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Abstract—Traffic congestion together with emissions has be-
come a big problem in urban areas. Traffic-responsive control
systems aim to make the best use of the existing road capacity.
Here, we propose a model predictive controller for urban traffic
networks, where the goal of the control is to find a balanced
trade-off between reduction of congestion and emissions. The cost
function is defined as a weighted combination of the total time
spent, TTS, (as a criterion for evaluating the congestion level),
the total emissions, TE, and the expected values of the TTS and
TE caused by the vehicles that remain in the network at the
end of the prediction horizon until they leave the network. We
propose a method for estimation of the expected time spent and
emissions by the remaining vehicles, where our method is based
on a K Shortest path algorithm. For the prediction model of
the MPC-based controller, we use a macroscopic integrated flow-
emission model that includes the macroscopic flow S-model and
the microscopic emission model, VT-micro. Since the S-model
includes non-smooth functions, it does not allow us to benefit
from efficient gradient-based methods to solve the optimization
problem of the MPC-based controller. Therefore, in this paper
we also propose smoothing methods for the S-model.

I. INTRODUCTION

Traffic congestion and emissions are considered as a major
problem in modern urban areas, since they result in lost of
time and energy, and in distribution of harmful substances
including nitrogen oxides (NOx), hydrocarbon (HC), carbon
monoxide (CO), carbon dioxide (CO2), and particulate matter
in the environment. Real-time traffic-responsive control sys-
tems include efficient approaches that target the problem of
traffic congestion and emissions by capacity management [1,2].
Among traffic-responsive control approaches, optimization-
based control methods, especially model predictive control
(MPC), have proven their efficiency for management of traffic
in both freeways and in urban traffic areas [3,4,5].

The focus of this paper is on designing an MPC-based
controller for urban traffic networks. MPC uses an internal

prediction model to estimate the future states of the system
and to solve the optimization problem along a finite prediction
horizon. The optimal control signal is implemented for one
time step, and the prediction horizon is shifted for one step.
Then the entire procedure is repeated (see [6] for more details).

In a majority of the available literature on traffic model
predictive control for urban areas, prevention of congestion
is considered as the main objective of the control system.
Aboudolas et al. in [3] propose a rolling horizon approach that
solves an optimization problem using quadratic programming,
with the aim to minimize the risk of over-saturation and spill-
back of the queues. While reduction of emissions has been
considered in some literature [7,8,9,10], the number of these
works is still limited.

Here, we propose an MPC-based real-time traffic-
responsive controller that optimizes a multi-objective cost
function including both emissions and congestion. We use a
macroscopic integrated flow-emission model, called the VT-
S model, that integrates a macroscopic flow model, i.e., the
S-model [11] and a microscopic emission model, i.e., the
VT-micro [12]. The S-model includes non-smooth functions;
consequently, we cannot use efficient gradient-based methods
to solve the optimization problem of the MPC. Therefore,
we propose smoothing methods for the S-model so that we
can finally obtain a smooth flow model. We also present an
approach based on a K Shortest path algorithm that estimates
the expected time spent and emissions by the vehicles that
remain in the network after the prediction time interval until
they all leave the network.

The paper is organized as follows; in Section II we give
an introduction about MPC. Section III presents the flow and
emission models used as the prediction models of the MPC
controller, and formulates the optimization problem defining
the objective function as a weighted combination of the total
time spent (TTS) and total emissions (TE) and their expected
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Fig. 1. Illustration of the main idea used in a model predictive controller
(note that yinit

kctrl
is the measured value of the output signal at kctrl that is

used to estimate the corresponding state, which will be the initial condition
for the computations of the next time step [(kctrl+1)Tctrl, (kctrl+2)Tctrl))

values after the prediction interval. In Section IV we present
methods for making the flow model smooth. Finally, Section V
concludes the paper.

II. MODEL PREDICTIVE CONTROL (MPC)

Model predictive control (MPC) is an optimization-based
control approach that makes use of the measured state received
from the system at every control time step. MPC is mostly used
in real-time control applications. Unlike the classical optimal
control approaches, which solve the optimization problem
along an infinite horizon, MPC benefits from a finite (rolling)
horizon, i.e., the prediction horizon. The controller uses an
internal model, which estimates the future states of the system
along the prediction horizon (consisting of Np control time
steps) based on the latest measurements. Then the controller
solves an optimization problem to minimize a cost function.

Figure 1 illustrates the basic idea of MPC, where y(t)
denotes the trajectory of the measured output signal of the
controlled system, and ŷ(t|kctrl) shows the predicted value
of the output signal at t by the internal model of the MPC
controller supposed that the controller knows the measured
value of the output at the current time step kctrl.

The output of the optimization problem is a sequence of
optimal control signals, from which the first value will be
injected as input to the system for a time interval of one control
time step (see Figure 1). At the next control time step, new
measurements will be received by the controller (i.e., yinitkctrl+1
in Figure 1), the prediction horizon will be rolled forward for
one time step, and the entire optimization procedure will be
repeated in the same way.
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Fig. 2. Representation of a link between two intersections [11]

III. FORMULATION OF AN MPC-BASED CONTROLLER

FOR URBAN TRAFFIC

Our proposed approach for a real-time traffic-responsive
controller involves designing an MPC-based controller. The
aim of the control system is to find a balanced trade-off
between reduction of the total time spent (TTS) by the vehicles
and the total emissions (TE). Therefore, the internal model
of the MPC controller should be able to estimate both the
states of the system and the emissions caused by the current
traffic. Since the optimization problem of the MPC should be
solved online, the internal model should also provide a balance
between accuracy and simplicity.

We use a macroscopic integrated flow-emission model
as the prediction model of the MPC-based controller. The
integrated model includes a macroscopic flow model, called
the S-model, and a microscopic emission model, called the
VT-micro. Since the S-model includes non-smooth functions,
it does not allow us to benefit from efficient gradient-based
methods to solve the optimization problem of the MPC-based
controller. Hence, we propose methods that help to make the
S-model smooth. We also present an approach that estimates
the expected time spent and emissions by the vehicles that
remain in the network after the prediction time interval, where
this approach is based on a K Shortest path algorithm.

A. Internal model of the MPC-based controller

1) Urban flow model: The behavior of traffic in urban
areas is highly nonlinear; therefore, we prefer a nonlinear flow
model. Lin et al. in [11] propose a simplified macroscopic
urban traffic flow model called the S-model, which is able to
consider different cycle times for the intersections within the
urban network and also the time delay required by the vehicles
to travel the distance between the upstream point of the link
and the tail of the awaiting downstream queue. The S-model
can represent both free and congested traffic scenarios.

In the S-model, a road is represented as a link (u, d) that
is extended between the upstream and downstream nodes (i.e.,
intersections) u and d. The set of all links is denoted by L, and
J is the set of all intersections within the network. The state
variables of the S-model are nu,d(kd) and qu,d(kd), which are,
respectively, the number of the vehicles and the queue length
(counting in numbers) in link (u, d) at time step kd. These
state variables are updated at every simulation time step of
link (u, d) using the following relationships:

nu,d(kd + 1) = nu,d(kd)+
(

αenter
u,d (kd)− αleave

u,d (kd)
)

cd
(1)



qu,d(kd) =
∑

o∈Ou,d

qu,d,o(kd) (2)

with
qu,d,o(kd + 1) = qu,d,o(kd)+

(

αarriv
u,d,o(kd)− αleave

u,d,o(kd)
)

cd
(3)

where kd is the time step counter (that is taken from the
downstream node d), cd is the cycle length of the downstream
intersection d (note that we consider the simulation time length
for link (u, d) to be equal to cd), αenter

u,d and αleave
u,d are the

entering and exiting average (within one cycle) flow rates
according to link (u, d), αarriv

u,d,o and αleave
u,d,o are the arriving

and the leaving average flow rates of the sub-stream moving
towards o, and qu,d,o is the queue length of the vehicles in
link (u, d) that intend to move towards the node o. Note that
although nu,d and qu,d are integer values in real situations,
they are real non-negative values in the S-model. Moreover,
we have:

αleave
u,d (kd) =

∑

o∈Ou,d

αleave
u,d,o(kd) (4)

αenter
u,d (kd) =

∑

i∈Iu,d

αleave
i,u,d(kd) (5)

with Ou,d and Iu,d the sets of output and input nodes of link
(u, d), and

αarriv
u,d,o(kd) = βu,d,o(kd) · α

arrive
u,d (kd) (6)

αarrive
u,d (kd) =

cd − γ(kd)

cd
· αenter

u,d (kd − δ(kd))+

γ(kd)

cd
αenter
u,d (kd − δ(kd)− 1)

(7)

in which βu,d,o denotes the relative fraction of the vehicles
within link (u, d) that turn to o, and αarrive

u,d (kd) is the average

flow rate arriving at the end of the queue within link (u, d) at
time step kd, and the delays δ(kd) and γ(kd) are derived by:

δ(kd) =

⌊

τ(kd)

cd

⌋

(8)

γ(kd) = rem {τ(kd), cd} (9)

where ⌊x⌋ and rem{x, y} are the floor (the largest integer not
greater than x) and the remainder (remainder of the division
of x by y) functions, τ(kd) is the average delay time for the
vehicles that have entered the link (u, d) until they arrive at
the tail of the downstream awaiting queue at kd. Additionally,

αleave
u,d,o(kd) =

min

(

βu,d,o(kd) · µu,d · gu,d,o(kd)

cd
,

qu,d,o(kd)

cd
+ αarriv

u,d,o(kd),

βu,d,o(kd)(Cd,o − nd,o(kd))
∑

u∈Id,o

βu,d,o(kd) · cd











(10)

where µu,d is the saturated flow rate of link (u, d), gu,d,o is the
green time length for the traffic stream that leaves link (u, d)
through o, Cd,o is the storage capacity of link (d, o). For extra
details regarding the S-model see [11].

2) Emission model: VT-micro [12] is a microscopic model
that estimates the instantaneous emissions for individual ve-
hicles as a function of their instantaneous speed and accel-
eration. Suppose that vehicle i is moving with speed vi(kd)
and acceleration ai(kd); Then the VT-micro model yields
the estimated emission, Eθ,i, of any emission type θ where
θ ∈ {CO,NOx,HC} produced by the vehicle i at time step
kd as:

Eθ,i(vi(kd), ai(kd)) = exp(ṽ⊤i (kd)Pθãi(kd)) (11)

where Pθ is a pre-calibrated matrix [12], and

ṽi(kd) =
[

1 vi(kd) v2i (kd) v3i (kd)
]⊤

,

ãi(kd) =
[

1 ai(kd) a2i (kd) a3i (kd)
]⊤

As we see the S-model (explained in Section III-A1)
is a macroscopic flow model, while VT-micro includes a
microscopic emission model. Shu et al. [10] integrate the S-
model with the VT-micro model that results in a macroscopic
integrated flow-emission model called the VT-S model. First,
Shu et al. [10] define a set of behaviors for the vehicles
that travel within the network, assuming that each behavior
is uniform within sub-intervals of the total time spent by each
vehicle in the network. Therefore, in these sub-intervals fixed
values for acceleration of the vehicles could be considered.
Then different traffic states are considered for the vehicles and
based on these states the VT-S model makes an estimate of
the instantaneous emissions (see [10] for more details).

3) MPC formulation: As we explained before, the opti-
mization problem of MPC is solved online every control time
step over the prediction horizon. For the controller design, we
assume that for all intersections, the control time interval Tctrl

is the same. For all intersections d ∈ J , we assume that there is
an integer Nd such that Tctrl = Nd ·cd, and thus kd = Nd ·kctrl.

Then the MPC optimization problem at control step kctrl
is formulated as follows:

min
g(kctrl)

J (kctrl),

s.t.

integrated VT-micro & S-model,

G(g(kctrl)) = 0,

gmin ≤ g(kctrl) ≤ gmax

(12)

where J (kctrl) is the objective (cost) function, g(kctrl) is a
vector composed of all green phases to be optimized, and
G(g(kctrl)) represents the equality constraints on the input
vector, e.g., the summation of the green time lengths of
different stages should adapt the cycle time of that intersection.

Here, we aim to find a balanced trade-off between reduction
of the congestion (i.e., reduction of the total time spent (TTS)
by the vehicles), and reduction of the total emissions (TE).
Therefore, we have a multi-objective optimization problem,
for which we define the objective function as a linear weighted
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Fig. 3. Recasting the problem of finding the Ku,d most likely used routes
into a point-to-point K shortest path problem

combination of different objectives:

J (kctrl) =w1
TTS(kctrl)

TTSnominal

+
∑

θ∈Θ

w2,θ
TEθ(kctrl)

TEθ,nominal

+

w3
TTSendpoint(kctrl)

TTSendpoint,nominal

+
∑

θ∈Θ

w4,θ
TEθ,endpoint(kctrl)

TEθ,endpoint,nominal

+

w5
var(g(kctrl))

varnominal
(13)

where var(g(kctrl)) takes into account the variations in the
control signal g(kctrl), i.e.,

var(g(kctrl)) =

kctrl+Np
∑

kctrl+1

(g(i)− g(i− 1))
2

Note that this term is added to the objective function to
suppress oscillations of the control signal. Moreover, TTS
and TEθ denote the total time spent and the total estimated
emission of θ ∈ Θ = {CO,NOx,HC} in the network during
the prediction interval [kctrlTctrl, (kctrl +Np − 1)Tctrl), i.e.,

TTS(kctrl) =

kctrl+Np−1
∑

i=kctrl

TTS(i),

TEθ(kctrl) =

kctrl+Np−1
∑

i=kctrl

TEθ(i)

with TTS(i) and TEθ(i) the total time spent and the total
emissions during [iTctrl, (i + 1)Tctrl), and TTSnominal and
TEθ,nominal the nominal performances for TTS and TEθ within

the prediction time interval. The 3rd and the 4th terms in (13)
account for the expected time spent and emissions resulted by
the vehicles that have entered the network within the prediction
interval and that are still in the network at the end of the
prediction time interval, until they leave the network. Next we
explain how these terms are computed.

4) Estimation of the expected time spent and emissions:
Suppose that we have a destination independent model, and
the traffic situation is fixed after the prediction interval, i.e., all
parameters are fixed at their values at (kctrl+Np)Tctrl. Now for
a given link (u, d), if we consider all the possible routes to the
endpoints of the network that are reachable via (u, d), for some

networks such as grid-shaped networks vehicles might move
within cyclic paths. Then the number of the possible routes
will become infinity. To prevent this situation, we determine a
limited number Ku,d of the most likely used routes from the
link (u, d) to the endpoints of the network. The aim is to use
an existing shortest path algorithm, for example the Yen’s K
shortest path routing algorithm [13].

A K shortest path algorithm seeks for the shortest paths
that are extended between a pair of points a and b. Therefore,
we first transform the problem into a point-to-point problem by
connecting all the endpoints of the network to a single virtual
endpoint “v” (see Figure 3), so that the problem reduces to
finding the Ku,d shortest routes that connect d and v. A route
Rj between d and v is defined as:

Rj(d) = {(d, dj,1), (dj,1, dj,2), . . . , (dj,nj−1, v)} (14)

with nj the number of links in route Rj(d). For every pair
of links (x, y), (y, z) ∈ L, with L the set of all links in the
network, we define the endpoint turning rates as:

βendpoint,x,y,z = βx,y,z(kctrl +Np − 1) (15)

In our problem, we look for the Ku,d most likely used routes
from (u, d) to v, i.e., the routes with the largest value of

∏

(x,y),(y,z)∈(Rj(d)
⋃
{(u,d)})

βendpoint,x,y,z

for j ∈ {1, 2, . . . , Nj(d)}, where Nj(d) is the number of all
possible (without cyclic paths) routes from d to v, and this is
equivalent to finding the largest value of

log





∏

(x,y),(y,z)∈(Rj(d)
⋃
{(u,d)})

βendpoint,x,y,z





As Yen’s algorithm [13] seeks for the minimized summation of
the costs, hence our problem could be reformulated as finding
the least

∑

(x,y),(y,z)∈(Rj(d)
⋃
{(u,d)}) (− log βx,y,z), i.e., we

look for the Ku,d shortest routes where the costs C(y, z) of
the links are redefined as (see Figure 3):

C(y, z) = − log βx,y,z (16)

Note that (16) is a legitimate definition for the cost, as we
have 0 ≤ βx,y,z ≤ 1 and hence C(y, z) ≥ 0.

After the Ku,d shortest routes from the current link (u, d) to
v are found, we put them in a set called Ru,d,Ku,d

. Moreover,
the summation of the turning rates towards all the selected
routes from node d should be unity. Indeed, by considering
only Ku,d routes, we assume that the turning rates towards
the other routes are zero. Therefore, we need to define γu,d,r
for r ∈ {1, 2, . . . ,Ku,d}, where γu,d,r indicates the percentage
of the vehicles that are within link (u, d) at the end of the
prediction interval and that tend to travel the rth route. Then
γu,d,r for r ∈ {1, 2, . . . ,Ku,d} is defined as:

γu,d,r =

∏

(x,y),(y,z)∈(Rr(d)
⋃
{(u,d)})

βendpoint,x,y,z

Ku,d
∑

l=1





∏

(x,y),(y,z)∈(Rl(d)
⋃
{(u,d)})

βendpoint,x,y,z





(17)



Now that the least costly routes are determined, we can
compute TTSendpoint and TEθ,endpoint in (13):

TTSendpoint(kctrl)

=
∑

(u,d)∈L



nendpoint,u,d

Ku,d
∑

r=1

γu,d,rTTSu,d,r





(18)

TEθ,endpoint(kctrl)

=
∑

(u,d)∈L



nendpoint,u,d

Ku,d
∑

r=1

(

γu,d,r
∑

θ∈Θ

TEθ,u,d,r

)





(19)
where TTSu,d,r and TEθ,u,d,r are the total time spent and the
total emissions of θ by each vehicle remaining on link (u, d)
at the end of the prediction interval along route r, and

nendpoint,u,d = nu,d(kctrl +Np − 1)

IV. SMOOTHING METHODS FOR THE S-MODEL

The simplified S-model explained in Section III-A1 in-
cludes two equations with non-smooth functions, i.e., the
floor and the min functions in (8) and (10). A non-smooth
model does not allow to use available efficient gradient-based
optimization methods for MPC. Hence, it would be useful
to have a nonlinear smooth model, expressed by means of
functions that are differentiable everywhere in their domain.
In this section, we propose a method to make these functions
smooth.

A. Smooth form of the “min” Function

In (10), we should deal with:

α = min{x, y, z} (20)

Therefore, we look for the smooth form of the following
function in general:

xmin = min{x1, x2, . . . , xn} (21)

Our smoothing approach is inspired by the method proposed
in [14], where the following smooth form of the plus function,
i.e., x+ = max{0, x}, is proposed:

x+ = max{0, x} ≈ x+
1

α
log
(

1 + e−αx
)

for α ≫ 1 (22)

We start by considering max{x1, x2}. We have:

max{x1, x2} =
1

2
(max{0, x2 − x1}+ x1

+max{0, x1 − x2}+ x2)

≈
1

2

(

x2 +
1

α
log
(

1 + e−α(x2−x1)
)

+ x1 +
1

α
log
(

1 + e−α(x1−x2)
)

)

≈
1

2α
log
(

eαx2

(

1 + e−α(x2−x1)
)

·

eαx1

(

1 + e−α(x1−x2)
))

≈
1

2α
log ((eαx2 + eαx1)·

(eαx1 + eαx2))

≈
1

α
log (eαx1 + eαx2) (23)

In general, we can write:

max{x1, . . . , xn} =
1

α
log

(

n
∑

i=1

eαxi

)

(24)

Note that (22) is a specific case for n = 2 and x1 = 0 and
x2 = x in (24), where we just need to substitute x on the
right-hand side of (22) with 1

α
log eαx.

Now, in order to obtain a general form for the min function
given by (21), we write:

min{x1, . . . , xn} = −max{−x1, . . . ,−xn}

= −
1

α
log

(

n
∑

i=1

e−αxi

)

(25)

B. Smooth form of the floor function

Eq. (8) in Section III-A1 involves the floor function, which
is non-smooth. The floor function has a piece-wise step shape
(see the dashed plot in Figure 4). In [14] the step function is
approximated by a sigmoid function:

S(x, α) =
1

1 + e−αx
(26)

Here we can use a similar idea by considering a piece of the
transformed sigmoid function in each interval [i, i+1), where
i ∈ Z, as the smooth approximation of the floor function in
this interval (see the solid plot in Figure 4).

We are looking for a smooth function by connecting the
right endpoint of the sigmoid function (Figure 4) to the left
endpoint point of a piece of a transformed sigmoid function
that starts at the end point of the initial sigmoid piece.
Therefore, we need to make sure that the slopes are equal at the
end point and at the beginning point (the points that should be
attached) of the two pieces. The slope of the sigmoid function
at any positive real value x0 equals the slope at −x0, because:

d

dx
(1 + e−αx)−1

∣

∣

∣

∣

x=x0

=
αe−αx0

(1 + e−αx0)2
(27)

d

dx
(1 + e−αx)−1

∣

∣

∣

∣

x=−x0

=
αeαx0

(1 + eαx0)2
(28)
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Fig. 4. The floor function (dashed) and its smooth form (solid) using the
sigmoid function S(x, α) = 1

1+e−αx with α = 25

and if we multiply the numerator and the denominator of (27)
by (eαx0)2, (28) is obtained. Finally, the resulting smooth
function for the floor function is mathematically expressed by:

⌊x⌋ ≈
∑

k∈Z

1

1 + e−α(x−k)
, (29)

Now we can use the available efficient gradient-based al-
gorithms to solve the MPC optimization problem. We can
either solve the optimization problem given by (12) directly,
or we can use the Pontryagin’s principle [15], which translates
the optimization problem into a two-point boundary-value
problems (TPBVP) to be solved.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a model predictive controller that aims to
find a balanced trade-off between reduction of congestion and
emissions in urban traffic networks. A macroscopic integrated
flow-emission model known as the VT-S model has been used
as the prediction model of the MPC. The integrated model
involves a macroscopic flow model, i.e., the S-model, and a
microscopic emission model, i.e., VT-micro. Since the S-model
includes non-smooth functions, we cannot use the available
efficient gradient-based methods to solve the optimization
problem of the MPC-based controller. Therefore, in this paper
we have proposed smoothing methods to make the flow model
smooth.

The proposed MPC-based controller solves an optimization
problem that minimizes a weighted combination of the total
time spent and emissions by the vehicles, and the estimated
values of the time spent and emissions caused by the vehicles
that will stay in the network at the end of the prediction horizon
(i.e., endpoint penalties). We have proposed an approach based
on a K Shortest path algorithm that approximates the expected
time spent and emissions by the remaining vehicles.

For future work, the MPC controller proposed in this paper
will be applied to an urban traffic subnetwork, which will be

modeled by microsimulation, and the effect of implementing
the designed MPC controller on reduction of congestion and
emissions will be evaluated.
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