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An Approximation Method for Computing the Expected Value of
Max-Affine Expressions✩

Samira S. Farahania,∗, Ton van den Booma, Hans van der Weideb, Bart De Schuttera

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
bDelft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

Abstract

Expected values of max-affine expressions appear in optimization problems for various stochas-
tic systems, such as in model predictive control (MPC) for stochastic max-plus-linear systems,
in identification of stochastic max-plus-linear systems, and in control of stochastic monotonic
piecewise affine systems. Solving these optimization problems involves the computation of the
expected value of the maximum of affine expressions, which will then appear in the objective
function or in the constraints. The computation of this expected value can be highly complex
and expensive, which also results in a high computation time to solve the optimization prob-
lem. Therefore, the focus of this paper is on decreasing the computational complexity of the
calculation of these expected values. To this end, we use an approximation method based on the
moments of a random variable. We illustrate in an example that this method results in a much
lower computation time and a much lower computational complexity than the existing computa-
tional methods while still guaranteeing a performance that is comparable to the performance of
those methods.

Keywords: Expected value of maximum of affine expressions; discrete-event systems; model
predictive control; max-plus linear systems; stochastic disturbance; moments.

1. Introduction

This paper focuses on finding an approximation method to compute the expected value of
max-affine expressions. These expected values are often present in the objective functions or
constraint functions of the optimization problems for some classes of discrete-event and hybrid
systems1, such as model predictive control (MPC) of stochastic max-plus-linear systems, iden-

✩Research partially funded by the Dutch Technology Foundation STW project “Model-predictive railway traffic man-
agement” (11025), and by the European 7th Framework Network of Excellence project “Highly-complex and networked
systems (HYCON2)”.
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1In discrete-event systems, the state evolution depends entirely on the occurrence of discrete events over time. Hybrid
systems are characterized by the interaction of time-continuous models on the one hand, and logic rules and discrete-
event models on the other hand.
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tification of stochastic max-plus-linear systems, and control of stochastic monotonic piecewise
affine systems. Next, we briefly explain each of these problems in more detail.

Max-plus-linear systems are a special class of discrete-event systems. In broad terms, this
class contains discrete-event systems with synchronization but no choice2 [3]. Models of such
systems are based on two fundamental operations, maximization and addition, and they can be
applied to both deterministic and stochastic discrete-event systems [3, 14, 25, 30, 33, 44]. In
stochastic max-plus-linear systems, modeling errors, noise, and/or disturbances are present; for
example, processing times and/or transportation times are then assumed to be stochastic quanti-
ties. In practice such stochastic fluctuations can, e.g., be caused by machine failure or deprecia-
tion [42]. To control stochastic max-plus-linear systems, one of the efficient and computationally
tractable control approaches3 is model predictive control (MPC) [10, 21, 32]. MPC is an online
model-based control approach that relies on a dynamic model of the process and that is capable of
handling constraints on both inputs or outputs in a systematic way. Due to its attractive features,
MPC has been adopted to discrete-event systems and in particular to max-plus-linear systems
[17, 40, 51]. In the optimization problem that appears in MPC for stochastic max-plus-linear
systems, the objective function and possibly also one or more constraint functions consist of an
expected value of maximum of affine expressions, which imposes a significant computational
burden.

Another case in which the expected value of max-affine expressions appears is in the identi-
fication of the model parameters of a stochastic max-plus-linear system defined by a state space
model. Most identification methods for max-plus-linear discrete-event systems use a transfer
function approach [7, 20] while state space models have certain advantages: they explicitly take
the initial state of the system into account, they can reveal “hidden” behavior such as unobserv-
able, unstable modes, the extension from SISO to MIMO is more intuitive and elegant for state
space models, and the analysis is often easier. Some examples of state space models for identifi-
cation of deterministic max-plus-linear systems, using either the system’s Markov parameters or
minimizing a prediction error based on input-output data and residuation methods, are presented
in [16, 18, 45, 46, 47]. Since in a stochastic max-plus-linear system, the noise and disturbances
result in a perturbation of system parameters, in the identification method, the stochastic proper-
ties of the systems have to be taken into account. This consideration results in having an expected
value of max-affine expressions in the objective function of the identification problem,

The other case in which the expected value of max-affine expressions plays a role is in control
of stochastic monotonic piecewise affine (PWA) systems. In PWA systems, the input-state space
is partitioned into a collection of non-overlapping polyhedral regions and that in each region,
the system dynamics are defined by affine expressions [11, 27, 29, 54, 50]. The class of PWA
systems is an important class of hybrid systems since it forms the “simplest” extension of linear
systems that can still model non-linear and non-smooth processes with arbitrary accuracy while
also being capable to handle hybrid phenomena. Moreover, these systems are equivalent to
other classes of hybrid systems such as,mixed logical dynamical systems, max-min-plus-scaling
systems, and linear complementarity system [23]. In the control problem of stochastic monotonic
PWA systems (MPC is one of the control approaches for such systems [4, 26]), the expected
value of max-affine expressions appears in the objective function. Hence, to solve the control

2Synchronization requires the availability of several resources or users at the same time, whereas choice appears, e.g.,
when at a certain time, some user must choose among several resources.

3Some related work on other control methods for max-plus-linear systems, such as residuation-based or robust/H∞
control with the max-plus approach, can be found in [2, 6, 13, 35, 38, 49] and the references therein.

2



optimization problem, one needs to deal with the computational complexity imposed by this
expected value.

One solution approach to compute the expected value of max-affine expressions is numerical
integration, which is in general complex and time-consuming. An alternative approach is analytic
integration based on piecewise affine probability density functions, which has been proposed
in [52]. Although the method of [52] results in an analytic solution, its complexity increases
drastically as the number of stochastic variables or the order of the system increase. In [53] an
effort is made to reduce the computational complexity by introducing an approximation method,
namely the variability expansion that is based on Taylor series. Since this method is analytic
and does not resort to simulation, it is in principle possible to compute higher-order moments of
performance characteristics of stochastic systems. However, the level of the complexity of the
main problem still remains too high.

Accordingly, the aim of this paper is to propose an approximation method to compute the ex-
pected value of max-affine expressions with the focus on reducing the computational complexity
and the computation time. Here, we propose to approximate the expected value of maximum of
affine expressions by its upper bound using higher-order moments of random variables. Since
we can compute these moments analytically, this method simplifies the computations consider-
ably. Moreover, due to the special structure of the moments, if this method is applied to a convex
optimization setting, it results in a convex optimization problem that can be solved efficiently.

This paper is organized as follows. Section 2 introduces the new approach based on moments
of a random variable and describes how it reduces the complexity of computing the expected
value of max-affine expressions. In Section 3, the error and the convexity of the approximation
method are discussed. Section 4 presents a worked example in which the performance of the
approximation method is compared with the one using the analytic integration approach, for
MPC for a max-plus-linear system. Finally, Section 5 concludes the paper.

2. The approximation method

Let Sma denote the set of max-affine (or max-plus-scaling) functions, i.e., functions f of the
form

f (z) = max
i=1,...,n

(τi,1z1 + · · · + τi,nz znz + ξi)

with z ∈ Rnz where nz denotes the size of the vector z and with constant coefficients τi, j, ξi ∈ R.
As shown in [52], Sma is closed under the operations maximization, addition, and multiplication
by a scalar.

Let e denote the vector of independent random variables with a given probability distribution
and let ne denote the number of elements in e. Our aim in this paper is to propose an approxima-
tion method to efficiently compute expressions of the form

E[ max
j=1,...,n

(β j + γ
T
j e)] (1)

where β j ∈ R and γ j ∈ Rne . This approximation approach is inspired by the relation between the
∞-norm and the p-norm of a vector.

Definition 1 ([22]). For a vector x ∈ Rn and for p ≥ 1, the p-norm and the ∞-norm of x are
defined as:

∥x∥p =
(
|x1|

p + · · · + |xn|
p)1/p

∥x∥∞ = max(|x1|, . . . , |xn|),
(2)
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respectively.

The relation between these norms is as follows [22]:

∥x∥∞ ≤ ∥x∥p ≤ n1/p∥x∥∞ (3)

Moreover, due to the monotonic and linear properties of the expected value, we have

E
[
∥x∥∞

]
≤ E

[
(|x1|

p + · · · + |xn|
p)1/p]. (4)

Now, the following proposition shows how we can apply p-norms to find an upper bound for
E
[
max j=1,...,n(β j + γ

T
j e)

]
.

Proposition 2. Consider random variables y j for j = 1, . . . , n and let p > 1. Then

E
[
max(y1, . . . , yn)

] (i)
≤ E

[
max(|y1|, . . . , |yn|)

]
(ii)
≤ E

[
(|y1|

p + · · · + |yn|
p)1/p]

(iii)
≤

( n∑
j=1

E
[
|y j|

p])1/p
(5)

Proof. Inequality (i) is straightforward. Inequality (ii) results from (4). Inequality (iii) results
from Jensen’s inequality for concave functions [8]. Note that we can apply Jensen’s Inequality
since φ(ν) = ν1/p is a concave function for p > 1 and ν > 0, and in our case the argument ν is∑n

i=1 |yi|
p which is positive. □

Inequality (i) reduces to an equality if all variables x j are nonnegative. Hence, in order to
reduce the error in Inequality (i) for j = 1, . . . , n, we define an offset L such that x j = y j − L is
almost always positive. Note that if y j is drawn from a distribution with a finite domain (such
as the uniform distribution), L can be defined such that L ≤ y j for j = 1, . . . , n and hence,
Inequality (i) turns into an equality. However, if y j is drawn from a distribution with an infinite
or a left semi-infinite domain4 (such as the normal distribution), Inequality (i) never reduces to
an equality and we can only decrease the error by defining L such that it is less than or equal
“almost” all y j for j = 1, . . . , n. For example if y j, j = 1, . . . , n are normally distributed with
mean µ j and variance σ2

j , then L can be defined as L = min j=1,...,n(µ j − 3σ j). This choice of L is
made based on the 3σ-rule, which states that 99.7% of the observations of a normally distributed
random variable with mean µ and variance σ2 fall within the interval [µ − 3σ, µ + 3σ].

Remark 3. Note that if the number of random variables increases, i.e., for large n, the probabil-
ity that “almost” all the random variables are larger than or equal to L becomes smaller. This
can be explained as follows: for the sake of simplicity assume that the variables y j, j = 1, . . . , n,
are identically distributed. Let pprob denotes the probability that one particular y j is larger than
L. For the normal distribution with L = µ j−3σ j, we would then have pprob ≈ 1−(1−0.9973)/2 ≈
0.9987 since the probability that y j ∈ [µ j−3σ j, µ j+3σ j] ≈ 0.9973 and we only need to consider
the interval [µ j−3σ j,∞). In our derivation, we need that “almost” all y j are larger than or equal
to L. This probability will be pn

prob and hence, if n is large, this probability becomes smaller; for
example for n = 100, we have pn

prob = 0.8736 and for n = 1000, we have pn
prob = 0.2590. There-

fore, if we have a large number of random variables, we should make L smaller and not use the
3σ bound but the 5σ, 7σ, or 9σ bound, depending on the desired accuracy.

4By left semi-infinite domain, we refer to the interval of the form (−∞, a) for some a ∈ R.
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Remark 4. In the case that all y j, j = 1, . . . , n are nonnegative, using the offset L is still useful.
Indeed, in that case, L is not needed for Inequality (i) as it will be an equality. However, for In-
equality (ii), using an offset L will still reduce the error, which can be illustrated by the following
example: Let y1 = 1000, y2 = 1001, then max(y1, y2) = 1001. Now for p = 2, if L = 0 then
(yp

1 + yp
2 )1/p = 1000

√
2; however, for L = 1000, ((y1 − L)p + (y2 − L)p)1/p + L = 1000, which is

much closer to max(y1, y2).

Accordingly, we can rewrite (5) as follows:

E
[
max(y1, . . . , yn)

]
= E

[
max(y1 − L, . . . , yn − L)

]
+ L

= E
[
max(x1, . . . , xn)

]
+ L

≤ E
[
max(|x1|, . . . , |xn|)

]
+ L

≤ E
[
(|x1|

p + · · · + |xn|
p)1/p] + L

≤

( n∑
j=1

E
[
|x j|

p])1/p
+ L. (6)

Remark 5. For a positive even integer p = 2q, q ∈ N \ {0}, we have E[xp] = E[|x|p]. Hence,
without loss of generality, we can use E[xp] in (6). So from now on, p is an even integer larger
than or equal to 2.

Therefore, considering Inequality (6) and Remark 5, we can approximate E[max j=1,...,n(β j+γ
T
j e)]

in (1) by an upper bound. Let y j = β j + γ
T
j e; hence, an upper bound can be defined as follows:

U
(
E[max(y1, . . . , yn)]

)
=

( n∑
j=1

E
[
(β j + γ

T
j e − L)p])1/p

+ L (7)

for p a positive even integer and for independent random variables y j, j = 1, . . . , n.
In the approximation function (7), we have to compute the p-th moment of each random

variable x j = y j − L = β j + γ
T
j e − L, j = 1, . . . , n. The p-th moment of a real-valued random

variable x is defined as follows:

E[xp] =
∫ ∞

−∞

xp f (x)dx (8)

where f (·) is the probability density function of x. In general, moments of a random vari-
able can be finite or infinite. Hence, to be able to usefully apply U

(
E[max j=1,...,n(β j + γ

T
j e)]

)
as an approximation of E[max j=1,...,n(β j + γ

T
j e)], we need to consider random variables (i.e.,

each x j, j = 1, . . . , n) with finite moments for which a closed-form expression exists. Further-
more, each random variable x j, j = 1, . . . , n is indeed a sum of the few random variables since
γT

j e = γ j,1e1 + · · ·+ γ j,ne ene . Therefore, in order to determine the distribution of each x j, we need
to either consider random variables with distributions that are preserved under summation such
as the normal distribution, the Poisson distribution, and the gamma distribution [5, 43] or random
variables that their sum has a known distribution with finite moments for which a closed-form
expression exists, such as n i.i.d random variables with uniform distribution U(0, 1) since their
sum has the Irwin-Hall distribution [28], which has finite moments with closed-form expressions.

As an example, we assume in this paper that each element of the stochastic vector e, namely
et, t = 1, . . . , ne is normally distributed with mean µt and variance σ2

t , i.e., et ∼ N(µt, σ
2
t ).
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Remark 6. For a normally distributed stochastic vector e, the random variable x j = β j+γ
T
j e−L

is also normally distributed with mean β j − L + γT
j µ

T and variance (γ2
j )

T (σ2)T where µ =
[µ1, . . . , µne ]

T and σ2 = [σ2
1, . . . , σ

2
ne

]T . This is obtained using the property of the normal dis-
tribution that sum of the independent normally distributed random variables has also a normal
distribution with a new mean and variance [19].

Furthermore, according to [55], the p-th moment of a normally distributed scalar random variable
x with mean µ and variance σ2 has a closed form that can be expressed as:

E
[
xp] = σpi−pHp(iµ/σ) (9)

where

Hp(x) = p!
p/2∑
l=0

(−1)lxp−2l

2ll!(p − 2l)!
(10)

is the p-th Hermite polynomial obtained from equations (26.2.51) and (22.3.11) in [1] and p/2 ∈
N \ {0} since, by assumption, p is an even integer in our case. Note that the right-hand side of (9)
is in fact real because Hp(x) contains only even powers of x if p is even.

As a result, we can then replace E
[
(β j + γ

T
j e − L)p] in (7) by the expression in (9) with the

appropriately defined µ j and σ2
j related to each random variable x j = β j + γ

T
j e − L. Note that by

using (9), the computational complexity of this approximation method is of order O
(
n · ne · p

)
and hence, it increases polynomially as n, ne, or p increase. The computational complexity of the
two other approaches proposed in [52, 53] are also presented in Section 6.2 of the appendix for
the sake of comparison.

Remark 7. A similar approximation method for calculating the expected value of the maximum
of a finite set of random variables has been proposed in [12]. In that approach, the random
variables are assumed to be normally distributed (possibly dependent) or they are approximated
by normally distributed variables. The expected value of the maximum of finite set of these
variables can be obtained using an iterative approximation method. The differences between
this method and the method proposed in the current paper are: 1) in our method the expected
value and hence, the objective function can be computed analytically while the method of [12]
they are not computed fully analytic due to the presence of the cumulative distribution functions
of the normal distribution in the formulas for which the look-up tables are required; 2) most
importantly, the approximation method in [12] does not provide an upper bound for the exited
value while our approach does. This is important in the optimization context, since by minimizing
the approximate objective function, obtained by using our proposed approximation method, we
guarantee that the optimal approximate solution gets closer to the exact optimal solution.

3. On the error and the convexity of the approximation method

In this section, we show that the error due to the proposed approximation method is bounded
from below and from above. Moreover, we prove that the approximation function (7) is a convex
function of its variables.

6



3.1. Error of the approximation method
In this section, we show that the error caused by approximating E[max(x1, . . . , xn)] by its

upper bound U
(
E[max(x1, . . . , xn)]

)
=

(∑n
j=1 E[(x j − L)p]

)1/p
+ L (cf. (7)) is bounded. Note

that E[max(x1, . . . , xn)] is bounded from above and from below. Indeed, an upper bound has
been presented in (7) and a lower bound can be obtained using Jensen’s inequality for convex
functions, the max function in this case. Let L

(
E[max(x1, . . . , xn)]

)
= max(E[x1], . . . ,E[xn])

denote this lower bound. Hence,

L
(
E[max(x1, . . . , xn)]

)
≤ E[max(x1, . . . , xn)] ≤ U

(
E[max(x1, . . . , xn)]

)
(11)

Consequently, the error of approximating E[max(x1, . . . , xn)] by its upper bound is always bounded
as follows:

0 ≤U
(
E[max(x1, . . . , xn)]

)
−E[max(x1, . . . , xn)]≤U

(
E[max(x1, . . . , xn)]

)
−L

(
E[max(x1, . . . , xn)]

)
(12)

and since in our case x j, j = 1, . . . , n are assumed to have finite moments, this upper bound is
finite and the error of the approximation cannot be larger than this value.

Alternatively, we can introduce another upper bound for the approximation error as follows.
We can split the error introduced by the proposed approximation method into three parts corre-
sponding to the three inequalities in Proposition 2. Since we have defined x j = y j−L, in the case
that y j, j = 1, . . . , n is drawn from a distribution with a finite domain, the error due to (i) becomes
zero by choosing L = min j=1,...,n(y j); moreover, in the case that y j, j = 1, . . . , n is drawn from a
distribution with an infinite domain, the error due to (i) approaches 0 if L becomes smaller and
smaller. The error due to (ii) approaches 0 if p→ +∞, since by definition ∥x∥∞ = limp→+∞ ∥x∥p.
The third error, which is in fact the error of Jensen’s inequality, needs more discussion. Note that
in the case of infinite domain, we will only obtain an approximate upper bound for the error by
applying the approach.

In [48, Theorem 3] an upper bound for the absolute error of Jensen’s inequality is presented
as follows: for a differentiable, concave function f on an interval [a, b] we have

0 ≤ f (E[x]) − E[ f (x)] ≤ max
q∈[0,1]

[ f (qa + (1 − q)b) − q f (a) − (1 − q) f (b)] =: T f (a, b) .

By substituting f (x) = x1/p in the above formula and determining the maximum for q ∈ [0, 1],
we obtain

T f (a, b) =

 a − b

p(a
1
p − b

1
p )


1

p−1

−

 1
a − b

(a 1
p − b

1
p
)( a − b

p(a
1
p − b

1
p )

) p
p−1
− a

1
p b + ab

1
p

 (13)

and for different values of a, b and p and by applying l’Hôpital’s rule, we obtain the following:

if (a→ ∞ or b→ ∞) and (p < ∞) then T f (a, b)→ ∞
if (a < ∞ and b < ∞) and (p→ ∞) then T f (a, b)→ 0

As mentioned in Section 2, we assume in this paper that random variables x1, . . . , xn are in-
dependent and normally distributed. Hence, the argument x defined as

∑n
j=1 xp

j is not bounded.
However, each x j = y j − L is in the interval [µ j − 3σ j − L, µ j + 3σ j − L] with probability 99.7%
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(cf. Section 2). Hence, we compute an approximate error5 by only considering the case that x j

belongs to the interval [c1 j, c2 j], where c1 j := µ j − 3σ j − L and c2 j := µ j + 3σ j − L. Since we
have L = min j(µ j − 3σ j), it follows that 0 ≤ c1 j ≤ c2 j and consequently cp

1 j ≤ cp
2 j. Consequently,

for x =
∑n

j=1 xp
j we have:

n∑
j=1

cp
1 j︸ ︷︷ ︸

a

≤

n∑
j=1

xp
j︸︷︷︸

x

≤

n∑
j=1

cp
2 j︸ ︷︷ ︸

b

(14)

Recall that the error caused by Inequality (ii) in Proposition 2 approaches 0 as p → ∞. This
suggests that in order to get a good approximation, p should be selected very large. However,
since in our case both a and b depend on p (cf. (14)), we need a more careful investigation to
study the effect of p→ ∞ on T f (a, b). To this end, let α = max j=1,...,n(c1 j) and β = max j=1,...,n c2 j.
Since c1 j < c2 j for all j, we conclude that α < β. Denote the number of c1 j, j = 1, . . . , n that are
equal to α by A and the number of c2 j, j = 1, . . . , n that are equal to β by B. Now, for a large p,
we can rewrite a and b as a ≈ Aαp and b ≈ Bβp. Using this notation, we obtain the following
proposition.

Proposition 8. Considering our assumption that p is a positive even integer and that a ≈
Aαp, b ≈ Bβp for a large p with A, B positive integers and 0 ≤ α < β, we have the follow-
ing result: limp→∞ T f (α, β) = β

Proof. The proof is straightforward using l’Hôpital’s rule. □

Accordingly, considering the effect of the second error (which becomes smaller as p→ +∞) and
the third error (which depends on the magnitude of β as p → +∞), there is a trade-off between
the choice of p and the magnitude of the approximation error (see also Section 4). Note that this
error bound is only an approximation, since we leave out the cases where x j > µ j + 3σ j − L and
x j < µ j − 3σ j − L for j = 1, . . . , n.

3.2. Convexity of the approximation method
In this section, we also prove that the approximation function (cf. (7))

U
(
E[ max

j=1,...,n
(β j − L + γT

j e)]
)
=

( n∑
j=1

E
[
(β j − L + γT

j e)p])1/p
+ L

with β j = a j + bT
j w, where w denotes a general control or optimization variable, is convex in w.

To this end, let ϕ j(w) = a j + bT
j w + γT

j e − L, which is an affine and so a convex function in w.
Hence, the p-th moment of ϕ j(w), i.e., E[

(
ϕ j(w)

)p] can be defined as:

E[
(
ϕ j(w)

)p] =
∫ +∞

−∞

· · ·

∫ +∞

−∞

(
ϕ j(w)

)p f (e)de

where f (e) is the probability density function of e. Note that to the random variable e, we only
assign distributions that have finite moments; hence, E[

(
ϕ j(w)

)p] is finite as well. Consider the
following proposition:

5In case that the obtained approximate error bound is not small enough, one can improve it by considering 5σ- or
7σ-rule.
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Proposition 9.
(
E
[(
ϕ j(w)

)p])1/p
, with ϕ j an affine function in w, is a convex function of w.

Proof. If we show that{
E
[(
ϕ j(λw1 + (1 − λ)w2)

)p]}1/p

≤ λ
{
E[

(
ϕ j(w1)

)p]
}1/p
+ (1 − λ)

{
E[

(
ϕ j(w2)

)p]
}1/p

for any two points w1 and w2 in the domain of E
[(
ϕ j(w)

)p] and for any 0 ≤ λ ≤ 1, then the proof
is complete. Since ϕ j is an affine function in w, we have

ϕ j(λw1 + (1 − λ)w2) = λϕ j(w1) + (1 − λ)ϕ j(w2)

Therefore, from the Minkowski inequality for functions [39, Chapter 5] and keeping in mind that
p is an even integer we obtain:(

E
[(
ϕ j(λw1 + (1 − λ)w2)

)p])1/p
=

(
E
[(
λϕ j(w1) + (1 − λ)ϕ j(w2)

)p])1/p

≤ λ
(
E[

(
ϕ j(w1)

)p]
)1/p
+ (1 − λ)

(
E[

(
ϕ j(w2)

)p]
)1/p

(15)

So the inequality holds true and consequently,
(
E
[(
ϕ j(w)

)p])1/p
is a convex function in w. □

This proposition implies that

U
(
E[ max

j=1,...,n
ϕ j(w)]

)
=

( n∑
j=1

E[
(
ϕ j(w)

)p]
)1/p
+ L (16)

is a convex function in w. Its subgradient can be defined as follows:

∂

∂w
U
(
E[ max

j=1,...,n
ϕ j(w)]

)
=

 n∑
j=1

E
[(

a j + bT
j w + γT

j e − L
)p]1/p−1

·

n∑
j=1

b jE
[(

a j + bT
j w + γT

j e − L
)p−1]
.

The convexity of the approximation function U
(
E[max j=1,...,n ϕ j(w)]

)
is useful in the case that we

have a convex optimization setting. In that case, by approximating the objective function using
(7), we obtain again a convex optimization problem that can be solved efficiently using convex
optimization algorithms such as interior point methods [41, 56].

4. Example

In this section, we show how the proposed approximation method will improve the computa-
tional efficiency of an stochastic optimization problem in which the objective function is defined
as the expected value of max-affine expressions. We will apply the approximation function (7)
to approximate this objective function in the optimization problem and we will compare the
obtained results with the ones of some other computational methods.
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We reconsider the example of [17] and we assume that the processing time of machine 2 and 3
are both perturbed by an stochastic vector e(k) at each event step k. Moreover, we assume that the
element of e(k) are normally distributed. In this example, we check whether our approximation
method works efficiently when it is applied to the MPC6 optimization problem of stochastic
max-plus-linear systems. To compute the objective function, which is an expected value of max-
plus expressions, that appears in the MPC optimization problem, we apply different methods
namely, numerical integration based on Monte Carlo methods [15], nominal MPC, Monte Carlo
simulation, and the approximation method proposed in this paper. Afterward, we compare the
performance of the MPC controller using these four methods.

P1

P2

-

-

PPPPPPPPPq

���������1 P3 -

u(k)

y(k)

t1 = 0

t2 = 2

t3 = 0

t4 = 1
t5 = 0

d1 = 12

d2(k) = 11 + e1(k)

d3(k) = 7 + e2(k)

Figure 1: A production system.

Consider the simple manufacturing system of Figure 1. Define:

u(k) : time instant at which the raw material is fed to the system for the k-th time
y(k) : time instant at which the k-th product leaves the system
xi(k) : time instant at which machine i starts for the k-th time
t j(k) : transportation time on link j for the k-th batch.
di(k) : processing time on machine i for the k-th batch.

The system equations are given by

x1(k) = max(x1(k − 1) + d1, u(k) + t1 )
x2(k) = max(x2(k − 1) + d2(k − 1), u(k) + t2 )
x3(k) = max(x1(k) + d1 + t3, x2(k) + d2(k) + t4, x3(k − 1) + d3(k − 1) )

= max(x1(k − 1) + 2d1 + t3, x2(k − 1) + d2(k − 1) + d2(k) + t4,

x3(k − 1) + d3(k − 1), u(k) + d1 + t1 + t3, u(k) + d2(k) + t2 + t4 )
y(k) = x3(k) + d3(k) + t5

and in matrix notation this becomes7

x(k) = A(k) ⊗ x(k−1) ⊕ B(k) ⊗ u(k)

6A brief description of MPC for max-plus-linear systems has been presented in Section 6.1 of the appendix and for
more details the interested reader is referred to [52].

7In max-plus notation for A and B matrices, (A ⊕ B)i j = ai j ⊕ bi j = max(ai j, bi j) and (A ⊗ C)i j =
⊕n

k=1 aik ⊗ ck j =

maxk=1,...,n(aik + ck j).
10



y(k) = C(k) ⊗ x(k) .

where the system matrices A, B and C are given by

A(k) =

 d1 ε ε
ε d2(k − 1) ε

2d1 + t3 d2(k − 1) + d2(k) + t4 d3(k − 1)

 ,
B(k) =

 t1
t2

max(d1 + t1 + t3, d2(k) + t2 + t4)

 , C(k) =
[
ε ε d3(k)

]
.

The objective function, defined as

J(k) =
Np−1∑
j=0

ny∑
i=1

E[max(yi(k + j) − ri(k + j), 0)] − λ
Np−1∑
j=0

nu∑
l=1

ul(k + j), (17)

will be optimized for the prediction horizon Np = 3, λ = 0.05, the reference signal r(k) = 6+20·k
where k = 1, . . . , 40, and x(0) = [0 0 10]T . The signal d2 and d3 are assumed to be corrupted by
Gaussian noise: d2(k + ℓ) = 11+ ẽ1(k + ℓ) and d3(k + ℓ) = 7+ ẽ2(k + ℓ) where ẽ1(k + ℓ), ẽ2(k + ℓ)
are assumed to be i.i.d and ẽ1(k + ℓ), ẽ2(k + ℓ) ∼ N(0, 1) for ℓ = −1, . . . ,Np − 1. Hence, the
vector e(k) = [ d2(k − 1) . . . d2(k + Np − 1) d3(k − 1) . . . d3(k + Np − 1) ]T consists of
independent stochastic random variables. Now, we have

max(y(k) − r(k), 0) = max(η1 + e6, η2 + e1 + e2 + e6, η3 + e5 + e6, η4 + e6,

η5 + e2 + e6, 0)
max(y(k + 1) − r(k + 1), 0) = max(η6 + e7, η7 + e7, η8 + e1 + e2 + e3 + e7,

η9 + e2 + e3 + e7, η10 + e6 + e7,

η11 + e1 + e2 + e6 + e7, η12 + e5 + e + 6 + e7, η13 + e6 + e7

η14 + e2 + e7 + e7, η15 + e7, η16 + e3 + e7, 0)
max(y(k + 2) − r(k + 2), 0) = max(η17 + e8, η18 + e8, η19 + e8, η20 + e1 + e2 + e3 + e4 + e8

η21 + e2 + e3 + e4 + e8, η22 + e3 + e4 + e8, (18)
η23 + e7 + e8, η24 + e7 + e8, η25 + e1 + e2 + e3 + e7 + e8,

η26 + e3 + e3 + e7 + e8, η27 + e6 + e7 + e8,

η28 + e1 + e2 + e6 + e7 + e8, η29 + e5 + e6 + e7 + e8,

η30 + e6 + e7 + e8, η31 + e2 + e6 + e7 + e8, η32 + e7 + e8,

η33 + e3 + e7 + e8, η34 + e8, η35 + e4 + e8, 0)

where8 η1, . . . , η35 are sums of deterministic values and e1, . . . , e8 are the entries of e(k). Note
that for independent normally distributed random variables e1, . . . , e8 with mean µi and variance
σ2

i ,
∑8

i=1 ei is also normally distributed with mean µ =
∑8

i=1 µi and varianceσ2 =
∑8

i=1 σ
2
i . Hence,

for each equation in (18), we can define the scalars L1, L2, and L3 respectively, as follows:

L1 = min(η1 − 3 · 1, η2 − 3 ·
√

3, η3 − 3 ·
√

2, η4 − 3 · 1, η5 − 3 ·
√

2, 0)

8We have omitted the argument k for brevity. Note also that the number of affine expressions, i.e., n in (7), is 6,12,
and 20, respectively (cf. (18)).
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L2 = min(η6 − 3 · 1, η7 − 3 · 1, η8 − 3 · 2, η9 − 3 ·
√

3, η10 − 3 ·
√

2, η11 − 3 · 2,

η12 − 3 ·
√

3, η13 − 3 ·
√

2, η14 − 3 ·
√

3, η15 − 3 · 1, η16 − 3 ·
√

2, 0)

L3 = min(η17 − 3 · 1, η18 − 3 · 1, η19 − 3 · 1, η20 − 3 ·
√

5, η21 − 3 · 2, η22 − 3 ·
√

3, η23 − 3 ·
√

2,

η24 − 3 ·
√

2η25 − 3 ·
√

5, η26 − 3 · 2, η27 − 3 ·
√

3, η28 − 3 ·
√

5,

η29 − 3 · 2, η30 − 3 ·
√

3, η31 − 3 · 2, η32 − 3 ·
√

2, η33 − 3 ·
√

2,

η34 − 3 · 1, η35 − 3 ·
√

2, 0)

Recall that this choice is based on the 3σ-rule (cf. Section 2).

0 5 10 15 20 25 30 35 40
-14

-12

-10

-8

-6

-4

-2

0

2

4

6 Exact Solution, Monte Carlo
Nominal MPC
Approximation, p=10
Approximation, p=20
Approximation, p=30
Approximation, p=40
Approximation, p=100

Figure 2: Due date error y(k) − r(k) for the closed-loop system using nominal MPC, numerical integration, and the
approximation method to compute the expected value in the objective function (17).

Figure 2 shows the difference between the output signal y and the due date signal r for the
closed-loop simulation. The optimization has been done using sequential quadratic programming
(SQP) and the fmincon optimization function in Matlab with one initial value since the objective
functions (both the exact and the approximate one) are convex and hence, the global minimum
can be reached from any initial point. In Figure 2, the “Exact solution” is obtained by using
numerical integration to compute the expected value in the objective function (17). We have
also used Monte Carlo simulation to compute the expected value that appears in the objective
function. Note that the plot of the Monte Carlo simulation coincides with the one of the “Exact
solution”. The “Nominal MPC” solution is obtained by applying deterministic max-plus MPC
[17] to the nominal system while computing the optimal input sequence. As a result, the due
dates will be violated most of the time in this case and we have late deliveries. This is due to the
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fact that we compute the optimal input in the absence of noise and hence we cannot minimize
the effect of noise. Finally, the “Approximation” solution is obtained by using the proposed
approximation method to compute the expected value in the objective function (17).

We have chosen different values of p to find out which one gives the closest result to the
exact solution considering the effect of the error of the approximation method (cf. Section 3.1).
As can be seen, or p = 20, 30, and 40, the result of the closed-loop controlled system using the
approximation method are the closest to the one of the “Exact solution”. If we further increase
p from 50 to 90, the results does not improve and on the contrary, they get closer to the one of
p = 20 (these plots are not shown here for the clarity of the figure). For p = 100, as shown
in Figure 2, the difference between the output and reference signal goes even below the one of
p = 20, and hence, gets further away from the exact solution. This observation shows clearly
that a larger p does not always give a better result.

In Table 1, the total optimization time9 for closed-loop simulation over 40 event steps using
numerical integration approach, nominal MPC, Monte Carlo simulation, and the approximation
method for different values of p are reported. For each method, MPC has been run in closed loop
20 times, each time with a different noise realization. Note that at each time, the same noise real-
ization has been used for all the methods. In Table 1, we report the mean value of the performance

criterion Jtot over the entire simulation period, where Jtot =

40∑
k=1

(max(y(k) − r(k), 0) − λu(k)). In

addition, the relative error10 of the mean value of Jtot using numerical integration versus using
the other methods is presented.

Methods for computing Computation Mean value Relative error of
the objective function time[s] of Jtot mean value of Jtot

Numerical integration 864.95 −780.2693 –
Nominal MPC 0.28 −735.4663 5.74%
Monte Carlo 1509.01 −780.5834 0.04%

Approximation method:
p = 10 11.39 −767.3861 1.65%
p = 20 15.15 −777.7221 0.33%
p = 30 20.21 −779.0438 0.16%
p = 40 30.63 −779.1575 0.14%
p = 100 63.72 −776.5324 0.48%

Table 1: The computation time, the mean value of Jtot, and the relative error of the mean value of Jtot using different
methods to compute the expected value in the objective function.

Here again, compared to numerical integration, nominal MPC results in a very large objective
function value. Hence, despite the very short computation time, nominal MPC is not reliable to
be applied. The computation time of the optimization procedure using the approximation method
is on average about a factor 50 smaller than the one using Monte Carlo simulation and it is about

9These times are obtained running Matlab R2014b on a 2.6 GHz Intel Core i5 processor.
10The relative error is defined here as |Jtot,app−Jtot,ni |

|Jtot,ni |
where Jtot,app is obtained using the approximation method and Jtot,ni

is obtained using the numerical integration approach.
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a factor 30 smaller than the one using numerical integration. The number of samples of the
Monte Carlo simulation has chosen to be 105 since for 107 samples, although the relative error of
the objective function will be 0.007% compared to 0.04% for 105 samples, the computation time
will be a factor 100 larger than the one for 105 samples. Note that since we use the approximation
function (7), increasing the value of p has only a linear effect on the computation time and even
for p = 100, the computation time is still much lower than the one using Monte Carlo simulation
or numerical integration. As a result, by comparing the CPU time of these three methods, we can
conclude that the approximation method is considerably faster than numerical integration and
Monte Carlo simulation. Moreover, this table shows again that – considering the relative error
for different values of p – a larger p does not always make the approximation better. This is due
to the fact that although a larger p decreases the error of inequality (ii) in (5), it increases the
error of inequality (iii), i.e., the Jensen’s inequality (cf. Section 3.1). Consequently, one needs
to find the appropriate value of p that gives the best approximation result, which has been done
here by means of experiments.

It is also possible to compare the time required to obtain a certain accuracy. For the approxi-
mation method, we can improve the accuracy by choosing smaller L, e.g., by selecting 5σ or 7σ;
however, the computation time will be still similar to the ones presented in Table 1 for different
values of p. For the Monte Carlo approach, it is possible to decrease the accuracy to the level
of the one of the approximation method that has the smallest relative error, i.e., for p = 40, and
then compare the required computation time for obtaining such accuracy. This has been done by
fixing the termination time of the SQP iteration. The results are presented in Table 2.

Methods for computing Computation Mean value Relative error of
the objective function time[s] of Jtot mean value of Jtot

Numerical integration 864.95 −780.2693 –
Monte Carlo 107.32 −779.0989 0.15%

Approximation method:p = 40 30.63 −779.1575 0.14%

Table 2: Comparing the computation time, the mean value of Jtot, and the relative error of the mean value of Jtot using
Monte Carlo method with a fixed accuracy level, numerical integration and the approximation method with p = 40.

As shown here, even if we sacrifice the accuracy of the Monte Carlo method, the computation
time is still much higher than the one of the approximation method for different values of p (cf.
Table 1).

Figure 3 shows the evolution of J∗app(k) − J∗(k), where J∗(k) is obtained by solving the opti-
mization problem in closed loop using numerical integration and J∗app(k) is computed using the
approximation method. Note that to compute J∗app(k) at each event step k, the initial state we
use for the MPC problem for step k is the state x(k) obtained from the simulation using the nu-
merical integration approach. This figure also shows the upper bound for J∗app(k) − J∗(k), which
is obtained by using (12). As shown in Figure 3, after a few steps, for p = 20, 30, and 40 the
upper bound for J∗app(k) − J∗(k) is below 1. However, for p = 100 both the upper bound for
J∗app(k) − J∗(k) and the difference itself become larger than 2. Experiments (not reported here)
using the 5σ- and 6σ-rule instead of the 3σ-rule for defining L show that the approximation
error due to inequality (i) of Proposition 2 is negligible. Hence, we now focus on the error due
to (ii) and the upper bound for the error of Jensen’s inequality due to (iii), as given in (13). As
shown in Figure 3, this upper bound also become closer to the exact solution after few steps and
by increasing p, the difference between this upper bound and the exact solution becomes larger.
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Figure 3: The upper bound (12) for and the exact value of J∗app(k) − J∗(k) for different values of p.

These observations support our previous conclusion that a larger p is not always a better option
and hence, p has to be chosen such that J∗app(k) − J∗(k) and accordingly, the upper bound for
this difference have the possible smallest value. The last plot in Figure 3 shows the difference
between the exact solution and the approximation method with p = 40 and between the exact
solution and the approximation method proposed in [12], denoted by J∗Clark(k). As explained in
Remark 7 and as can be seen here, the method of [12] does not provide an upper bound for the
expected value of maximum of random variables and hence, for the objective function. Actually,
in this example, this method provides a lower bound for the exact solution, which means that by
minimizing the objective function using this approximation method, we get further away from
the exact solution. Also, due to the iterative nature of the method of [12], the CPU time of the
closed-loop MPC optimization using this approach is 78.57 s, which is approximately 2.5 times
larger than the one (i.e., 30.63 s) using the proposed approximation method with p = 40.

Consequently, based on the computation time, the mean value of Jtot, and the relative and
the approximation errors, we can conclude that the approximation method is a reliable and time-
efficient method to solve the stochastic max-plus-linear MPC optimization problem in this ex-
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ample. Indeed, for p = 20, 30, and 40 the result of the closed-loop optimization using the
approximation method is close to the one using numerical integration and, in this specific exam-
ple, the approximation-based approach is about 30 times faster than the approach using numerical
integration.

5. Conclusions

We have introduced an approximation method to reduce the computational complexity im-
posed by the computation of the expected value of max-affine expressions, which appears in op-
timization problems for different types of stochastic discrete-event and hybrid systems, such as
stochastic max-plus-linear systems or stochastic monotonic PWA systems. This expected value
usually appears in the objective function and/or in the constraints of the optimization problem
and creates a significant computational load. To tackle this issue, we have proposed an approxi-
mation method that is based on the moments of stochastic variables. We assume that the random
variables in the system are independent and as an example they are assumed to be normally
distributed. Since a closed-form expression of the moments of a normally distributed random
variable exists, we can approximate the expected value of max-affine expressions without using
numerical integration. It is important to note that this method is not limited to normally dis-
tributed random variables, but that it is in general applicable to any distribution that is preserved
under summation and that has finite moments for which a closed-form expression exists, such
as the Poisson distribution and the gamma distribution. It is also applicable to random variables
that their sum has a known distribution with finite moments for which a closed-form expression
exists, such as i.i.d random variables with uniform distribution U(0, 1) the sum of which has the
Irwin-Hall distribution with finite moments and closed-form expressions. We have also proved
that the approximation function, and consequently, the cost function are convex in the control
(optimization) variable. Therefore, if the constraints are non-decreasing affine functions of the
output, the resulting optimization problem is convex, which thus can be solved efficiently.

As a particular application of this approximation method, we applied it to the MPC optimiza-
tion problem of max-plus-linear systems. MPC is a very popular control approach for practical
applications; therefore, the proposed approximation method might be useful to enable and pro-
mote the use of max-plus MPC methods in the control of production processes. Moreover, we
have shown in this example that by choosing the appropriate order of moments, we can decrease
the approximation error (for the given example). In this paper, this choice was made by means
of numerical experiments. However, it is a topic for future research to find more efficient ways
to determine the appropriate order of moments. In addition, the system we have studied in this
example was quite simple; hence, in the future research, we will obtain more efficient imple-
mentations and/or additional approximation methods to improve the scalability of the current
approach and to apply it to more complex and large scale systems. Moreover, it is interesting to
find out how large the approximate error will be when evaluating large sets of affine expressions,
occurring for multivariate systems with many components or for MPC with a long time horizon.
Another topic for the future research is to extend this approximation such that it is applicable
to a wider range of distributions and also to find a tighter upper bound for the error of this ap-
proximation method. Yet another topic for future work would be the extensive assessment and
comparison of this method with other approximation methods such as the variability expansion
method of [53] and approximation methods of [36, 37].
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6. Appendix: MPC for stochastic max-plus linear systems

6.1. Problem description
In [17, 52] the MPC framework has been extended to max-plus-linear models

x(k) = A(k) ⊗ x(k − 1) ⊕ B(k) ⊗ u(k) (19)
y(k) = C(k) ⊗ x(k) (20)

where A(k), B(k), and C(k) are systems matrices, x(k) is the state at event step k, and u(k) and y(k)
are the input and the output [3]. In fact, x(k), u(k), and y(k) contain the time instants at which the
internal, input, and output events occur for the k-th time, respectively. We define a cost criterion

J(x(k − 1), ũ(k))=
Np−1∑
j=0

ny∑
i=1

E[κi(k + j)]︸                  ︷︷                  ︸
Jout(x(k−1),ũ(k))

+λ
(
−

Np−1∑
j=0

nu∑
l=1

ul(k + j)
)

︸                    ︷︷                    ︸
Jin(ũ(k))

(21)

where Np is the prediction horizon, λ > 0 is a weighting factor, E[·] denotes the expected value
operator, κi(k) = max(yi(k) − ri(k), 0) penalizes the late (but not the early) deliveries for the i-th
output at event step k where r(k) is the vector of due date signals, and ũ(k) = [ uT (k) uT (k +
1) · · · uT (k+Np−1) ]T (ỹ(k) is defined similarly). The stochastic max-plus-linear MPC problem
at event step k is now defined as [17, 52]

min
ũ(k),ỹ(k),x̃(k)

Jout(x(k), ũ(k)) + λJin(ũ(k))

s.t. (19) and (20)
u(k + j) ≥ u(k + j − 1), j = 0, . . . ,Np − 1 (22)
Acon(k)ũ(k) + Bcon(k)E[ỹ(k)] ≤ ccon(k)

where Acon(k) and Bcon(k) are the linear constraint matrices. For more details, we refer the
interested reader to [17, 52]. If all entries of Bcon(k) are nonnegative, the stochastic max-plus-
linear MPC problem (22) is a convex problem [52, Property 4].

Let κ̃(k), r̃(k), and ẽ(k) be defined in a similar way as ũ(k). To solve the max-plus-linear MPC
optimization problem (22), we need to compute the expected value of the signals κ̃(k) and ỹ(k).
As shown in [52, Lemma 2], the entries of both κ̃(k) and ỹ(k) belong to Sma(z(k)) (defined in
Section 2) with z(k) = [−r̃T (k) xT (k − 1) ũT (k) ẽT (k)]T . Now, let us rewrite both κ̃(k) and ỹ(k) as
a general max-affine function of ũ(k) and ẽ(k) [52], and denote it by v(k) as follows:

v(k) = max
j=1,...,nv

(ξ j + β
T
j ũ(k) + δTj w(k) + γT

j ẽ(k)) (23)

where nv is the number of terms that appear in the maximization, ξ j ∈ Rε, β j ∈ (R+)nu , δ j ∈

(R+)nw , γ j ∈ (R+)nẽ , with w(k) = [−r̃T (k) xT (k − 1)]T the vector of non-stochastic variables, and
ẽ(k) ∈ Rnẽ a stochastic variable with probability density function f (·).

For a shorter notation let α j(k) = ξ j + δ
T
j w(k) + βT

j ũ(k). Hence, we get

v(k) = max
j=1,...,nv

(α j(k) + γT
j ẽ(k)) (24)

which is a convex max-affine expression in ẽ(k). Accordingly, we can solve the optimization
problem (22) by means of the approximation method proposed in Section 2 of this paper.
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6.2. Alternative approaches

To solve the optimization problem (22), the expected value of v(k) has to be calculated, which
is defined as follows:

E[v(k)] =

∫ +∞

−∞

· · ·

∫ +∞

−∞

v(k) f (ẽ)dẽ

=

nv∑
j=1

∫
· · ·

∫
ẽ∈Φ j(ũ(k))

(α j(k) + γT
j ẽ) f (ẽ)dẽ (25)

where dẽ = dẽ1dẽ2 . . . dẽnẽ and the sets Φ j(ũ(k)) are defined such that for j = 1, . . . , nv we have
v(k) = α j(k) + γT

j ẽ(k) for all ẽ ∈ Φ j(ũ(k)) and
⋃nv

j=1Φ j(ũ(k)) = Rnẽ . Note that the sets Φ j

constitute a partition of Rnẽ . It is shown in [52, Proposition 3] that the function E[v(k)] is convex
in ũ(k).

One way of computing E[v(k)] in (25) is to use numerical integration. The common methods
for numerical integration are (non)adaptive integration, (non)iterative integration, exponential
quadrature, Monte Carlo integration, the Nyström method, the Quasi-Monte Carlo method, and
the multi-step method [15]. However, numerical integration is in general both cumbersome and
time-consuming, and it becomes even more complicated as the probability density function f
becomes more and more complex.

In [52], an alternative method for computing E[v(k)] is proposed based on analytic integra-
tion. To that end, a piecewise polynomial probability density function defined on polyhedral sets
is considered. Such a function can be obtained in two ways: either the stochastic vector already
has a piecewise polynomial probability density function (such as the uniform distribution) or
we approximate the real probability density function with a piecewise polynomial probability
density function11 (such as the normal distribution where its probability density function can be
approximated by PWA functions). Accordingly, E[v(k)] can be written as

E[v(k)] =
np∑
ℓ=1

nv∑
j=1

∫
· · ·

∫
ẽ∈Ψ jℓ(ũ(k))

(α j(k) + βT
j ũ(k) + γT

j ẽ) fℓ(ẽ)dẽ. (26)

where fℓ(ẽ) is the piecewise polynomial probability density function of ẽ. The expression (26)
is a sum of integrals of polynomial functions in ẽ and hence, can be solved analytically for each
polyhedron Ψi jℓ [9, 31].

Even if the integral in (26) can be computed analytically, the computational load is still quite
heavy. This is due to the fact that this method contains two time-consuming steps: In the first
step all polyhedra Ψ jℓ have to be specified, where the number of polyhedra Φ j is equal to nv and
the number of polyhedra Pℓ is np. Hence, in the worst case the number of polyhedra Ψ jℓ that
has to be considered is O(nvnp), which becomes more and more time-consuming as np and nv

become larger. In the second step, the integral over each of these regions has to be calculated, for
which in the simplest case of having a uniform probability density function, we need to compute
all the vertices of each polyhedron Ψ jℓ. As explained in [34], we have the following upper bound

11The approximate probability density function must be nonnegative and its integral over the domain of the real
probability density function must be equal to 1. This can be assured by including these conditions as constraints in the
parameter fitting.
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for the number of the vertices of a polytope defined by nv (non-redundant) inequality constraints
in an nẽ-dimensional space:

V(nv, nẽ) =
(
nv − ⌊

nẽ+1
2 ⌋

nv − nẽ

)
+

(
nv − ⌊

nẽ+2
2 ⌋

nv − nẽ

)
(27)

This means that in our case, where typically nv is much larger than nẽ, i.e., nv ≫ nẽ ≫ 1, the

number of vertices for the worst case can be O(n⌊
nẽ
2 ⌋

v ), which is again time-consuming as nv and nẽ

increase. Accordingly for the case of a uniformly distributed noise, the complexity of the whole

procedure in the worst case is of order O(npn⌊
nẽ
2 ⌋+1

v ). In the case of other piecewise polynomial
probability density functions, the order of complexity of the second step becomes even bigger
since then, the integral computation is more complex than the one in the case of a uniform dis-
tribution. Therefore, the computational complexity of this method increases exponentially as nẽ

increases and polynomially as nv increases. It increases even more in the case of non-piecewise
polynomial probability density functions, such as a normal probability density function, since
these functions cannot be directly applied for this method and have to be approximated by piece-
wise polynomial probability density functions.

In [53] an effort is made to reduce the computational complexity of the above-mentioned
method by approximating E[v(k)] in (25) using the method of variability expansion. Since vari-
ability expansion is an analytic method and does not resort to simulation, it is, in principle,
possible to compute higher-order moments of performance characteristics of stochastic systems.
As presented in [53, Section 4], it is assumed that the entries of ẽ(k) are independent and identi-
cally distributed (i.i.d) and an artificial parameter θ ∈ [0, 1] is introduced. The i-th entry of ẽ(k) is
then replaced by its mean with probability 1− θ and the result is denoted by ẽθ(k). The parameter
θ allows controlling the level of randomness in the system, and letting θ go from 0 to 1 increases
the level of stochasticity in the system. The main idea of variability expansion is as follows: con-
sidering E[vθ(k)] as a function of θ, it can be developed into a Taylor series in θ that converges to
the true function on some subset X ⊆ R. In particular, if the value of dm/dθmE[vθ(k)] for θ = 0
is denoted by dm/dθmE[v0(k)], then E[v1(k)], the “true” expected value of v(k) is given by

E[v(k)] = E[v1(k)] =
M∑

m=0

1
m!

dm

dθm
E[v0(k)] + RM(k) (28)

where for M < nẽ

RM(k) ≤
1

(M + 1)!
sup
θ∈[0,1]

∣∣∣∣ dM+1

dθM+1 E[v0(k)]
∣∣∣∣

and RM = 0 otherwise [24]. It is been also shown in [53] that a closed-form expression for the
m-th order derivative dm/dθmE[v0(k)] can be obtained.

The computational complexity of approximating E[v(k)] using the method of variability ex-
pansion has been discussed in [53, Section 5]. Based on this discussion, the overall complexity
will at least be of order

O
( (nẽ

M

)
nvV(2M + nv − 1,M)

)
= O

( nM
ẽ n

M+1
2

v

M! ( M−1
2 )!

)
whereV(·, ·) is given in (27). The derivation of the above error order can be found in Appendix
A. Clearly, the computational complexity increases polynomially if ne and nv increase and expo-
nentially if M increases.
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