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Optimistic optimization for continuous nonconvexpiecewise

affine functions ⋆

Jia Xu a, Ton van den Boom b, Bart De Schutter b

aDepartment of Control Science and Engineering, Tongji University, Shanghai, China

bDelft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

Abstract

This paper considers global optimization of a continuous nonconvex piecewise affine (PWA) function over a polytope. This
type of optimization problem often arises in the context of control of continuous PWA systems. In literature, it has been shown
that the given problem can be formulated as a mixed integer linear programming (MILP) problem, the worst-case complexity
of which grows exponentially with the number of polyhedral subregions in the domain of the PWA function. In this paper, we
propose a solution approach that is more efficient for continuous PWA functions with a large number of polyhedral subregions.
The proposed approach is based on optimistic optimization, which uses hierarchical partitioning of the feasible set and which
can guarantee bounds on the suboptimality of the returned solution with respect to the global optimum given a prespecified
finite number of iterations. Since the function domain is a polytope with arbitrary shape, we introduce a partitioning approach
by employing Delaunay triangulation and edgewise subdivision. Moreover, we derive the analytic expressions for the core
parameters required by optimistic optimization for continuous PWA functions. The numerical example shows that the resulting
algorithm is faster than MILP solvers for PWA functions with a large number of polyhedral subregions.

Key words: Piecewise affine function; optimistic optimization; simplicial subdivision.

1 Introduction

Piecewise affine (PWA) functions are widely used in
various fields for approximating nonlinearities, see
[1,5,16,19]; they also appear as cost functions of numer-
ous optimization problems, see [8,18]. The optimization
of nonconvex PWA functions are often described as
mixed integer linear programming (MILP) problems
[7,21]. However, the worst-case complexity of MILP
solvers grows exponentially with the number of poly-
hedral subregions of the PWA functions, which usually
make the problem solving process less efficient.

We focus on the optimization problem of a continuous
and nonconvex PWA function over a given polytope and
propose to apply optimistic optimization to seek the
global optimal solution. Optimistic optimization [14,15]
is a class of algorithms that start from a hierarchical
partition of the feasible set and gradually focuses on the

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author J. Xu.

Email addresses: 615xujia@tongji.edu.cn (Jia Xu),
a.j.j.vandenboom@tudelft.nl (Ton van den Boom),
b.deschutter@tudelft.nl (Bart De Schutter).

most promising area until they eventually perform a lo-
cal search around the global optimum of the function.
The gap between the best value returned by the algo-
rithm and the real global optimum can be expressed as a
function of the number of iterations, which can be spec-
ified in advance. Optimistic optimization can be applied
to the general problem of black-box optimization of a
function given evaluations of the functions over general
search spaces. Until now, in the literature on optimistic
optimization, the feasible set is often assumed to be a
hypercube or a hyperbox. In our previous work [22,23],
we have extended optimistic optimization to solve the
model predictive control problem for max-plus linear
and continuous PWA systems. In [23], the PWA-MPC
problem is recast as an optimization problem of a con-
tinuous PWA objective function. Particularly, the linear
constraints on states and inputs are treated as soft con-
straints and are replaced by adding a penalty function
to the objective function. As a result, the feasible set be-
comes a hyperbox for which the hierarchical partitioning
can be efficiently developed.

In this paper, the linear constraints on decision vari-
ables are considered as hard constraints and, for the first
time in the literature on optimistic optimization, a poly-
topic feasible set is considered. This extension from a
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hyperbox feasible set to a polytopic one is not trivial
but useful because a polytopic feasible set allows to in-
clude general affine constraints on the control variables
rather than only single bound constraints. A partition
of the given polytope is required to perform the search
process. The partitioning should generate well-shaped
cells that shrink with the depth. We first employ Delau-
nay triangulation to divide the polytope into a mesh of
simplices and next repeatedly use edgewise subdivision
to subdivide the simplices into smaller simplices that
satisfy the requirements for optimistic optimization. For
this partitioning approach, we develop analytic expres-
sions for the core parameters of optimistic optimization
based on the knowledge of the Lipschitz constants of the
PWA function. The numerical example shows that using
optimistic-optimization-based algorithms for the opti-
mization of a continuous and nonconvex PWA function
over a given polytope is more efficient than transform-
ing into an MILP problem if the number of polyhedral
subregions of the PWA function is large.

This paper is organized as follows. In Section 2 and 3,
we give some definitions and describe the optimization
problem of continuous PWA functions. In Section 4, we
introduce background of an optimistic optimization al-
gorithm. In Section 5, we propose a partitioning ap-
proach for which we develop the analytic expressions for
the core parameters of optimistic optimization. In Sec-
tion 6, the proposed approach is assessed with a numer-
ical example. Finally, Section 7 concludes the paper.

2 Preliminaries

For any x ∈ R
n, define ‖x‖2 = (|x1|

2 + · · · + |xn|
2)

1
2 .

This section presents some necessary definitions, which
are based on [4,17].

Definition 1 (Polyhedron) A polyhedron is a convex
set given as the intersection of a finite number of half-
spaces.

Definition 2 (Polytope) A bounded polyhedron P =
{x ∈ R

n|Ax ≤ b} is called a polytope, for some matrix A
and some vector b.

Definition 3 (Simplex) An m-simplex S ⊂ R
n with

0 ≤ m ≤ n is the convex hull ofm+1 affinely independent
points v0, . . . , vm ∈ R

n which are its vertices. If m = n,
the set S is simply called a simplex of Rn. Let ei = vi −
vi−1, i = 1, . . . , n. The n-dimensional volume of S is
vol(S) = 1

n!

∣

∣ det(e1, e2, . . . , en)
∣

∣.

Definition 4 (Polyhedral partition) Given a poly-
hedron P ⊆ R

n, then a polyhedral partition of P is a
finite collection {Pi}Ni=1 of nonempty polyhedra satisfy-

ing (i)
⋃N

i=1 Pi = P; (ii) (Pi \ ∂Pi)
⋂

(Pj \ ∂Pj) = ∅ for
all i 6= j where ∂ denotes the boundary.

Definition 5 (PWA function) A scalar-valued func-
tion f : P → R, where P ⊆ R

n is a polyhedron, is PWA
if there exists a polyhedral partition {Pi}Ni=1 of P such
that f is affine on each Pi, i.e., f(x) = αT

(i)x+ β(i), for

all x ∈ Pi, with α(i) ∈ R
n, β(i) ∈ R, for i = 1, . . . , N .

If a PWA function f is continuous on the boundary of
any two neighboring regions, then f is said to be continu-
ous PWA. A vector-valued function is continuous PWA
if each of its components is continuous PWA.

3 Problem statement

Consider the following optimization problem

min
x

f(x) (1)

subject to Ax ≤ b , (2)

where A ∈ R
m×nx and b ∈ R

m are the constraint matrix
and vector, and f is a scalar-valued continuous PWA
function given by f(x) = αT

(i)x + β(i), ∀x ∈ Pi, with

α(i) ∈ R
nx , β(i) ∈ R, i = 1, . . . , N . We assume that the

feasible set X = {x ∈ R
nx |Ax ≤ b} ⊂ P is nonempty

and bounded. From Definition 2, X is a polytope.
In this paper, we consider the case that f is continuous
and nonconvex and that the number N of polyhedral
subregions is much larger than nx. For this case, one
possible solution approach consists in transforming the
problem (1)-(2) into an MILP problem. The number of
auxiliary variables and linear constraints in the resulting
MILP description is proportional to N . So the complex-
ity of the resultingMILP problem grows in the worst case
exponentially in N . In the next section, we will intro-
duce an optimistic optimization algorithm for the prob-
lem (1)-(2). The knowledge of a Lipschitz constant of f
is important for designing the two key parameters ν and
ρ of optimistic optimization. For any x, y ∈ Pi, we have

∣

∣f(x)− f(y)
∣

∣ ≤ ‖α(i)‖2‖x− y‖2 . (3)

It is easy to verify that max
i=1,...,N

‖α(i)‖2 is the smallest

Lipschitz constant of f [10].

4 Deterministic optimistic optimization

In this section, we introduce the background of the deter-
ministic optimistic optimization (DOO) algorithm [14].
The notations f and X remain generic in this section.

DOO algorithm is based on a given partitioning ofX . For
any integer h ∈ {0, 1, . . .}, the spaceX is recursively split
into Kh cells where K is a finite positive integer denot-
ing the maximum number of child cells of a parent cell.
The partitioning may be represented by a tree structure.
The whole set X is denoted as X0,0 and corresponds to
the root node (0, 0) of the tree. Each cell at any depth h
is denoted as Xh,d with d ∈ {0, . . . ,Kh − 1} and corre-
sponds to a node (h, d) in the tree. A cell Xh,d at depth
h is split into K child cells {Xh+1,i}Ki=1. Each cell Xh,d

is characterized by a representative point xh,d ∈ Xh,d in
which f may be evaluated.

Four necessary assumptions are stated in [14] regarding
the function f and the partitioning. Those assumptions
are expressed in terms of a semi-metric. However, as
discussed in [12], this semi-metric actually just seems to
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Algorithm 1 Deterministic Optimistic Optimization (DOO)

Given: partitioning of X , number n of iterations

Initialize the tree T ← {(0, 0)} (root node)

for t = 1 to n do

(h†, d†)← argmin(h,d)∈L f(xh,d)− νρh

Expand (h†, d†) by adding its K children to T

end for

Return x(n) = argmin(h,d)∈T f(xh,d)

link the function and the partitioning and it is not used
in the implementation of the algorithm. So in [12] the
assumptions for the DOO algorithm are merged into a
single one by discarding the semi-metric. In this paper,
we use the setting in [12].

Requirement 1 Given the partitioning of X , let d∗h be
the index of the cell at depth h containing a global opti-
mizer x∗, i.e., x∗ ∈ Xh,d∗

h , and let xh,d∗

h be the represen-
tative point of the cell Xh,d∗

h . Then there exists ν > 0
and ρ ∈ (0, 1) such that for any h ∈ {0, 1, . . .}, we have
f(xh,d∗

h)− f(x∗) ≤ νρh.

DOO is summarized in Algorithm 1 [14]. Given a finite
number n of iterations, DOO generates a sequence of
feasible solutions during the iterations and returns the
best solution x(n) at the end. Starting with the root
node {(0, 0)}, DOO incrementally updates the tree T for
t = 1, . . . , n. At each iteration t, DOO selects a leaf 1 of
the current tree with the minimum value of f(xh,d)−νρh

to expand by adding its K children to the current tree.
Expanding a leaf (h, d) corresponds to splitting the cell
Xh,d into K subcells and evaluating the function f at
the representative points of the children cells.

Requirement 1 implies that any cell containing x∗ satis-
fies f(xh,d∗

h)− νρh ≤ f(x∗). Consequently, a cell Xh′,d′

such that f(xh′,d′

)− νρh
′

> f(x∗) will never be selected
to split because there always exists a cell containing x∗

such that f(xh,d∗

h)−νρh < f(xh′,d′

)−νρh
′

. More specif-

ically, DOO only expands nodes of the set I ,
⋃

h≥0 Ih
where Ih = {(h, d)|f(xh,d) − f(x∗) ≤ νρh}. The ele-
ments of Ih can be considered as νρh-near-optimal solu-
tions. The more near-optimal solutions, the slower the
convergence speed of the algorithm. In general, the num-
ber of near-optimal solutions will increase if the number
of optimal solutions increases. Therefore, the algorithm
is in general more efficient for the problem with a unique
optimal solution than the case where the optimal solu-
tion is not unique. A measure (called near-optimality
dimension) is defined in [14] to characterize the number
of near-optimal solutions and to derive bounds on the
difference between the optimal solution and the solution
returned by the algorithm. In this paper, we adapt the
definition of near-optimality dimension in [12] to make
it equivalent to the definition in [14]. Proposition 7 pro-
vides a guarantee on the performance of DOO.

Definition 6 The near-optimality dimension of f is the

1 A leaf of a tree is a node with no children. The set L
contains the leaves of T .

smallest η ≥ 0 such that there exists a positive constant
C such that the maximum number of cells Xh,d at any
depth h for which f(xh,d) − f(x∗) ≤ νρh is less than
C(νρh)−η.

Proposition 7 For a given finite number n of iterations,
let x∗ be a global minimizer and let x(n) be the solution
returned by the algorithm after n iterations.
(i) Let (hmax, dmax) be the deepest node that has been
expanded by the algorithm up to n iterations. Then we
have f(x(n))− f(x∗) ≤ νρhmax .

(ii) If η > 0, then f(x(n))− f(x∗) ≤
(

C
1−ρη

)1/η

n−1/η.

(iii) If η = 0, then f(x(n))− f(x∗) ≤ νρn/C−1.

PROOF. (i) Since DOO only expands the nodes of
the set I, we have f(xhmax,dmax) − f(x∗) ≤ νρhmax .
Note that x(n) is the returned solution with mini-
mum function value of f among the expanded nodes,
so f(x∗) ≤ f(x(n)) and f(x(n)) ≤ f(xhmax,dmax).
Hence, f(x(n)) − f(x∗) ≤ νρhmax . Furthermore,
f(x(n)) − νρhmax and f(x(n)) are respectively a lower
and an upper bound of f(x∗). In addition, the distance
between the two bounds is bounded by νρhmax .
(ii) From Definition 6, we have |Ih| ≤ C(νρh)−η. De-
fine an indicator function 1Ih(h, d) as: if (h, d) has
been expanded, 1Ih(h, d) = 1, else 1Ih(h, d) = 0.
When η > 0, the number of node expansions n sat-

isfies n =
∑hmax

h=0

∑Kh−1
d=0 1Ih(h, d) ≤

∑hmax

h=0 |Ih| ≤

Cν−η
∑hmax

h=0 (ρ−η)h ≤ Cν−η ρ−ηhmax

1−ρη . Thus, we have

(νρhmax)η ≤ C
n(1−ρη) . Combined with (i), this yields

f(x(n))− f(x∗) ≤
(

C
1−ρη

)1/η

n−1/η.

(iii) When η = 0, we have n ≤ C(hmax + 1).
Thus, hmax ≥ n

C − 1. Since ρ ∈ (0, 1), we obtain

f(x(n))− f(x∗) ≤ νρhmax ≤ νρn/C−1.

5 Optimistic optimization of PWA functions

In this section, we first develop a partitioning approach
for the polytopic feasible set X = {x ∈ R

nx |Ax ≤ b}.

5.1 Hierarchical partition of a polytope

The partitioning consists of two stages: (i) dividing the
polytope X into a collection of simplices; (ii) subdivid-
ing each simplex into smaller simplices. In this paper,
we propose to use Delaunay triangulation for the first
stage and next to use edgewise subdivision repeatedly
for the second stage. Delaunay triangulation [6] divides
a polytope into a mesh of simplices where simplices with
very short edges are created as less as possible. This
property conforms to the requirement of optimistic op-
timization that at any depth there is always a ball with
some depth-dependent radius that fits within the sub-
cell. Edgewise subdivision [9] divides a simplex S of Rnx

into knx nx-simplices, where each edge of S is cut into k
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equal pieces. A ready-to-implement algorithm for edge-
wise subdivision is presented in [11]. Below we introduce
the definition and some properties of edgewise subdivi-
sion. Those properties are needed in the next section for
the development of expressions for ν and ρ of DOO.

Definition 8 [3] Two non-degenerate (volume is not
zero) simplices S,S ′ are called congruent to each other if
there exists a translation vector v ∈ R

nx , a scaling fac-
tor c > 0, and an orthogonal matrix Q ∈ R

nx×nx such
that 2 S ′ = v + cQS. In this case S and S ′ are elements
of the same congruence class.

Properties of edgewise subdivision. For every inte-
ger k ≥ 1, the edgewise subdivision of S has the follow-
ing properties [9]: (i) all generated simplices have the
same n-dimensional volume; (ii) all generated simplices
fall into at most nx!/2 congruence classes; (iii) the faces
of S are subdivided the same way; (iv) repeated subdi-
vision has the same effect as increasing k.
The property (iv) that repeated subdivision has the same
effect as increasing k, means that instead of dividing
an nx-simplex S into knx nx-simplices and subsequently
subdividing each sub-simplex into lnx nx-simplices, we
can subdivide S into (kl)nx nx-simplices and reach the
same result.

5.2 PWA optimistic optimization

In this section, Proposition 10 gives analytic expressions
for ν and ρ required by DOO. Lemma 11 guarantees that
the sub-simplices generated by the developed partition-
ing approach do not become too slim with very short
edges.
By performing Delaunay triangulation, X is divided into
a mesh of simplices {Xs|s = 1, . . . , Nt}. Every simplex
Xs in the simplicial mesh is taken as the original simplex
on which repeated edgewise subdivision is performed.
Properties (i)-(iv) of edgewise subdivision given in Sec-
tion 5.1 are essential for the remaining proof. For any
integer k ≥ 1, edgewise subdivision divides Xs into knx

nx-simplices; so the maximum number K of child cells
of a parent cell equals knx . Note that h ∈ {0, 1, . . .} is
the depth of the subdivision (indicator of the recursion
of edgewise subdivision) and d ∈ {0, . . . ,Kh − 1} is the
index of simplices at a given depth h. Let Xh,d

s be a sim-
plex at depth h generated by repeated edgewise subdi-
vision of Xs. Let Lh,d

s , rh,ds , xh,d
s be the maximum edge

length, inradius (radius of the inscribed hyper-ball) and
incenter (center of the inscribed hyper-ball) ofXh,d

s . Let
Ns ≤ nx!/2 be the number of congruence classes that all
simplices generated by repeated edgewise subdivision of
Xs fall into (see Property (ii)). Note that the simplices
in each congruence class are the same up to translation,
scaling, and rotation. Let Cs,i, i = 1, . . . , Ns, be a rep-
resentative simplex 3 of each congruence class. Define

2 v + cQS = {v + cQx|x ∈ S}.
3 A representative simplex of a congruence class is then
defined as the simplex resulting from scaling any simplex in
the class such that its maximum edge length equals 1.

the ratio between the maximum and minimum volumes
among representative simplices as

γs = max
i,j=1,...,Ns

vol(Cs,i)

vol(Cs,j)
. (4)

Let τs,i be the inradius of Cs,i and denote

τs = min
i=1,...,Ns

τs,i . (5)

Let vs,0, . . . , vs,nx
be the vertices ofXs. Let v

h,d
s,0 , . . . , v

h,d
s,nx

be the vertices of Xh,d
s . Define es,i = vs,i − vs,i−1 and

eh,ds,i = vh,ds,i − vh,ds,i−1, i = 1, . . . , nx. Then taking into ac-

count the proof of the independence lemma in [9] as well
as the fact that repeated subdivision has the same effect
as increasing k (see Property (iv)), there exists a permu-

tation πh,d
s of {1, . . . , nx} such that eh,ds,i = 1

kh es,πh,d
s (i).

Note that we have

v
h,d
s,i − v

h,d
s,0 = e

h,d
s,i + e

h,d
s,i−1 + · · ·+ e

h,d
s,1 . (6)

Now select an arbitrary edge of Xh,d
s and let vh,ds,i and

vh,ds,j with j > i be the corresponding vertices. By (6),

we have
∣

∣

∣
vh,ds,j − vh,ds,i

∣

∣

∣
=

∣

∣

∣
eh,ds,j + eh,ds,j−1 + · · ·+ eh,ds,i+1

∣

∣

∣
=

1
kh

∣

∣

∣
es,πh,d

s (j) + es,πh,d
s (j−1) + · · ·+ es,πh,d

s (i+1)

∣

∣

∣
. Define

θs,min = min
i=1,...,nx

|es,i| , θs,max =

nx
∑

i=1

|es,i| . (7)

Note that θs,min > 0. Then we have
1

kh
θs,min ≤

∣

∣v
h,d
s,j − v

h,d
s,i

∣

∣ ≤
1

kh
θs,max . (8)

Lemma 9 Denote Ls,h = maxd∈Dh
Lh,d
s and rs,h =

mind∈Dh
rh,ds where Dh = {0, . . . ,Kh − 1} is the index

set of simplices at depth h. Then we have
Ls,h+1

Ls,h
≤

1

k
γ
1/nx
s ,

rs,h

Ls,h
≥

θs,minτs

θs,max
(9)

where γs, τs, θs,min and θs,max are as defined in (4), (5),
(7) and 1/k is the factor of edgewise subdivision.

PROOF. Let Xh,d′

s be the simplex that has the max-
imum edge length Ls,h among all simplices at depth h

and assume that Xh,d′

s belongs to congruence class i
with a representative simplex Cs,i. The maximum edge
length of Cs,i equals 1. From Property (iv), repeated
subdivision is equivalent to increasing k; so a division
at depth h actually corresponds to selecting kh instead
of k. Moreover, from Property (i), we have vol(Xh,d′

s ) =

vol(Xs)/k
hnx . Scaling Xh,d′

s with a factor 1/Ls,h scales
every column in the matrix of which the determinant is
taking in the volume formula given in Definition 3, re-
sulting in a multiplication with (1/Ls,h)

nx compared to
the original expression. Hence, we have

vol(Cs,i) =
( 1

Ls,h

)nx

vol(Xh,d′

s ) =
( 1

Ls,h

)nx vol(Xs)

khnx
.

(10)

Likewise let Xh+1,d′′

s be the simplex that has the max-
imum edge length Ls,h+1 among all simplices at depth

4



h + 1 and assume that Xh+1,d′′

s belongs to congruence
class j with a representative simplex Cs,j . So

vol(Cs,j) =
( 1

Ls,h+1

)nx vol(Xs)

k(h+1)nx
. (11)

Thus (10) and (11) result in
(

Ls,h+1

Ls,h

)nx

=
1

knx

vol(Cs,i)

vol(Cs,j)
(12)

and then
Ls,h+1

Ls,h
= 1

k

(

vol(Cs,i)
vol(Cs,j)

)1/nx

≤ 1
kγ

1/nx
s . This

completes the proof of the first inequality in (9).

Let Xh,d♯

s be the simplex that has the shortest inradius
rs,h among all simplices at depth h and assume that

Xh,d♯

s belongs to congruence class l with a representative
simplex Cs,l. The maximum edge length of Cs,l equals
1 and the inradius of Cs,l is τs,l. Thus, we have rs,h =

Lh,d♯

s τs,l. Due to (5), we also have rs,h ≥ Lh,d♯

s τs. Note
that (8) implies that 1

kh θs,min ≤ Lh,d
s ≤ 1

kh θs,max , ∀d ∈

Dh. Hence, rs,h ≥ Lh,d♯

s τs ≥
1
kh θs,minτs and thus

rs,h
Ls,h

≥
1

kh θs,minτs

Ls,h
≥

1

kh θs,minτs
1

kh θs,max
≥ θs,minτs

θs,max
. This completes the

proof. ✷

Proposition 10 Denote α = maxi=1,...N ‖α(i)‖2 and

νs = αLs,0, ρs =
Ls,h+1

Ls,h
where Ls,h is as defined in

Lemma 9. Let ν = max
s=1,...,Nt

νs, ρ = max
s=1,...,Nt

ρs. If

k is selected as an integer that is strictly larger than
max

s=1,...Nt

γ1/nx
s , then for any cell Xh,d∗

h that contains a

global optimizer x∗ with the incenter selected as the rep-
resentative point xh,d∗

h of the cell Xh,d∗

h , we have ν > 0,
ρ ∈ (0, 1), and f(xh,d∗

h)− f(x∗) ≤ νρh.

PROOF. From (12), we can conclude that ρs =
Ls,h+1

Ls,h

does not depend on h. Note that with the given defini-
tions of ν and ρ, they are naturally positive constants.
Moreover, if k is selected as an integer that is strictly

larger than maxs=1,...Nt
γ
1/nx
s , then, from Lemma 9, for

any s, we have ρs ≤
1
kγ

1/nx
s < 1. So ν > 0 and ρ ∈ (0, 1).

Assume that x∗ is contained in a cell X
h,d∗

h
s and the in-

center of X
h,d∗

h
s is selected as the representative point

x
h,d∗

h
s . Then we have f(x

h,d∗

h
s ) − f(x∗)

(3)

≤ α‖x
h,d∗

h
s −

x∗‖2 ≤ αL
h,d∗

h
s ≤ αLs,h. From ρs =

Ls,h+1

Ls,h
, we have

Ls,h = (ρs)
h
Ls,0. (13)

Thus, f(x
h,d∗

h
s )− f(x∗) ≤ α(ρs)

hLs,0. From νs = αLs,0,

we have f(x
h,d∗

h
s )− f(x∗) ≤ νs(ρs)

h. Let ν = max
s=1,...,Nt

νs

and ρ = max
s=1,...,Nt

ρs. Therefore, for any cell Xh,d∗

h that

contains x∗, we have f(xh,d∗

h)− f(x∗) ≤ νρh. This com-
pletes the proof. ✷

Lemma 11 Let σ = µ1µ2 min
s=1,...,Nt

σs where µ1 =

min
s′,s′′=1,...,Nt

Ls′′,0

Ls′,0
, µ2 = min

s,s′′=1,...,Nt

Ls,h

Ls′′,h
, and σs is

a positive constant such that 0 < σs ≤ τsθs,min

αθs,max
. Then

any cell Xh,d at any depth h contains a ball of radius
σνρh centered in xh,d, denoted as B(xh,d, σνρh) = {x ∈
X |‖x − xh,d‖2 ≤ σνρh} ⊂ Xh,d, where ν and ρ are
defined as in Proposition 10.

PROOF. First we prove that µ2 is independent of h.
Similar to the proof of Lemma 9, we get vol(Xh,d′

s ) =

(Ls,h)
nx vol(Cs,i), i ∈ {1, . . . , Ns} and vol(Xh,d′′

s′′ ) =
(Ls′′,h)

nx vol(Cs′′,j), j ∈ {1, . . . , Ns′′}. Hence, we have

Ls,h

Ls′′,h
=

(

vol(Xh,d′

s ) vol(Cs′′,j)

vol(Xh,d′′

s′′
) vol(Cs,i)

)1/nx

which is independent

of h. So µ2 is independent of h.

Now, we prove that σνρh ≤ σsνs(ρs)
h for any s =

1, . . . , Nt, where νs and ρs are defined as in Proposi-
tion 10. The inequality to be proved is rewritten as

σ ≤ σs
νs(ρs)

h

νρh . Let s′ and s′′ denote the indices such

that νs′ = max
1,...,Nt

νs and ρs′′ = max
1,...,Nt

ρs. Thus we have

ν = νs′ , ρ = ρs′′ , and
νs(ρs)

h

νρh = νs(ρs)
h

νs′ (ρs′′ )
h =

Ls,h

Ls′,0(ρs′′ )
h =

Ls′′,0Ls,h

Ls′,0Ls′′,h
≥ µ1µ2. If σ = µ1µ2 min

s=1,...,Nt

σs, then we have

σνρh ≤ σsνs(ρs)
h for any s = 1, . . . , Nt.

Finally, we prove that B(xh,d, σνρh) ⊂ Xh,d. For any
x ∈ B(xh,d, σνρh), we have ‖x − xh,d‖ ≤ σνρh ≤

σsνs(ρs)
h

(13)

≤ τsθs,min

θs,max
Ls,h

(9)

≤ rs,h where rs,h defined in

Lemma 9 is the minimum among the inradii of simplices
at depth h. Therefore, x ∈ B(xh,d, σνρh) implies that
x ∈ Xh,d. This completes the proof.

Remark 12 In Proposition 10, the parameter α requires
the knowledge of the Lipschitz constants of the PWA func-
tion f . Actually, it may not always be possible to find the
smallest Lipschitz constant of a general PWA objective
function. In this case, an upper bound on the Lipschitz
constants is also acceptable, but note that a larger α re-
sults in a larger ν and consequently results in a larger
number of cells such that f(xh,d)−f(x∗) ≤ νρh. As a re-
sult, the algorithmmay waste time on exploring too many
unnecessary cells which will lower the degree of optimal-
ity of the resulting solution for the predefined computa-
tional budget.

In Section 5.2 of [20], it is shown that functions defined
over a finite-dimensional and bounded space X have a
near-optimality dimension equal to 0 if the functions
have an upper and lower envelope around one global
maximizer x∗ of the same order, i.e., there exist con-
stants c ∈ (0, 1) and δ > 0, such that for all x ∈ X :

min(δ, cℓ(x, x∗)) ≤ f(x∗)− f(x) ≤ ℓ(x, x∗) (14)

where ℓ is a semi-metric. Clearly, the condition (14) is
satisfied by the continuous nonconvex PWA functions
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considered in this paper. So the near-optimality dimen-
sion in our problem is equal to 0.

6 Numerical example

In this section, we evaluate the proposed optimistic-
optimization-based approach for continuous PWA func-
tions and compare it with other methods. The instances
considered include 60 randomly generated continuous
PWA functions f : R2 → R in which the vector pairs
α(i) ∈ R

2, β(i) ∈ R contain pseudorandom values drawn
from the standard normal distribution N (0, 1) with i =
1, . . . , N whereN is also random. Below we compare the
efficiency of the DOO algorithm, the MILP method, and
the DIRECT algorithm [13]. DIRECT is a direct search
algorithm not requiring the knowledge of the Lipschitz
constant. It uses an optimistic splitting technique sim-
ilar to the optimistic optimization algorithm. The cor-
responding MILP problem is derived based on the tech-
niques in [2] and solved with the intlinprog function
in Matlab and the cplex function in Tomlab. DOO is
implemented as the pwadoo function in Matlab. Note
that pwadoo and intlinprog are both Matlab functions
and cplex is implemented in object code, which implies
that it will in general run much faster than a equivalent
program written in Matlab. DIRECT is performed us-
ing the glbDirect solver in Tomlab and is implemented
in object code. Fig. 1 shows the semi logarithmic plot
of CPU time (average over 10 runs). The function val-
ues of f returned from different solvers are denoted as
fint, fcpl, foo, and fdir, where fint and fcpl of every in-
stance are equal. The iteration in pwadoo (glbDirect)
is stopped if the gap between fcpl and foo (fdir) is less
than 5% (the gap is calculated as 100|(foo− fcpl)/fcpl|).
We can see that pwadoo is faster than intlinprog and
even cplex for 80% of the instances. Fig. 2 shows the
relative error of pwadoo and glbDirect given different
number of iterations for all 60 PWA function instances.
We can see that the rate of convergence of pwadoo is
slower than glbDirect. This is because the Lipschitz
constant is used in the DOO algorithm. The experiments
show that DOO finds an approximation solution close
to the optimal solution requiring computation time less
than that of the MILP solvers taking to find the optimal
solution. Hence, we propose to use DOO instead of the
MILP method to solve the optimization problem of the
PWA function for the case that N is much larger than
the dimension of the feasible set.

7 Conclusions

In this paper, we have considered the optimization of a
continuous nonconvex PWA function over a polytope.
We have proposed an optimistic-optimization-based ap-
proach to solve the given problem. In particular, by em-
ploying Delaunay triangulation and edgewise subdivi-
sion, we have constructed a partition of the feasible set

20 40 60 80 100 120 140

N

10
-4

10
-3

10
-2

10
-1

10
0

ti
m

e
 (

s
)

intlinprog

cplex

pwadoo

direct

Figure 1. CPU time of intlinprog, cplex, pwadoo and
glbDirect for the optimization of PWA functions (N is the
number of polyhedral subregions of PWA functions)
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Figure 2. Relative error and average CPU times of glbDirect
(top) and pwadoo (bottom) for all 60 PWA function instances
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written in Matlab
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satisfying the requirements for optimistic optimization.
We have also derived the analytic expressions for the
core parameters. Numerical examples have been imple-
mented to test the proposed approach. Compared with
the MILP based methods, the optimistic-optimization-
based approach is more efficient especially for large prob-
lems. The partitioning scheme developed in this paper is
the only way we have found currently satisfying all the
requirements of optimistic optimization. In the future,
we will search for other suitable partitioning schemes.
Furthermore, we will investigate the performance of op-
timistic optimization algorithms that do not require the
knowledge of the Lipschitz constant, such as the simulta-
neous optimistic optimization (SOO) algorithm. We will
apply both DOO and SOO to the optimization problem
of continuous PWA functions and compare their perfor-
mance.
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