξ (z)
)2
(σmax)2

< N ·
(

ξ (z)
)2
(σmax)2

we have

J(z+1)− J(z)<−2ξ (z) δ min

N

(

r−
N

∑
i=1

gi(u
best
i )

)

+N ·
(

ξ (z)
)2
(σmax)2

First, let K be an arbitrary integer. Then, if I
(z)
2 6= /0 at any of step z ∈ {1,2, ...,K}, we have

J(K +1)< J(1)−
2δ min

N

(

r−
N

∑
i=1

gi(u
best
i )

) K

∑
z=1

ξ (z)+N · (σmax)2
K

∑
z=1

(

ξ (z)
)2

Since ∑+∞
z=1 ξ (z) =+∞ and ∑+∞

z=1(ξ
(z))2 <+∞, we can always select K such that

J(1)−
2δ min

N

(

r−
N

∑
i=1

gi(u
best
i )

) K

∑
z=1

ξ (z)+N · (σmax)2
K

∑
z=1

(

ξ (z)
)2

< 0

then we reach

J(K +1)< 0

However, this contradicts the fact that J(·) is a nonnegative function. Therefore, the assumption that

I
(z)
2 6= /0 at any of step z ∈ {1,2, ...,K} does not hold. That is to say, I

(M)
2 = /0 at some step M ≤ K.

Since we have proved that I
(M)
2 = /0 at some step M ≤ K, then we have θ

(M)
i ≥ gi(u

best
i ), u

∗,(M)
i = ubest

i and

λ
∗,(M)
i = 0 for all i ∈ I. Therefore, we have for all i ∈ I

θ
(z)
i = θ

(M)
i , ∀z ≥ M

and θ
(z)
i ≥ gi(u

best
i ) holds for all z ≥ M. It is proved that I

(z)
2 is empty for all z ≥ M. �

Proposition 4.1.2: In the case ∑N
i=1 gi(u

best
i ) < r, there exists an M ≥ 0 such that the overall optimal so-

lution is attained at step z = M.
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Proof:

According to Proposition 4.1.1, there exists an M ≥ 0 such that I
(M)
2 = /0. Then, θ

(M)
i ≥ gi(u

best
i ) holds

for all i ∈ I and we have u
∗,(M)
i = ubest

i for all i ∈ I. Since fi(ui)≥ fi(u
best
i ) holds for all i ∈ I, it is directly

prove that u
∗,(M)
i = ubest

i with i ∈ I is the overall optimal solution.

Note that since θ
(z)
i = θ

(M)
i for all z > M, we have u

∗,(z)
i = u

∗,(M)
i = ubest

i . Therefore, the overall optimal

solution is also attained at step z > M. �

4.2 For case 2

Proposition 4.2.1: ∀ε > 0, given ∑N
i=1 gi(x

best
i ) = r−ε , there exists an M ≥ 0 such that at all steps z ≥ M,

I
(z)
2 = /0.

Proof:

We first assume that I2 will never be empty and then find a contradiction. Next, we show that once I2 is

empty, it stays empty afterwards.

In the proof of Proposition 4.1.1, we have derived that at any step z, if I
(z)
2 6= /0, we have

J(z+1)− J(z)<−2ξ (z) δ min

N

(

r−
N

∑
i=1

gi(u
best
i )

)

+N ·
(

ξ (z)
)2
(σmax)2

Then since ∑N
i=1 gi(u

best
i ) = r− ε , we have

J(z+1)− J(z)<−2ξ (z) δ min

N
· ε +N ·

(

ξ (z)
)2
(σmax)2

First, let K be an arbitrary integer. Then, if I
(z)
2 6= /0 at each of step z ∈ {1,2, ...,K}, we have

J(K +1)< J(1)−
2δ min

N
· ε ·

K

∑
z=1

ξ (z)+N · (σmax)2
K

∑
z=1

(

ξ (z)
)2

Since ∑+∞
z=1 ξ (z) =+∞ and ∑+∞

z=1(ξ
(z))2 <+∞, for any ε > 0, we can always select K such that

J(1)−
2δ min

N
· ε ·

K

∑
z=1

ξ (z)+N · (σmax)2
K

∑
z=1

(

ξ (z)
)2

< 0

then we reach

J(K +1)< 0

However, this contradicts the fact that J(·) is a nonnegative function. Therefore, the assumption that

I
(z)
2 6= /0 at each step z ∈ {1,2, ...,K} does not hold. That is to say, I

(M)
2 = /0 at some step M ≤ K.

Since we have proved that I
(M)
2 = /0 at some step M ≤ K, then we have θ

(M)
i ≥ gi(u

best
i ), u

∗,(M)
i = ubest

i and

λ
∗,(M)
i = 0 for all i ∈ I. Therefore, we have for all i ∈ I

θ
(z)
i = θ

(M)
i , ∀z ≥ M
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and θ
(z)
i ≥ gi(u

best
i ) holds for all z ≥ M. Hence, it has been proved that I

(z)
2 is empty for all z ≥ M. �

Proposition 4.2.2: ∀ε > 0, given ∑N
i=1 gi(u

best
i ) = r−ε , there exists an M ≥ 0 such that at all steps z ≥ M,

0 ≤ θ
(z)
i −gi(u

best
i ) for all i ∈ I and ∑N

i=1

(

θ
(z)
i −gi(u

best
i )

)

= ε .

Proof:

According to proposition 4.2.1, there exists an M ≥ 0 such that at all step z ≥ M, I
(z)
2 = /0. Therefore, at

all step z ≥ M, we have θ
(z)
i ≥ gi(u

best
i ) for all i ∈ I.

Since θ
(z)
i −gi(u

best
i )≥ 0 at all step z ≥ M, we have for all i ∈ I, θ

(z)
i −gi(u

best
i )≤ ∑N

i=1

(

θ
(z)
i −gi(u

best
i )

)

.

Further, since ∑N
i=1 gi(u

best
i ) = r − ε and ∑N

i=1 θ
(z)
i = r, we have ∑N

i=1

(

θ
(z)
i − gi(u

best
i )

)

= ε and θ
(z)
i −

gi(u
best
i )≤ ε . �
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