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Abstract. This paper develops a new decision making method for optimal planning of rail-
way maintenance operations using hybrid Model Predictive Control (MPC). A linear dynamic
model is used to describe the evolution of the health condition of a segment of the railway
track. The hybrid characteristics arise from the three possible control actions: performing no
maintenance, performing corrective maintenance, or doing a replacement. A detailed proce-
dure for transforming the linear system with switched input, and recasting the transformed
problem into a standard mixed integer quadratic programming problem is presented. The
merits of the proposed MPC approach for designing railway track maintenance plans are
demonstrated using a case study with numerical simulations. The results highlight the poten-
tial of MPC to improve condition-based maintenance procedures for railway infrastructure.

Keywords: Health Condition Monitoring and Maintenance, Model Predictive Control (MPC),
Track Maintenance, Railway Engineering

1 Introduction

A railway track infrastructure system is composed of a set of different assets. All of those assets
are distributed and interconnected over the railway network, continuously working together to
keep the railway service reliable, safe, and fast. Each asset has a different need for maintenance, at
different times and according to its degradation process, which is influenced by geographic position,
tonnage of the track, health condition of the rolling stock, among many other factors. Thus, to
sustainably manage railway assets, a step forward from the current policy of “find and repair”
towards a more integrated methodology containing condition-based monitoring and predictive
maintenance is required to improve the entire whole system performance. In the Netherlands,
over forty percent of the maintenance costs is related to track maintenance [1]. Due to this fact,
a condition-based maintenance decision support system can facilitate the infrastructure manager
to decide where and which type of maintenance should be performed. Moreover, if a prediction
capability is incorporated in the decision making, we can expect maintenance actions that will
anticipate problems and will take corrective measures before a failure become costly or unsafe for
the users. This study proposes a model based predictive maintenance strategy using condition-
based monitoring. We in particular show how this strategy can be applied to maintenance planning
for ballast degradation and for treating squats.

The role of ballast is to provide support to the tracks with hard stones aiming to distribute loads
over the sleepers while the train is passing. It also allows rain and snow to drain, thermal expansion,
and weight variance; and it inhibits the growth of weed and vegetation. In the deterioration process
of ballast, some stones may be displaced due to the vibrations and some others will get a white
rounded shape losing their properties (see Figure 1a). When the ballast is in a bad condition, it will
be reflected in the rail geometry. In order to keep the performance level at a satisfactory condition,
tamping (packing the track ballast under the railway track) and ballast replacement are the
principal maintenance actions to consider. In the literature, different studies have been proposed on
how to predict changes in the track geometry condition. In some studies the ballast deterioration is
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modeled deterministically based on the average growth of track irregularities [2,3,4]. Other studies
have linked stochastic degradation process with the effects of possible maintenance and renewal
options [5,6].

Squats are a type of Rolling Contact Fatigues (RCFs) that initiate on the rail surface and
evolve into a network of cracks beneath the surface of the track that when not treated on time
can evolve into rail breakage. Treating RCFs to avoid a reduced life cycle of the track is very
expensive. Early stage squats can be efficiently treated with grinding, while the only solution for
late stage squats is track replacement (See Figure 1b). There are different methods to detect squats,
like non-automatic inspection using human inspectors, photo/video records, and non-destructive
testing such as ultrasonic and eddy current test [7,8]. For automatic detection of squats in an early
stage, axle box acceleration (ABA) systems can be efficiently employed [9]. Predictive and robust
models for squats evolution have been proposed in [10]. In [11], it is suggested to consider clusters
of squats to facilitate grinding maintenance operations; however, the maintenance actions were
obtained under static scenarios. In this paper, the main contribution is to propose a suitable model
that incorporates the dynamics in the decision process of railway track maintenance operations,
together with a rolling horizon methodology that can deal with discrete integer control actions.

The major benefit of applying Model Predictive Control (MPC) to maintenance operations
planning is that the resulting strategy is flexible. By updating the degradation model using health
condition monitoring methodologies regularly, the maintenance plans can be adapted dynamically.
Especially when severe problems are predicted within the prediction horizon, MPC will suggest
more frequent or more effective maintenance operations, resulting in a more efficient plan. This
is a big step from current practice in railway maintenance, where cyclic preventive maintenance
prevails, which, as a myopic strategy, is unable to predict the evolution of the degradation pro-
cess, and treats severe problems only when they occur. Another merit of the proposed predictive
methodology is that the objective function explicitly captures the trade-off between maintenance
costs and the health condition of the track. This is crucial for railway infrastructure managers,
who require transparent tools that facilitate the decision making process. Moreover, other factors
concerning the management of railway infrastructures, like closure time due to maintenance, can
also be conveniently added to the MPC optimization problem. In addition, limits on the admissible
degradation level can be included effortlessly as constraints in MPC, which is especially useful for
the maintenance of safety-critical components.

This paper is organized as follows: first a brief introduction to MPC is presented in Section
2; then Key Performance Indicators (KPIs) and maintenance options for railway infrastructures
are explained in Section 3; the proposed MPC approach is explained in detail in Section 4 and
illustrated by the case study in Section 5; finally a short summary and remarks on future work is
provided in Section 6.

2 Model Predictive Control (MPC)

Model Predictive Control (MPC) is an advanced design methodology for control systems, which
has gained wide popularity in the process industry since the last decade. MPC was pioneered
simultaneously by Richalet et al. [12,13] and Cutler and Ramaker [14] in the late 1970s. The main
reasons for the success of MPC in the process industry are:

– Easy handling of multi-input-multi-output (MIMO) processes, non-minimum phases processes,
processes with large time delay, and unstable processes;

– Easy tuning of parameters (in principle only three parameters need to be tuned);
– Natural embedding of constraints in a systematic way;
– Easy handling of structural changes by regularly updating the process model.

Five elements are essential for MPC:

1. A process model
2. A cost criterion



MPC for Railway Maintenance Operations 3

(a) Loose ballast indicated by the presence of white
dust

(b) Severe squats (type C)

Fig. 1: Two different defects in railway infrastructures

3. Constraints
4. Optimization algorithms
5. Receding horizon principle.

For maintenance operations planning in railway network, the process model can be the degradation
model or the performance indicator of an asset, the cost criterion can be a trade-off between track
condition and maintenance cost, and the constraints can be an upper bound on the maximum
degradation level and budget. Depending on the process model, which might contain continuous
and discrete variables, the cost criterion, and the imposed constraints, the computation of a se-
quence of future control actions at each sample step will result in different optimization problems,
which must be solved by some mathematical programming algorithm. For railway maintenance,
since the degradation of the track condition is a continuous process and maintenance operations
are intrinsically discrete, the planning of maintenance operations should in general result in a
mixed integer programming problem. This optimization problem must be solved at each sample
step, providing a sequence of optimal discrete control actions. The length of the sequence is called
prediction horizon when using a receding horizon approach. Instead of using the whole sequence
of predicted control actions, only the first entry is applied, and a new sequence is computed at the
next sample step with updated information, e.g. new measurements of the track condition.

Despite its success in the process industry, the applications of MPC in railway maintenance
operations are scarce, although the application of mathematical models and optimization is not
uncommon in maintenance [15,16]. The process model associated with most operations planning
problems usually contains both continuous and discrete dynamics. In [17] an MPC scheme is ap-
plied to plan risk mitigation actions together with other control variables, using a mixed integer
quadratic formulation. For complex decision making problems, a hierarchical or distributed ap-
proach is often applied to render the problem tractable. See [18] for an application of hierarchical
distributed MPC to risk management of a network of irrigation canals, and [19] for applications
of hybrid MPC to interventions in behavioral health and inventory management in supply chains.
As a model-based decision making approach, MPC can be viewed as an extension of condition-
based maintenance, as it does not only take into consideration the current track condition, but
also predicts the track condition, using updated track measurements, as well as knowledge on the
process, e.g. degradation models.

3 Railway Maintenance

A brief introduction on railway maintenance is presented, explaining how the track condition is
measured in practice, as well as typical operations on track maintenance.
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3.1 Key Performance Indicators (KPIs) for maintenance planning

To ensure the proper functioning of railway tracks, both temporal and spatial characteristics need
to be considered in the maintenance decisions. For this purpose, Key Performance Indicators
(KPIs) are developed to capture the dynamics of track deterioration and the evolution of defects.
These KPIs usually consider a broad set of measurements from different sources and define the
health condition of the track as a single number. When normalized, 0 would mean a healthy track,
while 1 a track with very bad condition. This health number changes over time, and when reaching
some threshold corrective maintenance is performed.

In the case of ballast, the track bed positioning and alignment changes in terms of speed and
number of passing trains have to be considered in the design of KPI. The following measurements
are usually considered [20,21]: (1) cyclic top, which is a measure of resonant frequencies, (2) rail
spacing compared to the standard gauge, (3) a measure of cant variation over 3 m and 5 m, (4)
lateral geometry (alignment) - rail alignment, averaged over the left and right rail, expressed as
short and long wave standard deviations.

In [10] some KPIs are proposed for maintenance operations related to squats using axle box
acceleration measurements. The number of squats of type A (light squats in early stage), number
of squats of type B or C (severe squats), number of potential risk points, and density of squats
are the KPIs proposed. Field observations also revealed that different squats have different rates
of growth, thus three different evolution scenarios were proposed: slow growth, average growth,
and fast growth. Due to the big number of KPIs, temporal dependence and scenarios, one global
KPI using a fuzzy inference system was proposed to facilitate maintenance decisions. This global
KPI for squats represents the health condition of a cluster of defects and it is represented by a
score between zero (representing a healthy state of the track) and two (indicating an unhealthy
condition of the track).

3.2 Maintenance options

This paper evaluates three possible maintenance options: (1) to do nothing, (2) corrective main-
tenance: tamping for ballast or grinding for squats, (3) replacement: full ballast replacement or
track replacement. Next, a short description of the maintenance actions is given.

In the case of tamping, the track geometry is adjusted when the track alignment is outside the
accepted tolerances. Tamping machines are able to pack the ballast under the sleepers in order
to correct the alignment of the rails using measurements of the track geometry, estimating the
needed adjustments, lifting/inserting the track and at the same time vibrating tamping arms [22].
Tamping can improve the track condition. However, in the worst case, vibrating arms into the
ballast could lead some break-up of the stones which can accelerate the ballast degradation. When
the ballast has reached the end of its useful life, then ballast renewal must be carried out.

In the case of grinding, the Dutch railways use a cyclic grinding strategy that is not based on
the condition of the track. This mean that sections that are healthy are ground, and also sections
that need replacement are ground in spite of its inefficiency. Squats in early stage can be removed
by grinding, because they have not developed the network of crack beneath yet. Therefore, early
detection of RCF rail defects is cost-effective when a grinding campaign is scheduled appropriately
in time. Furthermore, grinding is not efficient for cracks deeper than 5-7 mm. Grinding severe
squats can delay rail replacement but may accelerate the squat evolution, because the cracks are
not yet removed.

When the conditions of either ballast or track has worsened, and tamping or grinding is in-
effective, then replacement will be the only option. With predictive models that incorporate the
degradation process of the ballast or the track, it is possible to estimate the life cycle of the track
and to inform the infrastructure manager about the tentative time for replacing. This is crucial
information because replacement campaigns are extremely costly and the track needs to be un-
available for a long period. In the case of ballast replacement, keeping a similar total volume of
stones before and after the replacement is essential. Long segments with deteriorated ballast will
require a higher packing level of the damaged ballast [23]. In the case of rails, they are typically
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replaced according to predefined estimated life cycle, tonnage, wear limit, fatigue, and weather
conditions. Determining the optimal rail replacement interval is a critical issue for rail industry,
due to its high cost and consequences over the entire performance of the infrastructure.

Figure 2 shows a generic KPI and the typical effect of corrective maintenance or replacement.
While a corrective maintenance (grinding or tamping) will improve the performance, a general
drop of the performance is usually observed. In the case of replacement, while more expensive
than corrective maintenance, it usually leads into a healthy status for a longer period of time. In
the next section, a hybrid MPC methodology is proposed to capture the principal dynamics of
railway maintenance operation.
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Fig. 2: Generic KPI evolution over time.

4 MPC for Maintenance Operation Planning

A maintenance model describing the degradation dynamic of the track condition is presented, with
three maintenance operations as inputs. This linear model with discrete inputs is then transformed
into a standard Mixed Logic Dynamic (MLD) system, and an MPC scheme is designed for this
MLD system.

4.1 Maintenance Model Description

We consider the following discrete-time state space model for the degradation dynamic (unhealthy
condition) of a certain asset (e.g. track with squats, or ballast) in a segment of track:

x1(k + 1) = a1x1(k) + f1(x(k), u(k))

x2(k + 1) = x2(k) + f2(x(k), u(k))
(1)

with constraint
m ≤ xi(k) ≤ M ∀i ∈ {1, 2} (2)

The state vector is x(k) =
[
x1(k) x2(k)

]T
. In particular, x1 represents the level of degradation

of a part of the track regarding a certain type of fault, e.g. the average length of the squats in a
cluster. The parameter a1 is the degradation rate of the track, which is assumed to be larger than
1 so that the track condition deteriorates exponentially as observed in late stage of degradation.
The state x2 records the level of degradation upon the last corrective maintenance operation. This
is necessary because corrective operation will be unlikely to bring the track back to a condition
healthier than the previous corrective operation. The states are bounded in the interval [m, M ]
by the constraint (2), with m and M representing the lowest and highest admissible degradation
level, respectively.
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The input u(k) ∈ {1, 2, 3} is a discrete input representing the three major maintenance op-
erations: do nothing, corrective maintenance, and replacement, respectively. The interpretation of
the input u is given in Table 1.

Table 1: Interpretation of maintenance operations and the corresponding value of input
Input value Maintenance operation Effect on the track condition

1 do nothing no effect

2 corrective maintenance bring the track condition to a healthier level,
but usually not as healthy as the condition
upon the last corrective maintenance

3 replacement bring the track condition to a state with no
degradation

The effects of the maintenance operations are captured by the discontinuous functions f1 and
f2, which take the following representation:

f1(x(k), u(k)) =







0 if u(k) = 1

−a1x1(k) + x2(k) if u(k) = 2

−a1x1(k) +m if u(k) = 3

(3)

and

f2(x(k), u(k)) =







0 if u(k) = 1

α if u(k) = 2

−x2(k) +m if u(k) = 3

(4)

with α, which usually takes a small positive value, indicating the offset of the effect of one corrective
maintenance from the last corrective maintenance, i.e. a corrective maintenance can only bring
the condition to a level which is α worse than that just after the previous corrective maintenance
operation.

4.2 Transformation into an Mixed Logic Dynamic (MLD) Systems

The system (1) can be viewed as a hybrid system with linear plant model (degradation process)
and switching control. The difficulty of designing a controller for such systems lies in the different
conditions triggered by different values of the control input (equations (3)–(4)). By associating the
three conditions triggered by the three control actions with two binary variables δ1(k) and δ2(k),
the system (1) can be transformed into a Mixed Logic Dynamic (MLD) system. The translation
from the control input u(k) to the binary variables δ1(k) and δ2(k) is shown in Table 2.

Table 2: Translation from control input to binary variables
u(k) δ1(k) δ2(k)

1 0 0

2 0 1

3 1 0

We eliminate the fourth option (δ1 = δ2 = 1) by adding the constraint:

δ1(k) + δ2(k) ≤ 1 (5)
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After translating the control input u(k) into binary variables δ1(k) and δ2(k), system (1) can
be rewritten as

x1(k + 1) = a1x1(k) + δ2(k)(−a1x1(k) + x2(k)) + δ1(k)(−a1x1(k) +m)

= a1x1(k)− a1δ1(k)x1(k)− a1δ2(k)x1(k) + δ2(k)x2(k) + δ1(k)m

x2(k + 1) = x2(k) + αδ2(k) + δ1(k)(−x2(k) +m)

= x2(k)− δ1(k)x2(k) +mδ1(k) + αδ2(k)

(6)

The system (6) is non-linear in the state x(k) and in the two binary variables δ1(k) and δ2(k).
The non-linear system can be transformed into the following linear system:

[
x1(k + 1)
x2(k + 1)

]

=

[
a1 0
0 1

] [
x1(k)
x2(k)

]

+

[
m 0
m α

] [
δ1(k)
δ2(k)

]

+

[
−a1 −a1 1 0
0 0 0 −1

]







z1(k)
z2(k)
z3(k)
z4(k)







(7)

by introducing four auxiliary variables

z1(k) = δ1(k)x1(k) z2(k) = δ2(k)x1(k)

z3(k) = δ2(k)x2(k) z4(k) = δ1(k)x2(k)

The equation for each auxiliary variable

zp(k) = δi(k)xj(k) p ∈ {1, 2, 3, 4}, i, j ∈ {1, 2}

is equivalent to the following four inequality constraints [24,25]:







zp(k) ≤ Mδi(k)

zp(k) ≥ mδi(k)

zp(k) ≤ xj(k)−m(1− δi(k))

zp(k) ≥ xj(k)−M(1− δi(k))

(8)

which results in sixteen inequality constraints in total.
Finally, the mixed logical dynamic (MLD) system [24] described by the linear dynamics (7)

and linear constraints (2), (5), (8) can be formulated in the following compact form 1:

x(k + 1) = Ax(k) +B1δ(k) +B2z(k) (9)

E1x(k) + E2δ(k) + E3z(k) ≤ g (10)

with δ(k) =
[
δ1(k) δ2(k)

]T
and z(k) =

[
z1(k) z2(k) z3(k) z4(k)

]T

4.3 The MLD-MPC Problem and its solution via MIQP

Consider the MLD system (9)–(10). Denote by x̂(k + j|k) the estimated state at sample step k

with information available at sample step k+ j. Likewise, define ẑ(k+ j|k) as the estimate of the
auxiliary variable at sample step k + j. Let Np be the prediction horizon2, and define

x̃(k) =
[
x̂T(k + 1|k) ... x̂T(k +Np|k)

]T

1 Since the introduced binary variable δ is a full replacement of the original discrete control input u,
which no longer appears in the resulting MLD system, we treat δ as control input for the MLD-MPC
problem

2 Here we set the control horizon equal to the prediction horizon
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as the estimates of the future state at sample step k. The estimates of input and auxiliary variables
(δ̃(k) and z̃(k)) can be defined in a similar way. Grouping the input and auxiliary variables together
we further define

Ṽ (k) =
[

δ̃T(k) z̃T(k)
]T

After successive substitution of (9), the state prediction equation can then be written in the
following compact form

x̃(k) = M1Ṽ (k) +M2x(k) (11)

The goal of maintenance operations planning is to minimize degradation with the lowest possible
maintenance cost, which can be formulated by the following objective function

J(k) = JPerf(k) + λJCost(k) (12)

with JPerf(k) and JCost(k) representing the performance and the cost of maintenance operations,
respectively, while the weighting parameter λ > 0 captures the trade-off of the two conflicting
objectives.

More specifically, if a weighted 2-norm is considered for performance, i.e. JPerf(k) = ‖x̃(k)‖
2
P ,

with P positive definite weighting matrix, a mixed integer quadratic programming (MIQP) prob-
lem will be obtained. Alternatively, a 1-norm or an ∞−norm can also be applied, with JPerf(k) =
‖P x̃(k)‖1 or JPerf(k) = ‖P x̃(k)‖

∞
, and P a matrix with non-negative entries. If a 1-norm or an

∞−norm is applied, the optimization problem can be recast as a mixed integer linear programming
(MILP) problem, which is generally easier to solve than an MIQP problem.

The cost of maintenance operations JCost(k) has the following linear representation:

JCost(k) = Rδ̃(k) = QṼ (k)

with R a matrix with non-negative entries assigning weights to different maintenance operations,
i.e. the cost of corrective maintenance and replacement. Since no weights are assigned to the
auxiliary variables, we have Q =

[
R 0

]
.

For illustration purposes, we consider now a weighted 2-norm for JPerf. Given the weighting
matrices P and Q, the objective function can be rewritten as:

J(k) = x̃(k)TP x̃(k) + λQṼ (k) (13)

= (M1Ṽ (k) +M2x(k))
TP (M1Ṽ (k) +M2x(k)) + λQṼ (k) (14)

= Ṽ T(k)S1Ṽ (k) +
(
S2 + xT(k)S3

)
Ṽ (k) + S4 (15)

Note that S4 is a constant and can be removed from the objective function without changing
the solution of the optimization problem. Finally we can formulate the MLD-MPC problem as a
standard MIQP problem with decision variable Ṽ (k):

min
Ṽ (k)

Ṽ T(k)S1Ṽ (k) + (S2 + xT(k)S3)Ṽ (k) (16)

s.t. F1Ṽ (k) ≤ F2 + F3x(k) (17)

MIQP problems are identified as NP-hard [26], indicating that in practice the solution time might
grow exponentially with the problem size. Among the major algorithms for solving MIQP and
MILP problems, branch-and-bound methods [27] are generally regarded as the most efficient ones.

5 Case Study

Now we consider a simple case study to illustrate the proposed approach. An MPC controller
for the MLD system (9)–(10) with quadratic objective function (16) is implemented in Matlab,
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and the MIQP optimization problem at each sample step is solved using the Gurobi Optimizer
5.6.3, which can solve MIQP and MILP problems. The parameters for the degradation dynamics,
as well as the performance criteria (in particular, the parameters for the objective function) are
given in the appendix. We present the simulation results with three different prediction horizons
(Np = 5, 10, 15), and three different weights (λ = 0.1, 1, 10).

A simple cyclic preventive maintenance approach with the same objective function is also
implemented and optimized in Matlab for a comparison. The two decision variables for the cyclic
approach are the period for corrective maintenance (Tc) and the period for replacement (Tr). The
latter is usually fixed as a multiple of the former, i.e. Tr = nTc, thus we determine the multiple n

instead of Tr. The planning horizon is the whole simulation time, and an iteration of all possible
combinations of Tc and n is applied to generate the best possible cyclic maintenance plan for a
given cost criterion.
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Fig. 3: Predicted state x and control input u for different prediction horizons and a small λ
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Fig. 4: Predicted state x and control input u for different prediction horizons and a medium λ
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(c) Np = 15, λ = 10

Fig. 5: Predicted state x and control input u for different prediction horizons and a big λ

The simulation results from the MPC approach are given in Figure 3–5 and the results from
the cyclic approach are given in Figure 6. The flexibility of MPC is clearly demonstrated by the
resulting maintenance plans, which all suggest more frequent corrective maintenance as the track
condition deteriorates, despite the differences in weighting parameters and the prediction horizon.



10 Zhou Su et al

Time (days)

0 100 200 300 400 500

x
1

0

0.5

1

Time (days)

0 100 200 300 400 500

x
2

0

0.5

1

Time (days)

0 100 200 300 400 500

u

1

2

3

(a) λ = 0.1

Time (days)

0 100 200 300 400 500

x
1

0
0.5

1

Time (days)

0 100 200 300 400 500

x
2

0
0.5

1

Time (days)

0 100 200 300 400 500

u

1
2
3

(b) λ = 1

Time (days)

0 100 200 300 400 500

x
1

0

0.5

1

Time (days)

0 100 200 300 400 500

x
2

0

0.5

1

Time (days)

0 100 200 300 400 500

u

1

2

3

(c) λ = 10

Fig. 6: Maintenance plans and the corresponding effect on the track degradation level with different
λ

Figure 3–5 also indicate that a longer prediction horizon results in a more cautious maintenance
plan, i.e. earlier replacement and lower overall degradation level. The weight λ in the objective
function represents the trade-off between the track condition and the maintenance cost. This is
also shown in Figure 3–5, where it can be noticed that for a larger λ, the first replacement is
suggested at a later time step, for a given Np. On the contrary, the cyclic approach suggests the
same optimal maintenance plan for the three different λ (corrective maintenance every 65 days
and replacement every 130 days).

The values of the closed-loop objective function for both approaches are given in Table 3. It
can be seen that with a long enough prediction horizon, the maintenance plan generated by MPC
always out performs the plan generated by the cyclic approach.

Table 3: Evaluation of closed-loop objective function for MPC (JMPC) and cyclic approach (JCYC).
For a given λ, the lowest objective function value is marked in bold.

λ
JMPC

JCYC
Np = 5 Np = 10 Np = 15

0.1 31.85 22.08 11.88 12.65

1 125.63 107.80 90.23 97.25

10 797.53 726.80 702.25 943.25

6 Conclusions

In this contribution a hybrid Model Predictive Control (MPC) approach with discrete input has
been developed to support decision making in railway maintenance. We have provided a detailed
procedure to illustrate how to transform the model-based optimization problem into a standard
mixed integer quadratic programming problem. Numerical simulations have been performed for
a case study with different parameter settings, and the results indeed demonstrate the potential
of MPC as an optimization-based approach to aid decision making in maintenance of railway
infrastructures.

Future work includes developing a more extensive process model with parameters obtained from
track measurements, and extending the current approach from maintenance operations planning
for a single segment of track to joint decision making for multiple segments.
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Appendix

The values and interpretation of the parameters for the degradation dynamics (1) are given in
Table 4. The initial condition is x(0) = [mm]T, and the sampling time is 5 days.

Table 4: Parmaters for degradation dynamics
Parameter Value Interpretation

a1 1.09 degradation rate

α 0.1 offset for corrective maintenance

m 0.001 minimum degradation level

M 1 maximum allowed degradation level

The matrix P is a square matrix consisting of diagonal replications of the diagonal matrices
PSub = diag(1, 0):

P = diag




PSub, . . . , PSub
︸ ︷︷ ︸

Np times






The matrix Q is a block-row matrix containing Np horizontal replications of the diagonal matrix
QSub = diag(r, 1, 0, 0, 0, 0):

Q =




QSub, . . . , QSub
︸ ︷︷ ︸

Np times






where the parameter r is the ratio of the cost of one replacement over the cost of one corrective
maintenance. For the case study we assume replacement is 30 times more costly than corrective
maintenance, thus r = 30.


