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Customer-Oriented Optimal Vehicle Assignment in

Mobility-on-Demand Systems

Francesco Acquaviva, Alfredo Núñez, Donato Di Paola, Alessandro Rizzo and Bart De Schutter

Abstract— In this paper, we introduce a novel optimization
framework for a station-to-door mobility-on-demand system
that aims at ensuring an efficient transportation service for the
daily mobility of passengers in densely populated urban areas.
We propose a mixed integer linear programming approach that
maximizes both the customers’ satisfaction and the provider’s
revenues, keeping at the same time the number of vehicles in
each station within given bounds towards the improvement of
system balancing. The proposed customer-oriented approach
aims at meeting as many customer requests as possible, while
maximizing the provider revenues and reducing the customers’
impatience, thus increasing their satisfaction. This implies,
in turn, a better reputation for the service provider. The
performance of the proposed approach is assessed through
an extensive Monte Carlo simulation campaign. In particular,
through the analysis of different performance indices, we
compare the optimal solution of the proposed approach with the
optimal solution achieved by a previously presented approach
based on the Profitable Tour Problem.

I. INTRODUCTION

Nowadays, mobility in urban areas is a topic of great

importance for any modern city. The capacity of trans-

portation infrastructures is very often insufficient; thus, the

growing use of privately-owned cars heavily contributes to

increase traffic congestion levels. Consequences are not only

economic, yet they also have an impact on the environment,

since congestion leads to higher levels of pollution, and on

the society, in terms of lower quality of life. Beyond the

classic public transportation services, an opportunity to fa-

cilitate people’s mobility comes from more flexible solutions

like car-sharing [1], [2], shared mobility systems [3], [4],

and Mobility-On-Demand (MOD) systems [5], [6]. All these

solutions, also known as flexible transportation systems, are

dedicated to users that are willing to pay more than the cost

of public services, but expect to have a service closer to

the one obtained when using a private vehicle or a taxi.

Flexible transportation systems can work in synergy with

the public transportation service to reduce, for example,
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the pressure over a highly occupied bus line or congested

subway line, enriching the user experience by providing a

nearly door-to-door service. In this context, MOD systems

aim at providing citizens with an affordable service offering

the same benefits of flexible transportation systems through

the use of a fleet of shared vehicles. Crucial aspects in

the management of MOD systems are optimal vehicle as-

signment [1], fleet balancing [6], [7], and maintenance of

low operational costs and good level of service [8]. Fleet

balancing, vehicle assignment, and user behavior have been

usually tackled separately in recent research efforts. The

objective of balancing [5] is to achieve a uniform distribution

of vehicles throughout the stations, to avoid the presence of

empty pick-up stations and/or full drop-off ones. Balancing

can be performed manually by operators [6], or by self-

driving vehicles [9]. Another balancing technique consists

of adopting pricing strategies [5], [7], promoting drop-offs

to stations with high demand that are still reasonably close

to the customer’s destination. Beyond balancing, pricing

strategies can be designed to reduce traffic congestion by

encouraging shared mobility with other users [10]. Strate-

gies for optimization of the manual relocation of vehicles

have been designed with the objective of optimizing several

performance indices [1], [11], [12].

The design of novel mobility solutions based on the

optimization of both the provider’s profits and the user’s

satisfaction is a hot research topic at present [8], [13], [14].

On the one hand, the system should generate income that

allows its sustainability, covering all costs and generating

revenues. On the other hand, a high-quality service should

be assured, to avoid users to abandon the shared service in

favor of the private one [14], [15]. In the literature, most

of the studies on shared mobility services focus on the

optimization of operational costs only, without including the

customer satisfaction in the decision making process [13],

[14]. Nowadays, the extremely fast pace of modern cities

makes quality of service and customer satisfaction crucial

issues in the design of urban transportation systems. Flexible

approaches should aim at satisfying as many requests as

possible, while reducing customers’ waiting time through

a balanced distribution of vehicles over the stations, and

generating revenue for the provider.

In this paper, an optimal vehicle assignment strategy for

a station-to-door MOD system is proposed. The approach

is inspired to [8], where the system has been modeled

leveraging the Profitable Tour Problem [16] to design an

optimization strategy for a station-to-station MOD system.

The aim of the strategy defined in [8] is to optimize costs

and revenues for both customers and the provider, while

trying to keep the system balanced. Here, we extend the



approach in [8] by modeling a station-to-door MOD system

and defining an objective function that explicitly accounts

for the customer’s impatience, which is posited to be related

to the waiting time at the departure station. This character-

istic makes the proposed model representative of the real

way customers experience urban traveling [17], [18], [19].

Similarly to [8], the proposed approach aims at optimizing

the system performance through trading-off between the

satisfaction of the customer requests with a good quality of

service, the optimization of the provider’s revenues, and the

vehicle balancing throughout the stations of the system. In

the following, we will refer to the approach presented in

this paper as Customer-oriented Vehicle Assignment (CVA),

whereas the approach presented in [8] will be referred to as

Profitable Vehicle Assignment (PVA).

The paper is organized as follows. In Section II, the

description of the system is given. Section III presents the

mathematical formulation of the optimization problem. In

Section IV, numerical results are discussed and compared

with those obtained by PVA. Finally, our conclusions and an

outline of possible future work are proposed.

II. SYSTEM DESCRIPTION

In this section, we describe the main concepts underlying

the model of the proposed MOD system. We consider a given

urban area where S stations, with index set S = {1, . . . , S},

are located, and V vehicles, with index set V = {1, . . . , V },

are present. Each station i ∈ S is equipped with a maximum

number of parking lots V max
i ∈ N. At each discrete-time step

k ∈ N, a number Vi(k) of vehicles is parked at each station i.
Finally, we consider a number of C waiting customers, with

index set C = {1, . . . , C}, with whom C destinations and C
pick-up stations are univocally associated. We denote with

dc the destination of each customer. Since we are modeling a

station-to-door problem, the position of dc does not generally

coincide with the location of a drop-off station. Furthermore,

we define ic ∈ S as the pick-up station where customer c ∈ C
is waiting for the service, and iv ∈ S as the station where

vehicle v is parked.

We define Vic ⊆ V as the set of vehicles parked at station

ic where customer c is waiting for service, while Cveh
iv

⊆ C
represents the set of customers waiting at station iv where

vehicle v is parked. We also define Csta
i ⊆ C as the set of

Ci customers that are waiting at station i ∈ S . Given the

aforementioned definitions, we define the customer’s request

assignment problem as follows.

Problem 1 (Customer-to-Vehicle Assignment): Each cus-

tomer c ∈ C, traveling from pick-up station ic where he/she

is located, who has to reach his/her destination dc through a

commuting station j ∈ S where he/she would drop-off the

vehicle, has to be univocally assigned to one and only one

vehicle v ∈ Vic .

We assume that each customer c ∈ C is characterized by

a different attitude to accept the assignment proposed by

the service provider, waiting up to a certain limit time to

obtain service, before giving up and switching to another

transportation mode. To capture this aspect, we define the

customer impatience function Icj as the amount of money

that a customer, who is not happy for the provided service,
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Fig. 1: Customer’s Impatience Function

expects to receive as compensation for the unsatisfactory

service quality. In other words, the customer impatience

function models the difference between the actual rental price

and the rental price that the customer wishes to pay due to

a detriment in the service quality. The customer impatience

is modeled as a piecewise-linear function of the service time

tsercj , which is the time that elapses between the arrival of

customer c at his/her pick-up station ic and the instant at

which he/she arrives at his/her desired destination dc after

having dropped the vehicle off at the commuting station j.

In particular, we define tsercj = twait
cj + ttravelcj + twalk

cj , where

twait
cj is the waiting time for customer c to obtain the service

and start his/her ride, ttravelcj is the time needed for customer

c to travel from his/her pick-up station ic to the commuting

station j, and twalk
cj is the time spent by customer c to walk

from the commuting station j to which he/she is routed to

his/her desired destination dc. An example of such a function

is illustrated in Fig. 1.

The piecewise-linear function modeling the customer im-

patience is described by:

Icj =





0 tsercj < δc,1·tbestcj

αc·(tsercj − δc,1·tbestcj ) δc,1·tbestcj ≤ tsercj < δc,2·tbestcj

α̃c·(tsercj − δc,2·tbestcj ) + Γcj δc,2·tbestcj ≤ tsercj < δc,3·tbestcj

∞ tsercj ≥ δc,3·tbestcj

where Γcj = αc · (t
ser
cj − δc,1 · t

best
cj ). Here and henceforth,

the dependence of Icj(t
ser
cj ) on the service time tsercj has been

dropped to enhance readability.

The parameters of the piecewise-linear function model the

subjective attitude of the customer to assess the value of time

spent while waiting, according to his/her schedule and needs.

In particular, the customer impatience rates αc and α̃c reflect

how different customers evaluate the quality of service and

are modeled as the slopes of the piecewise-linear function,

while the customer impatience turning points δc,• · tbestcj

are the time instants at which a customer modifies his/her

behavior, modeled as changes in the slope of the impatience

function, as depicted in Fig. 1. Customer impatience turning

points are defined as fractions of the estimated shortest

travel time tbestcj for customer c to travel from his/her pick-

up station ic to his/her destination dc. These fractions are



expressed by a set of customer impatience breakpoints δc,•,

such that the turning points are modeled as δc,• · tbestcj . In

the proposed approach, two different customer impatience

rates, αc, α̃c, and three customer impatience breakpoints

δc,1, δc,2, δc,3, are considered. We observe that, if necessary,

a different number of breakpoints and slopes can be used

to shape the impatience function towards a more detailed

characterization of customers’ behavior. Given the definition

of customer impatience and considering Problem 1, the

following assumption holds.

Assumption 1 (Customer’s Request): We assume that

each customer c ∈ C, starting from the pick-up

station ic, is associated with a unique request, which

is defined by the tuple (ic, dc, δc,1, δc,2, δc,3, αc, α̃c), where

δc,1, δc,2, δc,3, αc, α̃c model the customer impatience, while

the other parameters are related to the customer request.

Finally, we define the cost Jcvj = βveh,v · ttravelcj as the

price that customer c has to pay to rent vehicle v to drive

from his/her pick-up station ic to the assigned commuting

station j. The cost Jcvj is a function of the travel time ttravelcj

(the time customer c spent to drive from station ic to the

station j) and the factor βveh,v ∈ N, that is the rental rate

for the vehicle v.

III. MATHEMATICAL FORMULATION

In this section, we introduce the framework adopted to si-

multaneously optimize the provider’s cost and the customers’

satisfaction, henceforth called Customer-oriented Vehicle As-

signment (CVA). The devised mathematical formulation ac-

counts both for the customer impatience Icj and the customer

trip cost Jcvj , and tends to maintain the number of vehicles

parked in stations within given bounds to fulfill forthcoming

requests. The main optimization problem studied in this

paper is now defined.

Problem 2 (Vehicle Assignment with Balancing): Given

a set of C customers directed towards their desired

destinations, determine the best assignment of V vehicles,

parked in S , maximizing both the provider’s income and

the customers’ satisfaction in terms of minimization of the

impatience function, serving as many requests as possible

in a given time window of T discrete-time steps.

To formulate Problem 2, we define the binary decision

variables xcvj , which take the value 1 if vehicle v is assigned

to customer c to drive from pick-up station ic to commuting

station j, with the objective of reaching the desired destina-

tion dc, and 0 otherwise. Hence, Problem 2 is formulated as

the following mixed integer linear programming problem:

max
xcvj

∑

c∈C

∑

v∈Vic

∑

j∈S

(Jcvj − Icj) · xcvj (1)

subject to: ∑

j∈S

xcvj ≤ 1 ∀c ∈ C, ∀v ∈ Vic ; (2)

∑

c∈Cveh

iv

∑

j∈S

xcvj ≤ 1 ∀v ∈ V; (3)

∑

v∈Vic

∑

j∈S

xcvj ≤ 1 ∀c ∈ C; (4)

∑

c∈Csta

i

∑

v∈Vic

∑

j∈S

xcvj ≤ min{Ci, Vi} ∀i ∈ S : Ci > 0; (5)

∑

c∈Csta

i

∑

v∈Vic

∑

j∈S

xcvj −
∑

c∈C

∑

v∈Vic

xcvi ≤ Vi − V min

i ∀i ∈ S; (6)

∑

c∈C

∑

v∈Vic

xcvi −
∑

c∈Csta

i

∑

v∈Vic

∑

j∈S

xcvj ≤ V max

i − Vi ∀i ∈ S; (7)

xcvj ∈ {0, 1} ∀(c, v, j) ∈ C × Vic × S.

Customer-to-vehicle and vehicle-to-route assignment con-

straints are expressed in Eqs. (2)-(5). In constraint (2), we

consider all the possible pairings of each customer c with

vehicles in Vic parked in the pick-up station ic ∈ S where

he/she is located. Thus, constraint (2) states that for each

possible customer-vehicle pairing, at most one route starting

from the selected pick-up station ic and directed towards

one of the possible commuting stations j can be assigned.

Constraint (3) states that each vehicle v can be driven at most

by one of the customers who are waiting for service at station

iv , where vehicle v is parked. Constraint (4) states that each

customer c can drive at most one of the vehicles that are

parked in station ic, where customer c is located. Constraint

(5) considers all the possible routes that start from each pick-

up station i, where at least one customer request has been

made, and states that the sum of the possible routes starting

from station i should be at most equal to the number of the

possible matches between the Ci waiting customers and the

Vi vehicles parked at station i, at the time instant at which the

assignment is performed. Constraints (6)-(7) represent station

capacity restrictions, where V max
i and V min

i are, respectively,

the maximum number of vehicles allowed and the minimum

number of vehicles needed in station i at each discrete-time

step k.

When no requests are made at a given station i ∈ S ,

Ci = 0 is set. As a consequence, both sets Csta
i and Cveh

iv

are empty. Thus, for all vehicles in Vi, all the decision

variables xcvj are set to 0 for all customers c and commuting

stations j. Furthermore, all the decision variables xcvj related

to vehicles v /∈ Vic , ∀c ∈ C, that are vehicles parked

in stations different from the one where customer c is

located, are set to 0. Moreover, we observe that when the

number of parked vehicles Vi is larger than the number of

waiting customers Ci, the number of corresponding decision

variables xcvj can be reduced without loss of optimality. To

this aim, we assign the waiting customers to the first Ci most

expensive vehicles, based on their vehicle rental rate factor

βveh,v . Thus, the decision variables xcvj , corresponding to

the remaining Vi − Ci vehicles, are set to 0.

The proposed problem is based on the Profitable Vehicles

Assignment (PVA) [8], which is a generalization of the

Traveling Salesman Problem. The latter is a well-known NP-

hard problem. Indeed, the proposed CVA problem considers

additional aspects of the customer model, increasing the

complexity of the formulation, also leading to an NP-hard

problem.



IV. NUMERICAL RESULTS

A. Setup of the Case Study

In this section, the performance of the CVA approach is

assessed through the analysis of an extensive Monte Carlo

simulation campaign. We compare the optimal solution of

CVA with the one obtained solving the Profitable Vehicles

Assignment (PVA) problem. The analysis is performed using

a simulation framework implemented in MATLAB, where

the solution of the mixed integer linear programming prob-

lem (1)-(7) is performed using the ANSI-C MATLAB MEX

Interface for the GLPK library. Simulations have been run

on a workstation with a 2.5 GHz quad-core processor with

16 GB of RAM. In this simulation campaign, the following

assumptions have been made. We consider two scenarios

with 4- and 6-stations, respectively. Each station is randomly

located in a simulated square environment of 3× 3 km.

For each scenario analyzed, we vary the minimum and

maximum number of both customers and vehicles, as well as

their distribution over the stations. These features have been

selected according to the outcomes of a statistical analysis

conducted on the NYC CitiBike service data [20]. The analy-

sis on the NYC CitiBike data has been performed taking into

account the data of the most used stations in the period from

July 2013 to December 2014. The following data have been

analyzed: trip duration, station ID and position, number of

available parking lots and vehicles parked, customer type and

station position. From the available data, we have determined

for each station: the number of customers that are waiting

for service at each time step, their type, the number of

vehicles parked and the average time taken to travel between

two stations placed at a given distance. Furthermore, based

on the data gathered, each customer c is associated with a

commuting station j⋆c , that is the closest to the customer

destination dc, and a best travel time tbestcj , that is, the shortest

time spent to travel from his/her pick-up station to his/her

actual drop-off station. In particular, a number of customers

that range from 17 to 52, and of vehicles that range from 4 to

15 are considered in each station for the 4-stations scenario,

while in the 6-stations scenario 15 to 80 customers are

considered to wait at each station, which contains a number

of vehicles ranging from 6 to 23. In each trial, the numbers of

customers and vehicles are increased in steps of 5 and 1 units,

respectively. The simulator initially places the vehicles over

the stations in order to meet the balancing constraints (6)-(7).

In this simulation campaign, we consider a single class of

vehicles and two classes of customers, namely, subscribers

and non-subscribers. We define a realistic pricing scheme,

with a different rental rate factor βveh,v for subscribers and

non-subscribers. In particular, we set the rental rate factor for

non-subscribers to the Car2go price of 0.29 Euro/min [21].

Inspired by the Citibike [20] policy that reduces the cost for

subscribers of about 50%, we set the subscriber rental rate

factor to 0.15 Euro/min.

The parameters of the impatience function have been

modeled as follows. Customers’ impatience rates αc have

been uniformly set to 1 for all customers, while the rates

α̃c have been set as independent and identically distributed

realizations of a random variable with uniform distribu-

tion U(0.01, 1.0). Furthermore, the customers’ impatience

breakpoints, δc,1, δc,2, δc,3 have been drawn as indepen-

dent and identically distributed realizations of random vari-

ables with uniform distributions U(1, 20), U(δc,1, δc,1+50),
U(δc,2, δc,2+10), respectively. Note that the values of αc, α̃c

are expressed in Euro/min, while the customers’ impatience

breakpoints δc,•, are expressed in minutes.

The results achieved show that a feasible assignment can

be obtained within a reasonable computation time for small

instances of the problem. In particular, we obtained that the

CVA approach is able to compute the solution of a single

instance of Problem 2 in an average computation time of

0.05 seconds with a maximum of 0.07 seconds rather than the

27.63 and 33.2 seconds of PVA, when tested on the worst-

case scenario, i.e., a 6-stations scenario with 23 vehicles

parked and 80 waiting customers.

B. Assessment Criteria

We define a set of metrics to analyze and compare the

performance of the proposed approach. The metrics defined

do not depend on the particular approach, nor on a specific

score function. Thus, they can be used to assess global per-

formance in MOD-related problems. Inspired by the analysis

in [7], we define the mean balancing error (MBE) as follows:

MBE =
1

T

1

S

T∑

k=1

∑

i∈S

∣∣∣∣Vi(k)−
V

S

∣∣∣∣ .

The MBE can be considered as a metric of the balancing

status of the network: if vehicles are uniformly distributed

over all stations, MBE is equal to 0. On the other hand,

the greater MBE is, the more unbalanced the system is. We

consider the revenue of the provider (REV), which quantifies

the total incomes earned by the MOD service provider as

REV =

T∑

k=1

∑

c∈C

∑

v∈Vic

Rc(k) · Jcvj(k),

where Rc(k) is 1 if the request made by customer c is

fulfilled, and 0 otherwise. We recall that Jcvj represents the

cost, in terms of money spent by customer c to reach his/her

destination dc through the commuting station j. Note that,

by assumption, a constant number of customers c ∈ C(k) are

waiting for service. Thus, at each time step k, a number of

waiting customers equal to the number of customers served

at the time step k − 1, is added to the system. Here and

henceforth, to enhance readability, we will refer to the set of

customers C(k) as C, and to the set Vic(k) of the vehicles

parked at station ic as Vic .

We define the reputation of the service (REP), as the

total revenue missed by the provider because of unserved

customers. This is computed considering, for each missed

trip, the revenue that the provider would have obtained by

directing the unserved customer to the commuting station j⋆c
closest to his/her destination,

REP =

T∑

k=1

∑

c∈C

(Rc(k)− 1) · Jcvj⋆c (k).

We remark that in the REP definition, the commuting station

j⋆c is the one closest to the customer destination, while in
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Fig. 2: Simulation results for the 4-stations scenario: (a) REP versus Number of Customers with 11 vehicles; (b) REV versus Number of Vehicles with
42 customers; MBE metric for different sets of Vehicles versus Number of Customers for the PVA approach (c), and for the CVA approach (d).
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Fig. 3: Simulation results for the 6-stations scenario: (a) REP versus Number of Customers with 11 vehicles; (b) REV versus Number of Vehicles with
40 customers; MBE metric for different sets of Vehicles versus Number of Customers for the PVA approach (c), and for the CVA approach (d).

the REV formula it is the one to which customer c has been

routed by the provider, i.e., station j.

Remark 1: Note that the proposed metrics may be com-

bined as extra performance indices to be optimized, in

combination with the CVA score function, along the lines

of the approach described in [22].

C. Performance assessment and comparison

In this section, the outcomes of the Monte Carlo simu-

lation campaign are presented and discussed, and the per-

formance of CVA is compared with that of PVA. For each

simulation instance, 10 independent trials are realized, ran-

domizing customers’ impatience and requests, and varying

the distribution over the network of both customers and

vehicles. Averaged results are shown in Figs. (2)-(3), where

error bars indicate the 95% confidence interval. From the

analysis of CitiBike data [20], the sampling time has been

set to the maximum trip time between any two stations, that

is, 10 min. Under the simplifying assumption of synchronous

operations, this choice guarantees that at each time step

all the vehicles are parked in the stations before being re-

assigned to new customers. We observe that in a more realis-

tic framework, where travel times have a greater variability,

the choice of the sampling time should be refined, operations

should be considered as asynchronous, and a technique to

account for vehicles that are traveling while others are being

assigned should be devised. Results have been obtained over

an observation time window of two hours, thus, T = 12 in

our simulation campaign. It is worth noting that, in a real

urban environment, different traffic conditions may lead to

customer travel times greater than the ones mentioned before.

Figures 2 and 3 offer a comparison between the perfor-

mance obtained using the CVA- and PVA-based approaches.

Figure 2 deals with the 4-stations scenario, while Fig. 3

illustrates the 6-stations case. In particular, Figs. 2(a) and

3(a) display the values of REP, as a function of the number

of customers with 11 vehicles available. In Figs. 2(b) and

3(b), the values of REV as a function of the number of

vehicles are illustrated. From the analysis of CitiBike data,

a number of 40 and 42 customers is considered for these

simulations in the 4- and 6-stations scenarios, respectively.

As shown in Figs. 2(a)-3(a), CVA offers a better performance

than PVA in satisfying customers’ requests, in terms of a

higher REP. Moreover, the gap in performance between the

two strategies increases when the number of customers in the

system increases. However, PVA achieves better performance

than CVA in terms of fulfilled requests, as summarized in

Table I.

The performance is also assessed in terms of the provider’s

revenue, REV, whose trend is shown in Figs. 2(b)-3(b) as a

function of the number of vehicles. We observe that the rev-

enue achieved with CVA is always higher than that achieved

with PVA, and that the gap increases when the number of

vehicles in the system increases. Our results confirm that our

approach, while aiming at optimizing customers’ satisfaction,

also provides higher revenues to the provider.

Finally, we analyze the CVA performance in terms of

system balancing. We recall that constraints (6)-(7) have

been designed to maintain the system balanced keeping the

number of parked vehicles in each station within a certain

bound, that is, between V min
i = 1 and V max

i . Figs. 2(c)-(d)

and Figs. 3(c)-(d) display the trend of the MBE metric for

the 4- and 6-stations scenarios, respectively. In particular,

the values of MBE versus the number of customers, for

different numbers of vehicles, are displayed in Figs. 2(c)

and 3(c) for PVA while corresponding results obtained using

CVA are illustrated in Figs. 2(d) and 3(d). We observe that

CVA tries to favor the fulfillment of customers’ requests,

whereas PVA tends towards a more balanced satisfaction of

both the provider’s and the customers’ needs. Due to their



One Vehicle per Station Max Num Vehicles

4 stations 6 stations 4 stations 6 stations

CVA PVA CVA PVA CVA PVA CVA PVA

Min NC 84.6% 81.3% 87% 90.6% 96.7% 99% 99.9% 99.2%

Max NC 42.2% 57% 44.9% 45% 80% 80% 80% 80.4%

TABLE I: Percentage of fulfilled requests considering the minimum and
the maximum number of customers waiting for service in the 4- and 6-
stations scenarios, with different set of vehicles.

different prioritization schemes, CVA tends to route vehicles

towards commuting stations selected by customers, whereas

PVA rather proposes commuting stations that are close to the

selected ones.

We observe from Figs. 2(c)-(d) and Figs. 3(c)-(d) that,

with a small number of vehicles (i.e., black-circled lines), the

MBE is high both for CVA and PVA, and the performance

gap is small, whereas it tends to increase for a greater number

of vehicles (i.e., blue-crossed lines). This is due to the fact

that PVA tends to favor system balance rather than revenue

and reputation. Conversely, CVA aims to concurrently in-

crease the providers’ revenue and the customers’ satisfaction,

rather than keeping the system balanced to fulfill forthcoming

requests.

V. CONCLUSIONS

In this paper, a customer-oriented optimization framework

for MOD systems, called Customer-oriented Vehicle Assign-

ment (CVA), has been proposed. The presented formulation

aims at offering an efficient station-to-door transportation

system that is able to fulfill the customer requests at its

best, maximize the provider’s revenues, and tends to keep

the system balanced within prescribed limits. The problem

has been tackled by defining a constrained mixed integer

linear programming problem, which takes into account the

customers’ impatience and the trip costs. The customers’

impatience has been modeled through a piecewise-linear

function of parameters that have been suitably identified

through the analysis of different aspects that dictate the

customers’ behavior, such as the affordability of the service,

its quality, and the overall time used to reach his/her final

destination. The performance of the proposed approach has

been assessed through an extensive Monte Carlo simulation

campaign in several operational conditions. The simulta-

neous satisfaction of often contrasting needs is sometimes

achieved at the cost of a reduction in performance in the

system balancing. In particular, this occurs when the number

of vehicles in the system is large.

Future work will seek to further enrich our model by

considering door-to-door services, and by developing a more

accurate model of the customers’ impatience and a more

detailed cost function definitions in which the vehicles’ fixed

costs and other features will be accounted for. The objective

function can also be refined by including metrics inspired

to the performance parameter defined in this work. Further-

more, since the solution of the optimization problem for

large instances of the system involves a high computational

burden, we aim to devise sub-optimal optimization strategies,

which can solve the problem for systems of large size in

a reasonable time. Finally, models with different classes of

vehicles will be considered.
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