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Sustainable model-predictive control in urban traffic networks: Efficient

solution based on general smoothening methods

Anahita Jamshidnejad, Ioannis Papamichail, Markos Papageorgiou, Bart De Schutter

Abstract—Traffic-responsive control approaches, including
model-predictive control, are efficient methods for making the
best use of the available network capacity. Moreover, gradient-
based approaches, which can be applied to smooth optimization
problems, have proven their efficiency, both computationally and
performance-wise, in finding optima of optimization problems. In
this paper, we propose a model-predictive control system for an
urban traffic network that applies a gradient-based optimization
approach to solve the control optimization problem. The con-
troller uses a new smooth integrated flow-emission model to find
a balanced trade-off between reduction of the congestion and
of the total emissions. We also introduce efficient smoothening
methods for nonsmooth mathematical models of physical systems.
The effectiveness of the proposed approach is demonstrated via
a case study.

Index Terms—model-predictive control, smoothening,
gradient-based optimization, urban traffic control.

I. INTRODUCTION

Traffic congestion increases the fuel consumption, since

vehicles will idle in standing queues for a while. In addition to

that, these vehicles will distribute harmful substances such as

nitrogen oxides (NOx), hydrocarbon (HC), carbon monoxide

(CO) and dioxide (CO2) in the environment [1]–[4]. The

mentioned consequences are the source of huge economical

and environmental cost for modern societies. Hence, from the

economical and environmental points-of-view, efficient actions

should be undertaken to reduce both traffic congestion and

emissions, especially in urban areas.

Inefficient use of the available capacity of the urban traffic

networks is one of the main reasons of traffic congestion

[5]. Real-time traffic-responsive control strategies, including

optimization-based and especially model-predictive control

(MPC) approaches, can be used to manage the road capac-

ity in both freeways and urban areas [6]–[10]. MPC is an

optimization-based control approach that originates from the

process industry, and unlike regular optimal control that works

in an entirely open-loop scheme, it uses at every time step

new measurements of the outputs and/or states of the system.

Hence, a system that is controlled via a model-predictive

controller is more robust towards external disturbances.

The focus of this paper is on the development of MPC

strategies for urban traffic networks in order to reduce both

congestion and emissions. The MPC controller needs a model

of the system that is accurate, and at the same time simple

and fast for real-time applications. Different models have been

proposed for urban traffic flow modeling, such as the store-

and-forward model [11], which has also been used in [12] and

[6]; the BLX model [13]; the S-model, and a macroscopic

urban traffic flow model developed by Barisone et al. in [14].

Moreover, to solve the optimization problem of the MPC

controller, we want to apply efficient gradient-based ap-

proaches. However, many of the available mathematical mod-

els, including traffic models, have nonsmooth functions or

discrete variables in their formulations. Applying these models

as prediction models of MPC controllers results in a nons-

mooth MPC optimization problem, which restricts application

of gradient-based approaches, e.g., methods that are based on

Pontryagin’s principle [15], [16].

Hence, we propose general smoothening methods for math-

ematical models of physical systems. For illustration purposes,

we consider the S-model [17], which is a nonlinear flow model

for urban traffic networks. However, we should note that the

proposed smoothening methods can be applied to many other

mathematical models too.

One of the efficient gradient-based approaches that has

been widely used [18], [19] is the feasible direction algorithm

proposed by Papageorgiou et al. [20]. To identify an efficient

search direction for the optimization, we will apply the latest

version of a well-known approach called the resilient back-

propagation (RProp) given by Bailey in [21], while the main

approach had been initially introduced by Riedmiller et al. in

[22].

The structure of this paper is as follows; in Section II, we

introduce general smoothening approaches for mathematical

models of physical systems that involve nonsmooth functions.

Section III introduces a general approach for transforming

a time-delayed differential equation with time-varying time

delays into an equivalent discrete-time time-delayed difference

equation. Section IV discusses the urban traffic flow model,

called the S-model, used in this paper for estimation of

the urban traffic flows. We propose extensions to the S-

model that allows the model perform more accurately, and

for more possible traffic scenarios. Section V proposes a new

integrated framework that results in an urban traffic flow and

emission model that can be used as the prediction model of an

MPC controller. In Section VI an MPC controller for urban

traffic networks is developed that finds a balanced trade-off

between reduction of the total time spent and total emissions

of the vehicles. We also consider a gradient-based optimiza-

tion solver that benefits from the resilient back-propagation

(RProp) method. Section VII presents the results of a case

study.

Contributions of the paper

We propose general smoothening methods for mathematical

models of physical systems, where the proposed methods

can be applied to various models with nonsmooth functions,

including transportation models.The resulting smooth models

can be used in model-based optimal control techniques, e.g.,

in MPC, where the optimization problem can be solved by

efficient smooth and gradient-based solvers.
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We also develop a general formulation for transforming

a time-delayed system with a time-varying delay given in

the continuous-time domain into an equivalent time-delayed

system in the discrete-time domain. The resulting formulation

can be used in discrete-time physical models of systems that

involve time-varying time delays, and can give much more

accurate results than a time-independent delay approximation.

Implementing the proposed general smoothening methods,

we show that even for nonsmooth and nonlinear flow models,

we can easily apply an efficient gradient-based optimization

approach that uses resilient back-propagation (RProp) and

solves the optimization problem of the MPC controller much

faster than nonsmooth optimization approaches. Finally, all

these methods are combined to develop a novel approach to

urban traffic network control aiming at optimizing a trade-off

of congestion mitigation versus emission reduction.

II. GENERAL SMOOTHENING METHODS FOR

MATHEMATICAL MODELS OF PHYSICAL SYSTEMS

Many of the available mathematical models of physical sys-

tems, including transportation networks, involve non-smooth

functions in their formulations. Some examples of such trans-

portation models include the cell transmission model (CTM)

[23], the dynamic IFTN model [24] applied in modeling the

container flows, and also max-plus-linear models, e.g., see

[25], that are used to model railway transportation systems. It

is very beneficial if we can use these models as the prediction

model of an MPC controller, and still apply efficient gradient-

based approaches (e.g., Pontryagin’s approach [15]) to solve

the optimization problem of the MPC. For this aim, we first

need to find general approaches to render these non-smooth

functions smooth and hence, differentiable. In this section,

we develop smooth approximate functions for the nonsmooth

indicator, maximum, minimum, floor, ceiling, and remainder

functions that appear frequently in mathematical models of

physical systems.

A. Indicator function

The indicator function Ix≥a is defined by

Ix≥a =

{

1, x ≥ a
0, x < a

, (1)

where in [26] the smooth form of the indicator function is

approximated by a sigmoid function (see the first plot of

Figure 1) Ix≥0 ≈ (1 + e−αx)
−1

with α > 0 a smoothening

parameter.

B. Maximum and minimum functions

It is easy to verify that for α ≫ 1 we have (also see the

second plot of Figure 1)

max
i=1,...,n

{xi} ≈
1

α
log
∑n

i=1
eαxi , (2)

min
i=1,...,n

{xi} ≈ −
1

α
log
∑n

i=1
e−αxi . (3)

C. Floor and ceiling functions

The smooth form of the floor and ceiling functions can

be constructed from pieces of differently transformed sigmoid

functions:

⌊x⌋ ≈ −0.5 +
∑

k∈Z

(

(

1 + e−α(x−k)
)−1

− 0.5

)

, (4)

⌈x⌉ ≈ 0.5 +
∑

k∈Z

(

(

1 + e−α(x−k)
)−1

− 0.5

)

, (5)

with ⌊·⌋ and ⌈·⌉ indicating the floor and ceiling function,

respectively. The third plot of Figure 1 illustrates the floor

function (solid curve) and its smooth form (red dotted curve).

D. Remainder function

The remainder function rem{a, b} yields the remainder

value of the division of a by b, i.e., rem{a, b} = a − qb,
where q is the quotient. The fourth plot of Figure 1 illustrates

the graph representing rem{a, b} for b = 2. We consider the

concept of Euclidean division:

• for a positive divisor b > 0, we have q =
⌊

a
b

⌋

,

• for a negative divisor b < 0, we have q =
⌈

a
b

⌉

.

The above expressions can equivalently be expressed by

q =
1 + sign(b)

2

⌊

a

b

⌋

+
1− sign(b)

2

⌈

a

b

⌉

, (6)

with sign(x) =

{

1 x > 0
−1 x < 0

. We can write sign(x) =

Ix≥0 − Ix≤0. Therefore,

sign(x) ≈
(

1 + e−αx
)−1

− (1 + eαx)
−1

, (7)

and for the remainder function we obtain

rem{a, b} ≈a− b
∑

k∈Z

(

(

1 + e−α( a
b
−k)
)−1

− 0.5

)

+
b

2

(

(

1 + e−αb
)−1

−
(

1 + eαb
)−1
)

. (8)

III. DISCRETIZATION OF A DIFFERENTIAL EQUATION WITH

TIME-VARYING TIME DELAY

Consider the time-delayed differential equation

ẋ(t) = Ax(t) +Bu(t− τ(t)) + Ce(t), (9)

with u(·) and e(·) two continuous-time functions representing

the inflow and outflow functions of the dynamic system.

We should first discretize the model to find x̃(k + 1) from

the current state x̃(k), where the discrete-time variables are

identified by a tilde, and the time step counter is denoted by

k. Additionally, τ(k) = δ(k)h + γ(k), with h the sampling

time and

δ(k) =
⌊

τ(k)/h
⌋

, γ(k) = rem{τ(k), h}, (10)
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Figure 1. Nonsmooth functions (black curves) and their smooth approximators (red curves); first plot (from left): indicator function, second plot: maximum
function, third plot: floor function, fourth plot: remainder function.
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Figure 2. Illustration of a link in an urban traffic network at time step kd,
and with the entering, arriving, and leaving flows.

Lemma III.1. The equivalent difference equation in the

discrete-time domain of the delayed differential equation (9)-

(10), and with an input function u(t) that is piece-wise

constant in the interval [ch, (c+ 1)h), c ∈ Z, is

x̃(k + 1) = Ãx̃(k)+

δ(k−1)−δ(k)+1
∑

i=0

B̃i(k)ũ(k − δ(k − 1)− 2 + i) + C̃ẽ(k),
(11)

with B̃0(k) = γ(k − 1)/h, B̃i(k) = 1 for i ∈ {1, . . . , δ(k −
1)− δ(k)}, and B̃δ(k−1)−δ(k)+1(k) = (h− γ(k)) /h.

For the proof, see Appendix A.

IV. URBAN TRAFFIC FLOW MODEL

A. Original S-model

The S-model is a nonlinear and discrete-time urban traffic

flow model that provides an appropriate balance between low

computation time and desirable accuracy. The model was

introduced by Lin et al. [17], where the simulation sampling

time of the S-model is one cycle time of the downstream

intersection of a link. Therefore, the model updates the states

less frequently than other macroscopic traffic models that

typically have a sampling time of 1 s (such as the BLX

model [13], the model of Kashani and Saridis [27], and the

model proposed by van den Berg et al. [9]). This characteristic

that helps the S-model to be faster for model-based control

applications, and to provide a trade-off between accuracy and

computation time. Moreover, the simulation sampling time for

each link may differ from other links.

In the S-model, a network is modeled as a collection of

nodes and links, where each node represents an intersection

and each link represents a road. We use the pair (u, d) to

indicate a link with node u as its starting node (i.e., the

upstream intersection of the corresponding road), and node

d as its end node (i.e., the downstream intersection of the

corresponding road). The set of all links and intersections

within the network are denoted by, respectively, L and N ,

and the state variables of the model include the total number

of vehicles nu,d(kd) on link (u, d), and the number of vehicles

qu,d,o(kd) in the queue on link (u, d) that intend to move to the

outgoing link (d, o) at time step kd for all (u, d) ∈ L. Both

nu,d(kd) and qu,d,o(kd) are given in “number of vehicles”.

The set of all downstream nodes of the outgoing links of link

(u, d) is denoted by O(u,d), and the set of all upstream nodes

of the incoming links of link (u, d) is denoted by I(u,d).

The state variables of the S-model are updated at every

simulation time step kd of the link (u, d) by

nu,d(kd + 1) = nu,d(kd) +
(

αenter,l
u,d (kd)− αleave,l

u,d (kd)
)

cd,

(12)

qu,d,o(kd + 1) = qu,d,o(kd) +
(

αarrive,q

u,d,o (kd)− αleave,l
u,d,o (kd)

)

cd,

(13)

with qu,d(kd) =
∑

o∈O(u,d)
qu,d,o(kd). Note that cd is the

cycle time of the downstream intersection d, αenter,l
u,d (kd) and

αleave,l
u,d (kd) are the average entering and exiting flow rates of

link (u, d) within the time interval [kdcd, (kd + 1)cd), and

αarrive,q

u,d,o (kd) and αleave,l
u,d,o (kd) are the average arriving flow rate

at the tail of the waiting queue and the average leaving flow

rate of the sub-stream that intends to move towards o within

[kdcd, (kd+1)cd). Note that these flow rates are computed for

all the intermediate links of the S-model using the equations

that will be given in this section, except for αenter,l of the source

links and αleave,l of the exit links in the network. The entering

flow rates of the source links are indeed the demand profiles

that should either be given to the network as an input, or that

should be determined by a prediction model. Similarly, the

leaving flow rates of the exit links should be defined/given as

the boundary conditions of the network or should be predicted

by a model. Moreover, qu,d(kd) is the total number of vehicles

waiting in the queue on link u, d at time step kd (note that

nu,d and qu,d,o admit real non-negative values in the S-model).

Moreover, we have (also see Figure 2):

αenter,l
u,d (kd) =

∑

i∈I(u,d)

αenter,l
i,u,d (kd), (14)

αleave,l
u,d (kd) =

∑

o∈O(u,d)

αleave,l
u,d,o (kd), (15)
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αleave,l
u,d,o (kd) = min

(

βu,d,o(kd)µu,dgu,d,o(kd)/cd,

qu,d,o(kd)/cd + αarrive,q

u,d,o (kd),

βu,d,o(kd)
/

∑

i∈I(d,o)

βi,d,o(kd)
Cd,o − nd,o(kd)

cd

)

,

(16)

αarrive,q

u,d (kd) =

(cd − γu,d(kd)) /cd
∑

i∈I(u,d)

αleave,l
i,u,d (kd − δu,d(kd))+

γu,d(kd)/cd
∑

i∈I(u,d)

αleave,l
i,u,d (kd − δu,d(kd)− 1),

(17)

αarrive,q

u,d,o (kd) = βu,d,o(kd) · α
arrive,q

u,d (kd), (18)

where

δu,d(kd) =
⌊

τu,d(kd)/cd

⌋

, (19)

γu,d(kd) = rem{τu,d(kd), cd}, (20)

with µu,d the saturated flow rate of link (u, d), gu,d,o(kd) the

green time length during [kdcd, (kd+1)cd) for the traffic sub-

stream that leaves link (u, d) towards node o, βu,d,o(kd) the

fraction of vehicles within link (u, d) that intend to turn to o,

αarrive,q

u,d (kd) the average within [kdcd, (kd + 1)cd) of the flow

rate of vehicles arriving at the tail of the queue in link (u, d),
and τu,d(kd) the average delay time (from now on, we just

call it the delay time) of the vehicles on link (u, d) within

the interval [kdcd, (kd + 1)cd), i.e., the time vehicles entering

the link need to reach the tail of the waiting queue. For more

details about the S-model, we refer the readers to [17].

In the S-model the simulation sampling time of different

links might not be the same and hence, their time steps may

not be synchronized automatically. However, especially for

the neighboring links, for which some variables are shared,

synchronization of the joint variables between neighboring

links is essential. For instance, αleave,l
i,u,d (kd) for link (i, u) forms

a fraction of αenter,l
u,d (kd) for link (u, d), while αleave,l

i,u,d is updated

only at ku ∈ Ku, which may not be synchronized with

kd ∈ Kd.

Synchronization of the joint variables: Figure 3 illustrates

αleave,l
i,u,d (·), which is updated at time steps ku ∈ Ku, while we

need to find αenter,l
i,u,d at time step kd. We first make the discrete-

time functions αleave,l
i,u,d and αenter,l

i,u,d continuous in time, assuming

that the continuous-time functions αleave,l,c
i,u,d (·) and αenter,l,c

i,u,d (·)

are piecewise constant. Hence, αleave,l,c
i,u,d (·) between any two

consecutive time steps ku and ku + 1 equals αleave,l
i,u,d (ku).

Similarly, αenter,l,c
i,u,d (·) between any two consecutive time steps

kd and kd+1 equals αleave,l
i,u,d (kd). Since the number of vehicles

that leave link (i, u) and enter link (u, d) between any two

consecutive time steps kd and kd+1 are equal, the highlighted

surfaces in Figure 3 should have the same area, i.e.,

αenter,l
i,u,d (kd) =

1

cd

∫ (kd+1)cd

kdcd

αleave,l,c
i,u,d (t) · dt. (21)

kd kd + 1

ku − 1 ku ku + 1 ku + 2

cd

cu

αleave,l
i,u,d

αenter,l
i,u,d

αenter,l
i,u,d (kd)

Figure 3. Synchronization of joint variables for the neighboring links.

B. Extensions for the S-model

In the original S-model, only the dynamics of the system

within the network of interest is considered. However, the

dynamics of the source nodes, which are located on the

boundaries of the network, is missing. This may not bring

issues when the source links of the network are under-

saturated. However, for larger demands at the source nodes

that may result in saturated and over-saturated links, defining

the appropriate dynamics for the boundaries of the network is

essential. This is because the additional vehicles that cannot

immediately enter the network should not be injected into the

entering links. However, this issue occurs with the original

S-model and may lead to negative states with large absolute

values. In contrast, those vehicles should be kept in queues

that will gradually form at the sources of the network, and they

should be injected into the network only when the available

free space of the source links allows it.

In addition, in the original S-model the formula for the

computation of the arriving flow αarrive,q

u,d,o (kd) (see (17)) is

extracted based on the (hidden) assumption that the delay

times for the vehicles are time-independent (see [28] for

more details). Numerical experiments show that with this

assumption and by using (17), in some cases the error in

computation of the updated states can grow up to 50% (this

error is larger when the difference between the previous and

current delay times is prominent, e.g., when the traffic scenario

on the link changes from under-saturated to saturated or over-

saturated in between two consecutive time steps).

To solve the first issue, we propose an additional network

element for the S-model called the source link, which is a

link that has one of the source nodes of the network as its

downstream node (see Figure 4), and that feeds the network

with new demand at every time step. Moreover, we develop

a general formulation for discrete-time systems with time-

varying delays, which produces accurate results compared

with the results produced by the continuous-time formulation.

We later use this discrete-time representation to compute

αarrive,q

u,d,o (kd).

1) Formulating the source queues for the S-model: Suppose

that S is the set of all source nodes of the network, s is
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Figure 4. Two source links (us,1, s) and (us,2, s) that feed links (s, ds,1)
and (s, ds,2) of the network via source node s.

a source node, U(s) and D(s) are the sets of all upstream

nodes of s outside of the network and all downstream nodes

of s inside the network, us,i ∈ U(s), i ∈ {1, . . . , card (U(s))}
denotes the upstream nodes of source node s outside of the

network, and ds,j ∈ D(s), j ∈ {1, . . . , card (D(s))} denotes

the downstream nodes of source node s inside of the network.

A queue will be formed within a source link (us,i, s), if there

is not enough free space for the given demand of link (us,i, s)
on those links of the network that are connected to this source

link via node s (i.e., links (s, ds,j), j ∈ {1, . . . , card (D(s))}).

We define qsources (ks), called the source queue, as the overall

queue length in [veh/s] at source node s at time step ks. Thus

the source queue qsources is the summation of all queue lengths

for the source links for node s. We then have

qsources (ks + 1) = qsources (ks) +
(

αdem
s (ks)− αleave,l

s (ks)
)

cs,
(22)

where αdem
s (ks) is the cumulative demand flow in [veh/s] at

source node s at time step ks, given by

αdem
s (ks) =

∑card(D(s))

j=1
αdem
s,ds,j

(ks), (23)

and αleave,l
s (ks) is the cumulative leaving flow in [veh/s] at

source node s at time step ks (i.e., the total flow of vehicles

that can enter the network via source node s during [kscs, (ks+
1)cs)). We have

αleave,l
s (ks) =min

{

µs, α
dem
s (ks) +

qsources (kds
)

cs
,

∑card(D(s))

j=1

Cs,ds,j
− ns,ds,j

(kds
)

cs

}

, (24)

with µs =
∑card(U(s))

i=1 µus,i,s the cumulative saturated leaving

flow rate at source node s.

2) Extended formulation of the time-delayed equation for

arriving flow: To compute αarrive,q

u,d (kd), we should consider

the time the entering vehicles in link (u, d) need to reach the

tail of the waiting queue, i.e., the delay time τu,d(kd), and the

entering rate of the vehicles in the link τu,d(kd) time units ago.

So, for the queue length qu,d,o(kd) we actually have a time-

delayed differential equation (in the discrete-time domain).

Using the results of Section III, x̃(k) will be substituted by

qu,d,o(kd), and the factors Ã and C̃ by 1 and −1. We obtain

qu,d,o(kd + 1) = qu,d,o(kd) + βu,d,o(kd)·

δu,d(kd−1)−
δu,d(kd)+1
∑

i=0

B̃u,d,i(kd)α
enter,l
u,d (kd − δu,d(kd − 1)− 2 + i)−

αleave,l
u,d,o (kd)cd,

(25)

where B̃u,d,0(kd) =
γu,d(kd − 1)

cd , B̃u,d,i(kd) = 1
for i ∈ {1, . . . , δu,d(kd − 1) − δu,d(kd)},

B̃u,d,δu,d(kd−1)−δu,d(kd)+1(kd) =
cd − γu,d(kd)

cd , and

δu,d(kd) =

⌊

τu,d(kd)
cd

⌋

, γu,d(kd) = rem {τu,d(kd), cd}.

Comparing (25) with (13) and (18), we conclude that

αarrive,q

u,d (kd) =

δu,d(kd−1)−
δu,d(kd)+1
∑

i=0

B̃u,d,iα
enter,l
u,d (kd − δu,d(kd − 1)− 2 + i).

(26)

Moreover, the delay time τu,d(kd) at time step kd (assumed to

be constant within [kdcd, (kd+1)cd)) is computed as follows.

Vehicles are assumed to enter the link with vfreeu,d . If there

is an idling queue in front of them, after a while they will

decelerate1 with adecu,d to reach vidleu,d . During this period, the

distance between the upstream intersection and the tail of the

waiting queue will be traveled by these vehicles (note that in

the original S-model [17], it is assumed that this distance is

traveled with a constant speed vfreeu,d ). Therefore,

(

Cu,d − qaveu,d(kd)
)

lveh

N lane
u,d

= vfreeu,d · T free
u,d (kd)+

1

2
adecu,d

(

vidleu,d − vfreeu,d

adecu,d

)2

+ vfreeu,d

(

vidleu,d − vfreeu,d

adecu,d

)

,

(27)

where Cu,d is the storage capacity of link (u, d), qaveu,d(kd) is

the average queue length on link (u, d) within [kdcd, (kd +
1)cd), l

veh is the average length of the vehicles, N lane
u,d is the

number of lanes in link (u, d), vfreeu,d and vidleu,d are the free-flow

and idling speed on link (u, d), and adecu,d is the deceleration.

Note that
vidleu,d − vfreeu,d

adecu,d

is the time needed for vehicles to reach

vidleu,d from vfreeu,d by the constant deceleration adecu,d . Then the

delay time τu,d(kd) of the vehicles is obtained by

τu,d(kd) = T free
u,d (kd) +

vidleu,d − vfreeu,d

adecu,d

. (28)

1The typical values of the speeds and acceleration can be determined via
identifying the S-model’s parameters w.r.t. real-life data or data from a traffic
microsimulator. The difference between the output produced by the model
and the data is then minimized by solving an optimization problem offline
[29].
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where the value of T free
u,d (kd) is computed from (27). Hence,

the delay time is

τu,d(kd) =

(

Cu,d − qaveu,d(kd)
)

lveh

N lane
u,d vfreeu,d

−

(

vidleu,d − vfreeu,d

)2

2adecu,dv
free
u,d

. (29)

In order to compute the average queue length qaveu,d(kd), we

propose to substitute qaveu,d(kd) with the average of the queue

lengths at kd and at kd + 1, where, to estimate qu,d(kd + 1)
at kd, we can use extrapolation, i.e.,

qu,d(kd + 1) = qu,d(kd) + qu,d(kd)− qu,d(kd − 1).

Then we have

qaveu,d(kd) =
3

2
qu,d(kd)−

1

2
qu,d(kd − 1). (30)

V. INTEGRATED FLOW AND EMISSION MODEL FOR URBAN

TRAFFIC NETWORKS

In this section, we briefly discuss a general mesoscopic

framework for integrating macroscopic urban traffic flow mod-

els with microscopic emission models. The resulting integrated

flow and emission model can be used with an MPC controller

to reduce congestion and emissions in urban traffic networks.

The mesoscopic framework has been introduced by Jamshid-

nejad et al. in [30], and considers three different urban traffic

scenarios: under-saturated, saturated, and over-saturated. For

each scenario, groups of vehicles with a similar traffic behavior

are distinguished, where the general behavior of the group is

represented by a single time-speed representative curve. Next,

we present the proposed framework for the under-saturated

scenario. For equations and details regarding the other two

scenarios, see [30].

A. Under-saturated traffic

The under-saturated traffic scenario occurs when the de-

mand on a link is less than the number of vehicles that

can be discharged by the saturated average leaving flow rate

within one cycle. The time-speed curves for different traffic

behaviors in under-saturated traffic are illustrated in Figure 5.

Correspondingly, the vehicles can be divided into four groups:

Group 1. Composed of those vehicles that are already in a

queue on the link at the beginning of the current cycle

(see the solid curve in Figure 5). At tgreen, when the

traffic light turns green, these vehicles start to accelerate

and leave the link by the saturated leaving flow rate µu,d.

Group 2. Composed of those vehicles that arrive at the tail of

the queue during the current cycle (see the dashed curve

in Figure 5). These vehicles decelerate from vfreeu,d to reach

vidleu,d as they approach the tail of the queue, and idle for

a while. When the traffic light turns green, each vehicle

waits for the vehicles in front to accelerate. Then it also

accelerates until its speed reaches vfreeu,d . The leaving flow

rate for the vehicles in group 2 is also µu,d.

Group 3. Composed of those vehicles that arrive at the tail

of the queue (which is formed by the vehicles in group 1

and group 2, and the pioneers of its own group), when

this queue has already started to move forward. The

dashed-dotted curve in Figure 5 illustrates the average

behavior for the representative vehicle of group 3. These

vehicles do not need to decrease their speed to vidleu,d ,

since when they approach the tail of the queue, it has

a higher speed vmiddle
u,d than the idling speed vidleu,d , where

vmiddle
u,d = 0.5

(

vfreeu,d + vidleu,d

)

. Therefore, these vehicles

will only decelerate until they also reach vmiddle
u,d . As soon

as these vehicles are at the end of the moving queue,

they mimic the time-speed curve of the front queue and

move forward with it, i.e., they accelerate until their speed

reaches vfreeu,d , and after a while they leave the link.

Group 4. Composed of those vehicles that enter the link

when they do not need to decelerate at all, because there

is enough space between them and the groups of vehicles

that move in front of them. Therefore, the vehicles in

group 4 move forward with vfreeu,d until they leave the

link. The average behavior of the vehicles in group 4

is illustrated by the dotted curve in Figure 5.

We first determine the number of vehicles in each of the

groups. From the definitions given above, we can write

nG1

u,d(kd) = qu,d(kd), (31)

nG2

u,d(kd) = αarrive,q

u,d (kd) · T
arrive,G2

u,d (kd), (32)

nG3

u,d(kd) = αarrive,q

u,d (kd) · T
arrive,G3

u,d (kd), (33)

nG4

u,d(kd) = nu,d(kd)−
∑3

i=1n
Gi

u,d(kd), (34)

where

T arrive,G2

u,d (kd) = µu,d

/(

µu,d − αarrive,q

u,d (kd)
)

·
(

cd − gu,d(kd) + nG1

u,d(kd)
/

µu,d − τG2

u,d(kd)
)

,
(35)

T arrive,G3

u,d (kd) = τG2

u,d(kd) +
(

vfreeu,d − vidleu,d

)

/aaccu,d, (36)

with T arrive,G2

u,d (kd) and T arrive,G3

u,d (kd) the overall arrival time

for all vehicles in group 2 and in group 3 (where the overall

arrival time is the temporal distance between the starting points

of the time-speed curves of the first and the last vehicle in a

group), respectively, and τG2

u,d(kd) the average delay time for

the vehicles in group 2, i.e., the average time a vehicle in

group 2 needs to reach the tail of the waiting vehicles. This

delay time is computed by (29) for qG2,ave
u,d (kd) = nG1

u,d(kd).
We next explain how (35) and (36) are obtained, considering

the time-speed curves of the first and the last vehicle of

group 2 and group 3. The difference between the time spent

by these two vehicles during the current cycle depends on

the difference between the arriving flow rate αarrive,q

u,d (kd) and

the leaving flow rate µu,d for the vehicles in the group.

The reason is that the temporal distance between the starting

points and the endpoints of the time-speed curves of the

vehicles is determined by these flow rates. For the vehicles in

group 2, the temporal distance between the starting points of

the two consecutive time-speed curves equals
(

α
arrive,q

u,d (kd)
)

−1

,

while it is less, i.e., (µu,d)
−1

for the endpoints of these

curves (note that µu,d > αarrive,q

u,d (kd)). Since the number of

vehicles in group 2 is αarrive,q

u,d (kd)T
arrive,G2

u,d (kd), the overall

temporal distance between the starting points of the time-

speed curves of the first and the last vehicle of group 2
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vfreeu,d

vmiddle
u,d

vidleu,d

cd

Red+Yellow phase Green phase

gu,d(kd)cd − gu,d(kd)

speed

time

group 1
group 2
group 3
group 4

tgreen

Figure 5. Traffic behaviors on link (u, d) within one cycle in an under-saturated traffic scenario for urban traffic networks.

is
(

α
arrive,q

u,d (kd)
)

−1

α
arrive,q

u,d (kd)T
arrive,G2
u,d (kd), while the overall

temporal distance between the endpoints of their time-speed

curves is (µu,d(kd))
−1

αarrive,q

u,d (kd)T
arrive,G2

u,d (kd). Hence, the

difference between the time spent by the first and the last

vehicle of group 2 on the link during the current cycle is
µu,d−α

arrive,q

u,d
(kd)

µu,d
T arrive,G2

u,d (kd). Moreover, the time needed for

all vehicles in group 2 to leave the network after they start to

accelerate is almost the same assuming that they all travel the

same distance, while the time they spend before accelerating

might be different (due to different idling times for different

vehicles). This time for the first vehicle of group 2 includes

the duration of the red+yellow phase, i.e., cd − gu,d(kd), in

addition to the time nG1

u,d(kd)/µu,d the first vehicle of group 2

should wait for the vehicles in front of it to accelerate. The

time spent by the last vehicle of group 2 before it accelerates

is the time it needs to reach the tail of the front queue, i.e.,

the average delay time τG2

u,d(kd) of the vehicles in group 2.

Finally, from the explanations given, we can obtain (35) (for

more details see [30]).

For (36), since in the limit, the last vehicle of group 3

will behave similarly to the first vehicle of group 4 (purely

free-flow behavior), we can assume that the starting point of

the time-speed curve of the last vehicle in group 3 almost

coincides with the starting point of the free-flow behavior

of the first vehicle in this group (see [30] for extra details).

Hence, the overall arrival time of the vehicles in group 3

T arrive,G3

u,d (kd), i.e., the temporal distance between the starting

points of the time-speed curves of the first and the last vehicle

of group 3, equals the time spent by the first vehicle of

group 3 before it reaches vfreeu,d at the end of its travel on

the link. The first vehicle of group 3 enters the link with

vfreeu,d and approaches the tail of the queue formed by the

vehicles in groups 1 and 2 when this queue has just started

to accelerate and move forward. Hence, the first vehicle of

group 3 decelerates to the current speed of the queue, i.e.,

vidleu,d . The time needed by this vehicle to reach the tail of the

moving queue is, in the limit, the same as the average delay

time τG2

u,d(kd) of the vehicles in group 2 (see the first term of

(36)). Then the first vehicle of group 3 accelerates to move

forward with the front queue and reach vfreeu,d before it leaves

the link (see the second term of (36)).

The different traffic behaviors can be divided into four types:

free-flow, idling, decelerating, and accelerating. A microscopic

emission model, such as VT-micro [31], can compute the

instantaneous emissions e(v, a) for a given vehicle from the

acceleration a and speed v of the vehicle. Suppose that Eu,d

denotes the total emissions on link (u, d) in an under-saturated

traffic case. Then for each of the behaviors mentioned, we can

write

Efree
u,d =

∑

i

(

nfree,i
u,d (kd)T

free,i
u,d (kd)

)

e(vfreeu,d , 0), (37)

Eidle
u,d =

∑

i

(

nidle,i
u,d (kd)T

idle,i
u,d (kd)

)

e(vidleu,d , 0), (38)

Edec
u,d =

∑

i

(

ndec,i
u,d (kd)

adecu,d

∫ v
l,i,b
u,d

v
h,i,b
u,d

e
(

v, adecu,d

)

· dv

)

, (39)

Eacc
u,d =

∑

i

(

nacc,i
u,d (kd)

aaccu,d

∫ v
h,i,b
u,d

v
l,i,b
u,d

e
(

v, aaccu,d

)

· dv

)

, (40)

for i ∈ {G1,G2,G3,G4}, and where the superscripts l and

h indicate the lower and higher speeds for different traffic

behaviors b. From the given discussions for different groups

of vehicles, in the under-saturated case, the lower speed may

be vidleu,d (see group 1 and group 2 in Figure 5) or vmiddle
u,d

(see group 3 in Figure 5) and the higher speed is vfreeu,d (see

groups 1, 2, and 3 in Figure 5). Next we determine the number

of vehicles from each group in the under-saturated case that

participate in a specific traffic behavior, and also the total time

spent by the representative vehicle for the free-flow and the

idling behavior.

From Figure 5, all groups show the free-flow behavior

during the current cycle. Hence,

nfree,G1

u,d (kd) = nG1

u,d(kd),

nfree,G2

u,d (kd) = nG2

u,d(kd),

nfree,G3

u,d (kd) = nG3

u,d(kd),

nfree,G4

u,d (kd) = nG4

u,d(kd),

(41)

where the average time that each group spends on the free-flow
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behavior is obtained by

T free,G1

u,d (kd) =
0.5n

G1
u,d

(kd)

N lane
u,d · vfreeu,d

lveh −

(

vfreeu,d

)2
−
(

vidleu,d

)2

2aaccu,d · v
free
u,d

,

T free,G2

u,d (kd) = τG2

u,d(kd)−
vidleu,d − vfreeu,d

adecu,d

+
nG1

u,d(kd) + 0.5nG2

u,d(kd)

N lane
u,d · vfreeu,d

lveh −

(

vfreeu,d

)2
−
(

vidleu,d

)2

2aaccu,d · v
free
u,d

,

T free,G3

u,d (kd) = Cu,dl
veh
/

N lane
u,d vfreeu,a +

0.5
(

vfreeu,d − vidleu,d

)(

1/adecu,d − 1/adecu,d

)

,

T free,G4

u,d (kd) = nG4

u,d(kd)
/

αarrive,q

u,d (kd).

(42)

Now we prove and motivate the equations above. For the

vehicles in group 1, the free-flow behavior is observed at the

end of the time-speed curve. The average distance traveled

by the representative vehicle of group 1 after the traffic light

turns green is 0.5nG1

u,d(kd)l
veh/N lane

u,d . This is because for the

representative vehicle we can assume that the total distance

that should be traveled to the end of the link is half of

the length of the queue formed by the vehicles in group 1,

i.e., half of the length nG1

u,d(kd)l
veh/N lane

u,d , assuming that the

vehicles are equally distributed along the N lane
u,d lanes of the

link. Knowing that the representative vehicle should travel this

distance partly by the constant acceleration aaccu,d and partly by

the constant speed vfreeu,d , from the kinematics knowledge2, we

can easily obtain the first equation of (42). A similar reasoning

holds for the free-flow behavior of the representative vehicle

of group 2 at the end of its trip on the link, i.e., we assume

the distance traveled by the representative vehicle of group 2

is the average of the distances traveled by the first and the last

vehicle of group 2 (i.e., the average of nG1

u,d(kd)l
veh/N lane

u,d and
(

nG1

u,d(kd) + nG2

u,d(kd)
)

lveh/N lane
u,d ). The last two terms of the

second equation of (42) are obtained this way. Additionally,

free-flow behavior is also observed at the beginning of the trip

of the representative vehicle of group 2 (note that the distance

between the entrance of the link and the tail of the waiting

queue is traveled partly by the constant speed vfreeu,d , and partly

by the constant acceleration aaccu,d). The overall time for the

free-flow and the accelerating behaviors at the beginning of

the time-speed curve of the representative vehicle the average

delay time of the vehicles in group 2. Hence, the first two

terms of (42) are obtained (see [30] for more details).

The idling behavior is observed for the vehicles in group 1

and group 2, while the vehicles in the other groups do not

show any idling behavior. Thus,

nidle,G1

u,d (kd) = nG1

u,d(kd),

nidle,G2

u,d (kd) = nG2

u,d(kd),

nidle,G3

u,d (kd) = 0,

nidle,G4

u,d (kd) = 0,

(43)

2The displacement ∆d of a vehicle that starts its motion with speed v0 and
moves with the constant acceleration a, during a time period T is obtained
via ∆d = 1

2
aT 2+v0T , while the displacement of the vehicle when it moves

with the constant speed v is ∆d = vT .

where the time spent by the vehicles in each group for the

idling behavior is

T idle,G1

u,d (kd) = cd − gu,d(kd) +
(

0.5nG1

u,d(kd)
)/

µu,d,

T idle,G2

u,d (kd) = T idle,G1

u,d (kd)− τG2

u,d(kd),

T idle,G3

u,d (kd) = 0,

T idle,G4

u,d (kd) = 0.
(44)

Note that the first vehicle of group 1 idles during the

red+yellow phase, i.e., for cd − gu,d(kd) time units, while

the last vehicle of the group should first wait for the rest of

the vehicles in the group to leave the link. Hence, the idling

time of the last vehicle of group 1 is nG1

u,d(kd)/µu,d time units

larger than that of the first vehicle of the group. The average

of the idling times of the first and the last vehicle is the idling

time of the representative vehicle of this group (see the first

equation of (44)). The idling time of the representative vehicle

of group 2 is similar to that of the representative vehicle of

group 1, except that both the first and the last vehicle idle for

τG2

u,d(kd) time units less than the first and the last vehicle of

group 1. This is because the first and the last vehicle of group 2

enter the link with vfreeu,d , and hence they should decelerate

before they start their idling behavior. This explains how the

second equation of (44)) is obtained.

The decelerating behavior occurs for the vehicles in group 2

and group 3, i.e.,

ndec,G1

u,d (kd) = 0,

ndec,G2

u,d (kd) = nG2

u,d(kd),

ndec,G3

u,d (kd) = nG3

u,d(kd),

ndec,G4

u,d (kd) = 0.

(45)

Finally, for the accelerating behavior, which is observed for

the first, second, and third group, we have

nacc,G1

u,d (kd) = nG2

u,d(kd),

nacc,G2

u,d (kd) = nG2

u,d(kd),

nacc,G3

u,d (kd) = nG3

u,d(kd),

nacc,G4

u,d (kd) = 0.

(46)

VI. MODEL-PREDICTIVE CONTROL FOR URBAN TRAFFIC

NETWORKS

Model-predictive control (MPC) [32] is an optimization-

based control approach that leads the controlled system to

operate close to a defined optimal performance. In MPC, a

performance index is minimized over a finite-length prediction

window spanning Np control time steps. Next, only a part of

the obtained suboptimal control trajectory between the current

and the next control time step is applied to the system. The

starting point of the prediction horizon is then shifted and

the optimization problem is solved using the updated state

measurements. Compared to the optimal control strategies

with an entirely open-loop scheme, where the optimization

problem is solved offline over the entire simulation period,

the suboptimal solution of the MPC is more robust towards

unexpected disturbances [33].
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Taking into account the positive characteristics of an MPC

controller (i.e., it performs a feedback-based and to some ex-

tent robust control approach), which fit well the requirements

that are usually expected for management of traffic networks

with highly dynamic behaviors, we also consider the MPC

approach for urban traffic control. The aim of the controller

is to find a balanced trade-off between prevention/reduction

of congestion and reduction of emissions. Therefore, for the

prediction model of the MPC controller, which estimates

the future states of the system along the prediction window,

the integrated flow and emission framework introduced in

Section V including the extended S-model (see Section IV-B)

and VT-micro [34] is used.

A. Formulation of the optimization problem

min
ũ(kc)

J (kc) = min
˜u(kc)

(

J t(kc) + J s,cum(kc)
)

,

s.t.

(49) and (50),
Integrated flow and emission model (12)-(46) [30],
U(ũ(kc)) = 0 (e.g., see (48)),
umin ≤ ũ(kc) ≤ umax,

(47)

where J (kc) denotes the summation of the terminal ob-

jective J t(kc) and the cumulative stage objective func-

tion J s,cum(kc) that is computed within one predic-

tion window starting at control time step kc, i.e., within

[kcTc, (kc +Np)Tc) with Tc the control sampling cycle. Fur-

thermore, the optimization variable ũ(kc) is a vector that

includes u⊤(kc), . . . ,u
⊤(kc+Np−1), u(kc) is a vector that

includes all control inputs of the system (the green time lengths

for an urban traffic network along the prediction window)

at control time step kc, umin and umax are vectors of the

same size as u(kc) that include element-wise the minimum

and maximum allowed values for the control inputs within

u(kc), and U(u(kc)) = 0 indicates the equality constraints on

the control vector. For example, U(u(kc)) = 0 may indicate

that the summation of the green and yellow times for each

intersection equals the cycle time for that intersection. More

specifically, suppose that ud,i(l) for all d ∈ Ictrl (with Ictrl

the set of all intersections of the urban traffic network that

are controlled by traffic signals) and i ∈ {1, . . . , ngreen
d } (with

ngreen
d the number of green signals3 of intersection d) indicates

the ith traffic signal at intersection d. Then for all d ∈ Ictrl,

U(u(kc)) = 0 is a relationship of the form

n
green
d
∑

i=1

ud,i(l) = cd − yd, l ∈ {kc, . . . , kc +Np − 1} , (48)

where yd indicates the total yellow or all-red time within one

cycle of the intersection corresponding to node d.

The main aim of the control system is to find a balanced

trade-off between reducing the congestion level, reducing the

total emissions, and preventing high fluctuations in time for

3Note that at intersection d, for each right-of-way, we consider a traffic
signal.

time

simulation

control

prediction horizon

cdcd

TcTc

0

0

1

1

k+

d k++

d

kc kc +Np

∆Td,0

Figure 6. Simulation and control time step counters.

the control signals. Hence, the stage objective function of the

MPC controller is formulated as a weighted combination of

the total time spent (which quantifies the congestion level), the

total emissions, and the absolute difference of two temporally

successive control vectors. We have

J s(k) =wT

T (k)

T t +
∑

p∈P

wEp

Ep(k)

Et
p

+ wv

V(u(k))

Vn , (49)

with T (k) and Ep(k) the total time spent and emissions of p ∈
P (where P is a set of pollutants, e.g., P = {CO, HC, NOx})

within one control sampling time, T t and Et
p typical values

of T (·) and Ep(·) within one prediction window, V(u(k)) =
‖u(k)− u(k − 1)‖ for some norm function ‖·‖, and Vn a

nominal value for V(u(k)) in one control sampling time that

may be computed by ‖umax − umin‖.

B. Computation of the objective function

In (49), T (·) and Ep(·) are the summation of the total time

spent and total emissions for all links in the traffic network. In

order to compute these quantities on each link, we should first

determine the ongoing traffic state (see Section V and [30]).

For the total time spent by the vehicles on link (u, d) at time

step kc, we have

Tu,d(kc) =
∑Ns

G
i=1

∑

b∈B

(

nb,i,s
u,d (k+

d (kc)− 1) ·

min
{

T b,i,s
u,d (k+

d (kc)− 1) , k+

d (kc)cd − kcTc

})

+
∑k

++
d

(kc)

j=k+
d
(kc)

∑Ns
G

i=1

∑

b∈B
nb,i,s
u,d (j)T b,i,s

u,d (j)+

∑Ns
G

i=1

∑

b∈B

(

nb,Gi,s
u,d (k++

d (kc) + 1) ·

min
{

T b,i,s
u,d (k++

d (kc) + 1) ,

(kc +Np)Tc − k++

d (kc)cd

})

,

(50)

where s adopts under-saturated, saturated, and over-saturated

based on the ongoing traffic scenario on the link, B={free,

idling, dec, acc}, Ns
G shows the number of different groups

for the ongoing traffic state, and T b,Gi,s
u,d (kd) is computed by

the equations given in Sections V-A. The total emissions Ep of

p for each link of the network can be computed via (37)-(40).

In general, the system’s sampling time and the control

sampling time might not be equal and therefore, the time

instants kd (i.e., the simulation time step counter for the

link (u, d)) and kc (i.e., the control time step counter of the

network) may not coincide, hence we should find a relationship

between kd and kc. The first upcoming simulation time step

k+

d (kc) (see Figure 6) for link (u, d) at time instant kcTc is

computed by

k+

d (kc) = ⌈(kcTc −∆Td,0) /cd⌉, (51)
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Figure 7. The urban traffic network used for the case study.

Table I
NETWORK PARAMETERS

N lane [-] ℓlink [m] µ [veh/s] c [s] β5,7,9 β5,7,11 β6,8,11 β6,8,10

1 500 0.8 60 0.6 0.4 0.6 0.4

Table II
MODEL PARAMETERS

vfree [m/s] vidle [m/s] aacc [m/s2] adec [m/s2] lveh [m]

14 0.4 2 -2 7

where ∆Td,0 is the offset between the first simulation time step

of link (u, d) (kd = 0), and the first control time step (kc = 0).

For k++

d (kc), i.e., the last simulation time step that occurs

during the current prediction time interval (see Figure 6), we

can write

k++

d (kc) = ⌊((kc +Np)Tc −∆Td,0) /cd⌋. (52)

VII. CASE STUDY

In this section, we consider a case study to evaluate the

designed smooth MPC controller. We focus on both the per-

formance and the computation speed of the proposed control

approach. We compare the values of total time spent, total

emissions, and the value of the objective function computed by

(49) for the proposed smooth MPC controller with those of the

no-control case, a simple state-feedback controller, an optimal

fixed-time controller that has been precomputed offline, and

an MPC controller with pattern search as the optimization

solver. Next, we also evaluate the controller from the point

of computational efficiency (i.e., the CPU time).

A. Setup

The urban traffic network we use for the case study is

presented in Figure 7. The network consists of 11 links,

where all links have the same characteristics, i.e., number of

lanes N lane, length ℓlink, and saturated leaving flow rate µ.

Moreover, the traffic lights of all the three intersections that

are controlled (see Figure 7) have the same cycle time c. The

parameters β5,7,9, β5,7,11, β6,8,11, and β6,8,10 are the turning

rates (i.e., the percentage of vehicles on a link that turn to a

specific downstream link) of the vehicles at the corresponding

intersection. We use the proposed integrated flow and emission

model explained in Section V with the traffic parameters listed

in Tables I and II to simulate the traffic in this network.

We run the simulations for three different demand profiles

shown in Figure 8, where αenter
1 , αenter

2 , αenter
3 , and αenter

4

are the demands (i.e., the entering flow rates) of, respectively,

origin 1, 2, 3, and 4 in Figure 7. These profiles have been

selected in such a way that they highlight specific features, and

such that they result in various traffic scenarios (e.g., under-

saturated, saturated, and over-saturated) on different links of

the traffic network. More specifically, ‘Demand profile 1’

corresponds to a relatively balanced case for the four demands

αenter
1 , . . . , αenter

4 . ‘Demand profile 2’ is a case where the

demands at origin 2 (αenter
2 ) and 3 (αenter

3 ) are medium. For

‘Demand profile 3’, the demand at origin 3 is very high, while

at the other origins the demand is low to medium. Comparing

‘Demand profile 2’ and ‘Demand profile 3’, we see a more

irregular pattern for the latter case. Note that for each of the

three demand profiles, at some periods during the simulation

congestion occurs, more specifically on links (1,5), (2,5), (3,6),

(4,6), (7,11), and (8,11). Moreover, on the intermediate links

(5,7) and (6,8), a moderately congested traffic is sometimes

observed. Each simulation run covers an entire hour. For

each demand profile, we repeat the simulations 10 times and

compute the CPU time and the realized values of the objective

function, the total time spent, and the total emissions of CO,

HC, and NOx for each run. We will consider and compare

the performance of different controllers that are described in

Section VII-B with the no-control case, which corresponds to

a case where there are no traffic lights at all at the intersections

(i.e., all links are always open to the vehicles, unless the

downstream road is blocked).

B. Controllers

State-feedback controller: At every control time step

k, the feedback controller divides the green times gu1,d

and gu2,d between two incoming links (u1, d) and (u2, d)
at an intersection d considering the total number of

vehicles nu1,d and nu2,d on the links, and the num-

ber of vehicles in the queues qu1,d and qu2,d, i.e.,

based on the ratios
nu1,d(k)+ρqu1,d(k)

nu1,d(k)+nu2,d(k)+ρ(qu1,d(k)+qu2,d(k))
and

nu2,d(k)+ρqu2,d(k)

nu1,d(k)+nu2,d(k)+ρ(qu1,d(k)+qu2,d(k))
, respectively. Note that

ρ is a parameter that can be tuned.

Optimal fixed-time controller: This controller has constant

signal settings that have been optimized offline for each

demand class (Demand profiles 1, 2, 3) separately. For this

aim, the objective function (i.e., the weighted sum of the

total time spent and total emissions) was minimized for each

demand class in a 1-h simulation using brute force with a grid

size of 0.1, and a fixed traffic signal setting was obtained.

MPC controller with RProp: This controller uses a gradient-

based optimization approach based on the resilient back-

propagation algorithm (see Appendices B and C), and is

designed as explained in Section VI, with the smooth and

extended S-model (see Sections II and IV-B) as the prediction

flow model and VT-micro [34] as the prediction emission

model of the controller. These two models are integrated using

the mesoscopic framework proposed in Section V. The control

sampling time is equal to the cycle time of the traffic lights
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in the traffic network (60 s), and the length of the prediction

horizon is 7 time steps (note that according to the tuning rules

proposed by Hegyi et al. [35], the horizon length is selected

such that it is longer than the time needed for vehicles to cross

the network).

MPC controller with pattern search: For evaluation of the

CPU time, we compare the smooth MPC controller with a

nonsmooth MPC controller. In general, several nonsmooth

optimization algorithms exist, among which pattern search and

genetic algorithm are the most frequently used algorithms. We

noticed from several experiments that the performance and

the computation speed for pattern search are more satisfactory

than those of the genetic algorithm. Hence, we used pattern

search for the case study that is implemented in the Global

Optimization Toolbox of MATLAB, version R2015B.

The experiments were run on a PC with an Intel Xeon Quad

core E5-1620 V3 CPU with a clock speed of 3.5 GHz.

C. Results and discussions

Since the MPC optimization problem may in general be

a nonconvex one, in order to prevent the gradient-based

approach from giving a solution that is only locally optimal

and that may give a much worse performance than the global

optimal value, we first ran a set of offline experiments. The aim

was to determine how starting control points may play a role in

getting a good approximation for the global optimum, and that

what is the best choice for the selection of the starting points.

These points have been selected in a structured way, i.e., we

have three sets of deterministic starting points and two sets

of random ones. The deterministic starting points include the

shifted suboptimal solution of the previous control time step,

the average of the shifted suboptimal solutions determined in

the two previous control time steps, and the average of all

the shifted suboptimal solutions found in the previous control

time steps. The random starting points are feasible points with

a uniform distribution. The results of the offline optimization

did not show a noticeable difference in the overall performance

of the controlled system for different choices of the starting

points. Hence, for the online application of the optimization-

based control approaches in this paper, we used one set of

starting control points at every control time step, in particular,

the shifted suboptimal solution of the previous control time

step. For pattern search, we used a similar approach.

Tables III-VII show the resulting value of the objective

function, the total time spent, and the total emissions of

CO, HC, NOx for the no-control case, and for the state-

feedback, optimal fixed-time, and smooth and nonsmooth

MPC controllers applied to the urban traffic network illustrated

in Figure 7. We have considered the following values for the

parameters given in (49): wT = 0.3, wECO
= wEHC

=
wENOx

= 0.2, T t = 105 [s], Et
CO = Et

HC = Et
NOx

=
1 [kg], wv = 0. These results show that compared with the no-

control case, the overall performance of the system is improved

significantly with the state-feedback and optimal feedback

controllers. The reason that the fixed-time traffic signal setting

performs much worse than the state-feedback controller for

Demand profile 3, is the irregular pattern of this demand profile

5 10 15 20 25 30 35 40 45 50 55 60
0

0.01

0.02

0.03

0.04

0.05

0.06

α
enter

1

α
enter

2

α
enter

3

α
enter

4

Demand profile 1

E
n
te

ri
n
g

fl
o
w

ra
te

s
[v

eh
/s

]

Simulation time [min]

5 10 15 20 25 30 35 40 45 50 55 60
0

0.01

0.02

0.03

0.04

0.05

0.06

α
enter

1

α
enter

2

α
enter

3

α
enter

4

Demand profile 2

E
n
te

ri
n
g

fl
o
w

ra
te

s
[v

eh
/s

]

Simulation time [min]

5 10 15 20 25 30 35 40 45 50 55 60
0

0.01

0.02

0.03

0.04

0.05

0.06

α
enter

1

α
enter

2

α
enter

3

α
enter

4

Demand profile 3

E
n
te

ri
n
g

fl
o
w

ra
te

s
[v

eh
/s

]

Simulation time [min]

Figure 8. Different demand profiles used for 3 simulations cases.

compared with the other two profiles (see Figure 8). A constant

setting is of course not always expected to be the best choice

for both a very high and a very low demand, which occurs

in Demand profile 3 for origin 3. However, a state-feedback

controller that considers the queue lengths can adapt its traffic

signal setting w.r.t. the current traffic state, and hence performs

better than the fixed-time controller.

From Table VI, the improvement of the system’s perfor-

mance for the smooth MPC controller is higher than for the
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Table III
VALUE OF THE OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER THE ENTIRE SIMULATION PERIOD FOR THE NO-CONTROL CASE

Objective function TTS [veh.s] TECO [kg] TEHC [kg] TENOx [kg]

Demand profile 1 214.2 2.9016 · 107 540.2 34.2 61.4

Demand profile 2 91.0 1.2279 · 107 230.3 14.6 26.0

Demand profile 3 61.8 8.3106 · 106 156.8 9.9 17.7

Table IV
VALUE OF THE OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER THE ENTIRE SIMULATION PERIOD FOR THE STATE-FEEDBACK

CONTROLLER

Objective function TTS [veh.s] TECO [kg] TEHC [kg] TENOx [kg]

Demand profile 1 4.7 6.2404 · 105 12.0 0.8 1.2

Demand profile 2 5.3 7.0179 · 105 13.6 0.9 1.4

Demand profile 3 6.2 8.1954 · 105 16.0 1.0 1.7

Table V
VALUE OF THE OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER THE ENTIRE SIMULATION PERIOD FOR THE OPTIMAL

FIXED-TIME CONTROLLER

Objective function TTS [veh.s] TECO [kg] TEHC [kg] TENOx [kg]

Demand profile 1 4.9 6.2580 · 105 12.9 0.8 1.3

Demand profile 2 1.2 1.2192 · 105 3.6 0.3 0.3

Demand profile 3 54.9 7.4177 · 105 138.8 8.8 15.7

Table VI
VALUE OF THE AVERAGE CPU TIME, OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER THE ENTIRE SIMULATION PERIOD FOR

THE SMOOTH MPC CONTROLLER WITH RPROP

Average CPU time per control time step [s] Objective function TTS [veh.s] TECO [kg] TEHC [kg] TENOx [kg]

Demand profile 1 1697.2 4.4 6.4377 · 105 10.7 0.7 1.1

Demand profile 2 5466.4 0.8 1.0326 · 105 2.0 0.1 0.2

Demand profile 3 13241.1 3.3 4.4603 · 105 8.4 0.5 0.9

Table VII
VALUE OF THE AVERAGE CPU TIME, OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER THE ENTIRE SIMULATION PERIOD FOR

THE NONSMOOTH MPC CONTROLLER WITH PATTERN SEARCH

Average CPU time per control time step [s] Objective function TTS [veh.s] TECO [kg] TEHC [kg] TENOx [kg]

Demand profile 1 76479 14.0 1.8726 · 106 35.8 2.3 3.9

Demand profile 2 152631 7.0 9.4632 · 105 17.9 1.2 1.9

Demand profile 3 151867 28.2 3.7954 · 106 71.6 4.5 8.0

Table VIII
PERCENTAGE OF IMPROVEMENT OF THE OBJECTIVE VALUE W.R.T. THE

STATE-FEEDBACK CONTROLLER:
Jstate-feedback−JMPC

Jstate-feedback
(+: IMPROVED, -:

BECAME WORSE)

MPC with RProp MPC with pattern search

Demand profile 1 +6% -66%

Demand profile 2 +84% -32%

Demand profile 3 +47% -354%

Table IX
PERCENTAGE OF IMPROVEMENT OF THE OBJECTIVE VALUE W.R.T. THE

OPTIMAL FIXED-TIME CONTROLLER:
Jfixed-time−JMPC

Jfixed-time
(+: IMPROVED, -:

BECAME WORSE)

MPC with RProp MPC with pattern search

Demand profile 1 +10% -185%

Demand profile 2 +34% -483%

Demand profile 3 +94% +48.6%

other controllers w.r.t. the no-control case. Therefore, we can

conclude that the online smooth MPC approach for the given

case study is highly beneficial compared with the other given

controllers.

Next, we compare both the computation time and the

performance of the smooth MPC controller that uses RProp

with those of a nonsmooth MPC controller that uses pattern

search. The corresponding results showing the performance of

pattern search are given in Table VII. We see that for all the

given demand profiles, the CPU time for the MPC controller

with RProp is 12-45 times less than the CPU time for pattern

search. This indicates that the gradient-based optimization

approach performs significantly better than pattern search

considering the computation speed. Moreover, the realized

value of the objective function for a 1-hour simulation for

the gradient-based optimization approach is almost 31.5% of

the realized value of the objective function for pattern search

for ‘Demand profile 1’, 11% for ‘Demand profile 2’, and

11.5% for ‘Demand profile 3’ (compare Tables VI and VII).

In addition to that, by looking at the realized values of the

total time spent and total emissions of CO, HC, and NOx

individually, we see that all these quantities are prominently

smaller for the gradient-based optimization compared with

pattern search. Note that for pattern search the optimization

procedure takes long and hence, sometimes the maximum

number of iterations is reached before the optimum values

are found.

We have listed the percentages of improvement for the

MPC controllers w.r.t. the state-feedback and optimal fixed-

time controllers in Tables VIII and IX. These results show

that for the traffic network shown in Figure 7, the proposed

smooth MPC controller that uses RProp is the most efficient

controller among the other given controllers. Additionally,
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from the smooth and nonsmooth MPC controllers, both the

performance and the CPU time of the smooth one are much

better.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed a highly efficient smooth model-

predictive controller for urban traffic networks, with the aim

of finding a balanced trade-off between reduction of the

total time spent by the vehicles and the total emissions. We

have applied a gradient-based optimization approach based

on the resilient back-propagation (RProp) to find the subop-

timal solution of the MPC controller. To make the proposed

gradient-based optimization approach applicable to different

physical systems, we have introduced general smoothening

methods for nonsmooth mathematical models. We have also

introduced a general formulation for transforming a time-

delayed differential equation in the continuous-time domain

into an equivalent discrete-time difference equation.

The simulation results have shown that the smooth MPC

controller improves the performance of the network signif-

icantly w.r.t. the no-control case, and state-feedback, opti-

mal fixed-time, and nonsmooth MPC-based controlled cases.

Moreover, the smooth (gradient-based) optimization method

is much faster than the nonsmooth one (the CPU time of

the smooth method is 12-45 times less than the CPU time

of the nonsmooth method). Note that although the resulting

CPU time for the smooth optimization-based controller shows

a significant decrease compared to that of the nonsmooth

optimization-based controller, it is currently not yet suited for

real-time control. Therefore, further improvements in com-

putation speed of the smooth optimization-based controller

should be obtained. This improvement may be achieved by

using dedicated software and hardware, distributed MPC, fast

MPC techniques, parameterized control approaches, etc.

Topics for future work include implementing the smooth

optimization approach to a large-scale network considering

a multi-level and/or multi-agent control architecture. Addi-

tionally, to make the MPC controller faster, we can consider

parameterized control laws. We also suggest an extensive val-

idation of the proposed control approach for various networks

with real-life datasets.

APPENDIX A

PROOF OF LEMMA III.1

Suppose that we want to find the effective inflow ūh(t)
during [t, t + h) for a delayed differential equation with a

time-varying delay function, i.e.,

ūh(t) =
1

h

∫ t+h−τ(t+h)

t−τ(t)

u(t)dt. (53)

Assuming a piece-wise constant inflow function u(t) in

[st, st + h), s ∈ Z, (see Figure 9), and τ(t) = δ(t)h +
γ(t), ∀t ∈ [t, t+ h), there are two cases:

Case 1. Suppose that we have δ(k) ≤ δ(k − 1) + 1; then by

(53) can be extended as

ūh(t) =
1

h

∫ t−δ(t)h

t−δ(t)h−γ(t)

u(θ)dθ + . . .

inflow

time

γ(t) γ(t+ h)
∆t = h

u(t)

u(t− h)
u(t− δ(t)h)

u(t− (δ(t) + 1)h)
u(t− δ(t+ h)h)

t t+ ht− δ(t+ h)ht− δ(t)h

τ (t)

τ (t+ h)

Figure 9. The effective inflow during [t, t+h) for a delayed-time differential
equation with a time-varying delay.

+
1

h

∫ t+h−δ(t+h)h−γ(t+h)

t−δ(t+h)h

u(θ)dθ

=
1

h
γ(t)u(t− (δ(t) + 1)h)

+
1

h

(

h
δ(t)−δ(t+h)

∑

i=1

u(t− (δ(t)− i+ 1)h)

)

+
h− γ(t+ h)

h
u(t− δ(t+ h)h).

In order to represent the above expression in discrete-time

domain, we substitute t + h by kh, and t by (k − 1)h.

This way (11) will be obtained.

Case 2. For δ(k) > δ(k − 1) + 1, in a similar way as for

Case 1 (11) can be obtained.

APPENDIX B

PONTRYAGIN’S MINIMUM PRINCIPLE

Our problem includes finding a suboptimal control strategy

solving a smooth optimization problem for a discrete-time

nonlinear system. We first explain how to solve such a problem

using Pontryagin’s minimum principle [16]. Consider the

discrete-time nonlinear system:

x(k + 1) = f(k,x(k),u(k)), (54)

where f(·) can in general be a nonlinear smooth function.

Define a performance index for (54) during the prediction time

interval [kcTc, (kc +Np)Tc) by

J (kc) = J t(kc) +
kc+Np−1
∑

k=kc

J s (k) , (55)

with J s(·) the stage objective function, which at control time

step k ∈ {kc, . . . , kc +Np − 1} can be given by an expression

of the control time step k, the state vector x(k), and the control

input u(k), i.e., J s(k) = J s (k,x(k),u(k)), and with J t(·)
the terminal objective function, which at control time step kc
can be given by an expression of the terminal control time

step kc + Np and the terminal state vector x(kc + Np), i.e.,

J t(kc) = J t (kc +Np,x (kc +Np)). In our specific problem,

the stage objective is obtained by summing up the total time

spent (50) and the total emissions (37)-(40) over all links

(u, d) ∈ L. The Hamiltonian function [16] for minimizing

(55) w.r.t. (54) at control time step k ∈ {kc, . . . , kc +Np − 1}
is defined by

H(k,λ(k + 1),x(k),u(k)) =

J s (k,x(k),u(k)) + λ⊤(k + 1) · f(k,x(k),u(k)),
(56)
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where λ(·) is called the costate. Pontryagin’s minimum prin-

ciple [15] states that for an input function ū(·) to make the

performance index (55) optimal, the following should hold for

all k ∈ {kc, . . . , kc +Np − 1} at the same time [16]:

x(k + 1) =
∂H(k,λ(k + 1),x(k), ū(k))

∂λ(k + 1)
, (57)

λ(k) =
∂H(k,λ(k + 1),x(k), ū(k))

∂x(k)
, (58)

G(k) =
∂H(k,λ(k + 1),x(k), ū(k))

∂u(k)
= 0, (59)

where G(·) is called the reduced gradient [20]. In order to

numerically solve (57), we can start from the initial state of

the system, x(kc). To solve (58) via backward integration, we

start from λ(kc +Np), which is given by

λ(kc +Np) =
∂J t (kc +Np,x(kc +Np))

∂x(kc +Np)
. (60)

In our problem, we considered J t(kc + Np) =
α ‖x(kc +Np)‖ for the terminal objective (with α a

positive constant) to reduce the final queue lengths on the

links. Applying an iterative algorithm involving an adaptive

optimization method known as the resilient back-propagation

(RProp) algorithm, which was initially introduced in [22],

and was more recently extended in [21], we can find the

optimal input function ū(·).

APPENDIX C

RESILIENT BACK-PROPAGATION ALGORITHM

Using RProp [22], we can find the increment ∆ūℓ of the

control vector at iteration ℓ based on the values of the reduced

gradients in the current and in the previous iterations, i.e.,

G(ℓ) and G(ℓ−1). The elements of G and ∆ū are indicated

by, respectively, Gi and ∆ūi for i = 1, . . . , |ū|, where | · |
gives the number of entries of a vector. The elements of ∆ūℓ

at time step k ∈ {kc, . . . , kc +Np − 1} are updated by

ūi,(ℓ)(k) = sat
(

ūi,(ℓ−1)(k) + ∆ūi,(ℓ)(k)
)

, (61)

where sat(ūi) =







ui,max, if ūi ≥ umax,
ūi, if umin < ūi < umax,
ui,min, if ūi ≤ umin,

with

ui,max and ui,min the upper and the lower bound for the

element ūi. Finally, for i = 1, . . . , |ū| RProp (for 0 < η− < 1
and η+ > 1) gives

∆ui,(ℓ)(k) =










−sign
(

Gi,(ℓ)(k)
)

η+|∆ui,(ℓ−1)(k)|

for Gi,(ℓ−1)(k)Gi,(ℓ)(k) > 0,

∆ui,(ℓ)(k) = −η−∆ui,(ℓ−1)(k) otherwise.
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