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Abstract—Various traffic applications including model-based
analysis and control of traffic need the average speed. The
average speed is used as a measure of performance, and as
an input for traffic models. It is also used to obtain the
density from a known flow or vice versa. In this paper, a new
iterative procedure is presented that uses point measurements
from inductive loop detectors for estimating the time-space-
mean speed (TSMS), which is an equivalent for the generalized
average speed introduced by Edie (1965). An important subject
that is missing in the literature considering estimation of the
average speed is how to handle the vehicles that remain on a
given road section, i.e., a part of the road that is extended
between two consecutive loop detectors, for more than one
sampling cycle. The problem occurs for the vehicles that are
still in the road section at the end of the cycle. These vehicles
are detected by the upstream loop detector once they enter
the road section. However, in future cycles the data of these
vehicles will not be considered by the loop detector. The iterative
approach of the new procedure makes it possible to adequately
take into account the vehicles that will stay on the same road
section for several sampling cycles when estimating the TSMS.
To evaluate the new procedure, the NGSIM data, which provides
detailed information of a collection of vehicle trajectories on
the I-880 highway in the San Francisco Bay Area is utilized.
The simulation results illustrate the excellent performance of
the iterative procedure for estimating the TSMS compared with
previous approaches.

Index Terms—time-space-mean speed; microscopic point mea-
surements; iterative procedure

I. INTRODUCTION

A. General Framework

In traffic theory, the average speed of the vehicles together

with the flow and the density are known as the fundamental

variables of traffic [1,2]. A basic relationship has been

established between these three variables where the average

speed of the vehicles is the ratio of the flow and the density

[1,3,4]. Therefore, knowing the estimated value of each pair

of these variables, the third variable can also be estimated.

Estimation of any of the two fundamental variables would

be based on traffic measurements. Such traffic measurements

are commonly obtained using inductive loop detectors.

Inductive loop detectors (single and double) were intro-

duced in the early 1960s [5]. They became common on traffic

roads and nowadays they are the most widely used detection

tool for point measurements [5,6]. The main advantage of

a double-loop detector over a single-loop detector is that

it provides information that can be used to compute the

individual vehicle speeds and individual headways, i.e., the

time between consecutive vehicle observations at a fixed

location [7,8].

According to the literature, see e.g. [1,4,9], the appropriate

average speed that should be used as the ratio of the flow and

the density is the generalized average speed introduced by

Edie in 1963 [4], which we call the time-space-mean speed

(TSMS) here. However, the currently used loop detectors

usually report the captured data in the form of an aggregated

value, i.e., the arithmetic mean of the observed speeds known

as the time-mean speed (TMS). These two averages (i.e., the

TMS and the TSMS) are in general not equal. Therefore, we

cannot apply the output of the loop detectors directly in the

traffic applications that require the average speed.

The extensive application of inductive loop detectors in

traffic networks worldwide (in particular double-loop detec-

tors), and the high expenses of replacing them with modern

detecting equipment, motivated the authors to find an ap-

proach which utilizes the same point measurements as the

ones the current loop detectors perform, and produces more

accurate estimates of the fundamental traffic variables.

B. An Overview of Previous Work

Estimation of the average speed has been considered

by many authors (see [3,10-11]). In [12] an algorithm is

presented for estimation of the average speed using data

from a single-loop detector. Two new estimation methods are

introduced; the first one is the root finding method, which

yields an unbiased estimator for v̄ when there are idealized

noiseless measurements, and the second one is the filtering

method, which addresses the reliability of the measurements.

Based on the classical definitions for the fundamental

variables (see [1]), Rakha and Zhang [11] consider the SMS

as the desired average speed. They develop a formula that

relates the SMS and the TMS, where this formula also

requires the standard deviation of the temporal distribution

of the speeds to be known. The old-fashioned loop detectors,

however, only report the value of the TMS. To solve this

problem, Soriguera and Robusté [10] propose to assume a

normal distribution for the speed of vehicles on a particular

P – 1



lane of the road. A confidence interval is also formulated in

[10] for the estimated value of the SMS, which delimits the

error for a desired confidence level.

In [3] a relation between the TMS and the SMS is

developed, where the standard deviation of the spatial dis-

tribution of the speeds is involved. Han et al. [13] present a

combined theoretical-empirical approach for eliminating the

standard deviation from the formula proposed by Wardrop

[3]. However, a new term appears in the resulting formula,

namely, the mean of the squared speeds.

In [14], Jamshidnejad and De Schutter have introduced an

upper and a lower bound for the TSMS, where a convex

combination of these bounds is proven to produce excellent

results compared with the formulas proposed by Wardrop

[3] (and its modified form given in [13]) and by Rakha

and Zhang [11]. While the formulas by Wardrop and by

Rakha and Zhang find an estimate of the SMS rather than

the TSMS (where in general these two are not the same

since the TSMS is a spatiotemporal variable and the SMS

is a spatial variable), the formula proposed by Jamshidnejad

and De Schutter produces an estimate of the TSMS.

One important aspect that is missing in the discussed

literature is how to deal with the vehicles that remain on a

given road section for more than one sampling cycle. These

vehicles will be detected by the loop detector at the upstream

of the road section once they enter it. However, if at the end

of the sampling cycle they are still on the same road section

and have not reached the loop detector at the downstream end

of the road section, then they will not be detected by either

of these loop detectors.

C. Contribution of the Paper

The iterative procedure proposed in this paper considers

the vehicles that will stay on the same sampling road section

during a number of sampling cycles. As a result, the produced

values by the iterative procedure are more accurate than the

values produced by the formulas in [3] and [11].

The rest of the paper is organized as follows; in Section

II we give definitions for some basic concepts that will be

used frequently in this paper, such as the sampling window,

the sampling cycle, etc, and then we introduce the sampling

windows in the time-space plane. In Section III, an iterative

procedure is introduced that estimates the fundamental traffic

variables for the sampling windows, using computations that

produce the initial conditions for future sampling windows. In

Section IV the simulations are performed using the NGSIM

real-life data (for I-880 highway in the San Francisco Bay

Area) and the results are discussed. Section V presents

conclusions, and also introduces some topics for future work.

II. PROCESSING THE SAMPLING WINDOWS WITHIN A

GRID

Consider a road of length Lroad, with nloops inductive loop

detectors installed at equal distances L from one another

and having sampling cycles T , i.e., equal observation time

periods. Note however that the assumption of same distances

and sampling times could easily be relaxed as it causes no

significant difference in the procedure that we will present,

and is applied here just to make the notations less compli-

cated. The traffic conditions on the road will be investigated

for a total time period of length Troad using data from the

loop detectors.

The most comprehensive way to represent traffic data is

to plot the vehicle trajectories in the time-space plane [15].

Processing of the data captured from the road can also be

illustrated in the time-space plane (see Figure 1), where the

processing time is shown on the horizontal axis, and the

processed length on the vertical axis (we assume that the

vehicles are moving in direction of the space axis). This way

a rectangular frame with length Lroad and width Troad will

be formed (see the main frame in Figure 1). The positions

of the inductive loop detectors are represented by xj , for

j = 1, 2, . . . , nloops.

Suppose that we want to find the fundamental traffic

variables on a piece of the road between two successive loop

detectors (which we will call a sampling road section), for

which we have gathered data through one or more sampling

cycles.

Figure 1 shows the time-space rectangular windows of

length L and width T within the time-space plane. These

windows altogether form the rectangular frame of length

Lroad and width nloops discussed above. We will call each

time-space rectangular window a sampling window. The

lower edges of these sampling windows are located at the

lines x = xj for j = 1, 2, . . . , nloops, i.e., the positions of

the inductive loop detectors.

Assume that the starting point of the procedure is point

“o”, for which x = x1 and t = t1. Now we define nloops

and ncycles as the number of rows and columns in the grid

respectively:

nloops :=
Lroad

L
(1)

ncycles :=
Troad

T
(2)

To indicate each sampling window within the grid we can

use indices i (for the time axis) and j (for the space axis),

with i ∈ {1, 2, . . . , ncycles} and j ∈ {1, 2, . . . , nloops}.

For a sampling window (i, j), its right, left, top, and bottom

edges are denoted by respectively E(i, j)|, E| (i, j), E (i, j),
and E (i, j) (see Figure 1). Moreover, the number of vehicles

detected by the loop detector according to the sampling

window (i, j), i.e., the number of trajectories that cross

E (i, j), is denoted by n(i, j).
We will check if any of the trajectories corresponding

to vehicles in the window (i, j) will intersect |E(i, j), i.e.,

should they be considered as initial conditions to process

(i, j). This is because for the sampling window (i, j), only

the vehicles that pass through the loop detector at x = xj

will be detected. In this paper by initial conditions for the

sampling window (i, j) we mean the information that should

be available at t = ti in addition to the loop detector data.

The initial conditions include the speed and location at t = ti
of the vehicles that are on the same sampling road section

from previous cycle(s).

The main question here is whether we need to check all
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Fig. 1: A grid composed of sampling windows corresponding to the sampling
road sections on a road of length Lroad being processed during a total time of
Troad using loop detector data (loop detectors are located at equal distances
L with the same sampling times T )

previous windows (ℓ,m) with ℓ = 1, 2, . . . , i − 1 and

ℓ = 1, 2, . . . , j to process the sampling window (i, j),
or whether it is possible to reduce the effort. The answer is

that considering the rectangles in the same row as (i, j) (i.e.,

their lower edges are located along the line x = xj) will be

sufficient, because all trajectories that enter (i, j) through the

sampling windows that are not in the same row with (i, j)
should definitely cross the line x = xj , and hence would be

observed by the loop detector at xj .

In summary, we just need to know the history of the same

sampling road section, independent of the other sampling

road sections, in order to calculate the fundamental traffic

variables in that section. To find the initial conditions for each

sampling window, we will introduce an iterative procedure in

the following section.

III. ITERATIVE PROCEDURE FOR CALCULATION OF

THE FUNDAMENTAL VARIABLES USING THE INITIAL

CONDITIONS

Figure 2(a) illustrates three sampling windows that rep-

resent the same sampling road section during successive

sampling cycles, for which the upstream and downstream

loop detectors are positioned at x = xj and x = xj+1.

We assume that speeds of the vehicles remain constant from

the time they are detected by the loop detector at x = xj

until they pass through the next loop detector at x = xj+1;

this assumption was also made by [3] and by [11] in the

development of their formulas.

Figure 2(b) demonstrates the vehicles entering the sam-

pling window (i, j), where two groups of vehicles could be

distinguished; the first includes vehicles, the trajectories of

which pass through the lower edge, E (i, j), of the sampling

window (i, j), and hence are detected by the loop detector

at x = xj , and the second group includes those vehicles for

which the trajectories intersect the left edge, |E(i, j), of the

sampling window (i, j) and therefore are not observed by the

loop detector at x = xj . We use G1 to denote the vehicles

in group 1, and G2 for group 2.

The distance traveled by the vehicle ℓ within the sampling

window (i, j) at the end of the sampling cycle i is denoted

time
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Fig. 2: Sampling windows that stand in the same row corresponding to the
same sampling road section during successive sampling cycles presenting
the trajectory of a vehicle from group one corresponding to the sampling
window (i, j), and a sampling window demonstrating two vehicles from
group one and two

by dℓ(i, j), and correspondingly its position w.r.t. x = xj

at t = ti+1 is denoted by sℓ(i, j). From Figure 2(a), for a

vehicle ℓ ∈ G1 we can say that:

• if sℓ(i, j) ≥ L, then the vehicle does not enter the

sampling window (i+1, j) at all; vehicles from G1 that

satisfy this condition will be put into subgroup one of

group one, where this subgroup is denoted by G1,1

• if sk(i, j) < L, then the vehicle enters the sampling

window (i + 1, j) through its left edge, |E(i + 1, j);
vehicles that satisfy this condition will be put into

subgroup two of group one, where this subgroup is

denoted by G1,2

Similarly, for a vehicle ℓ ∈ G2 within the sampling window

(i, j) we have:

• if sℓ(i, j) ≥ L, the vehicle does not enter the sampling

window (i + 1, j) at all; such vehicles from group two

will be put into subgroup one of group two, i.e., G2,1

• if sk(i, j) < L, the vehicle enters the sampling window

(i + 1, j) through its left edge, |E(i, j); such vehicles

will be put into subgroup two of group two, i.e., G2,2

Therefore, G1,1(i, j) and G2,1(i, j) will form G1(i, j + 1)
and will not play any role in the sampling window (i+1, j),
while G1,2(i, j) and G2,2(i, j) will form G2(i+ 1, j).

From Figure 2(b) it is easily seen that the traveled distances

by the first group of vehicles in one sampling cycle and also

their position at t = ti+1 can be calculated as follows:

dℓ(i, j) = vℓ(i, j)
(

T −
∑ℓ−1

r=0 hr(i, j)
)

, for ℓ ∈ G1(i, j) (3)
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sℓ(i, j) = dℓ(i, j), for ℓ ∈ G1(i, j) (4)

where hr(i, j) denotes the time headway between the vehicles

r − 1 and r corresponding to the sampling window (i, j).
Furthermore, the travel times for the vehicles within group

G1(i, j) in the sampling cycle i are as follows:

tℓ(i, j) = T −
∑ℓ−1

r=0 hr(i, j) , for ℓ ∈ G1(i, j) (5)

Additionally, the distances traveled by the vehicles in group

G2(i, j) in one sampling cycle are:

dℓ(i, j) = vℓ(i, j)T, for ℓ ∈ G2(i, j) (6)

and hence their positions are:

sℓ(i, j) = dℓ(i, j) + sℓ(i− 1, j), for ℓ ∈ G2(i, j) (7)

Note that for i = 1, sℓ(0, j) should be given ahead as

the initial condition, and could not be calculated using (7).

The travel times according to the ith sampling cycle for the

vehicles in group two are:

tℓ(i, j) = T, for ℓ ∈ G2(i, j) (8)

The new procedure that we give in this paper iteratively

uses (4), (5), (6), (7), and (8) in order to calculate the

fundamental traffic variables, i.e., the average speed, the flow,

and the density using the generalized / time-space definitions

given by [4] for these concepts, i.e.,

ρ(i, j) = 1
A(i, j)

∑

ℓ∈G1(i,j)∪G2(i,j)
tℓ(i, j), (9)

q(i, j) = 1
A(i, j)

∑

ℓ∈G1(i,j)∪G2(i,j)
sℓ(i, j), (10)

TSMS(i, j) =
q(i.j)
ρ(i, j)

=

∑

ℓ∈G1(i,j)∪G2(i,j)

sℓ(i, j)

∑

ℓ∈G1(i,j)∪G2(i,j)

tℓ(i, j)
(11)

where ρ(i, j) and q(i, j) are the time-space density and the

time-space flow corresponding to the sampling window (i, j),
A(i, j) is the area of the window, i.e., A(i, j) = TL, and

tℓ(i, j) is the total time that the ℓth vehicle spends within the

sampling window (i, j). Here is how the iterative procedure

performs.

The procedure requires as its input the microscopic data

that are available by double-loop detectors, i.e., the individual

speeds and headways of the vehicles for each sampling cycle.

Till now we have discussed an arbitrary window (i, j) with

i ∈ {1, 2, . . . , ncycles} and j ∈ {1, 2, . . . , nloops}. Here we

consider how to apply (3), (4), (5), (6), (7), and (8) in prac-

tice. For traffic applications, in particular where calculations

should be done online, we will consider the procedure such

that once a group of vehicles enters the detection zone of a

loop detector, all calculations are performed by the procedure

both for the current and the future cycles.

Consequently, the procedure starts when the first group of

vehicles (i = 1) is observed by the loop detector at x = xj .

For the given cycle, the vehicles will form the group G1(1, j);
using (4) it is determined whether each vehicle will belong

to subgroup G1,1(1, j) or G1,2(1, j).

Afterwards, the procedure sets i = 2 and consid-

ers G1,2(1, j) ⊆ G2(2, j). The vehicles that have joined

G1,1(1, j) will not be considered for the rest of the procedure.

Then the calculations will be continued to see whether

each vehicle joins G2,1(2, j) or G2,2(2, j). The procedure

then sets i = 3 and considers G2,2(2, j) ⊆ G2(3, j). Then it

performs the same calculations for G2,2(2, j), as it has done

for G1,2(1, j). The iteration will continue in this way.

In summary, for every i, i = 1, 2, . . . , ncycles, the

procedure performs the calculations corresponding to the last

observed group of vehicles. As the first step (calculations

for the current cycle), G1(i, j) is considered to be formed

by the last observed vehicles. Then (4) is used to determine

whether each vehicle belongs to G1,1(i, j) or G1,2(i, j). Then

G1,1(i, j) is omitted and G1,2(i, j) will enter the second step

of the procedure.

For the second step (calculations for the future cycles), the

procedure performs (7) on G1,2(i, j) to detect whether each

vehicle belongs to G2,1(i + 1, j) or G2,2(i + 1, j), where

G2,1(i+1, j) will be eliminated and G2,2(i+1, j) will enter

the third step.

In the third step, (7) is applied to G2,2(i + 1, j) like the

second step. Then G2,1(i + 2, j) will be omitted from the

procedure, and G2,2(i+ 2, j) will be sent to the fourth step,

and the iteration continues.

The procedure explained in step 2 should be repeated for

Ntot,i,j future cycles, where

Ntot,i,j = max
ℓ∈G1(i,j)

Nℓ,i,j (12)

with Ntot,i,j being the number of the future sampling win-

dows on the same row as sampling window (i, j), for which at

least one vehicle ℓ ∈ G1(i, j) remains on the same sampling

road section. Moreover, Nℓ,i,j is the minimum of the all

future cycles, ncycles − i, and the number of sampling cycles

the vehicle ℓ ∈ G1(i, j) needs to reach the position x = xj+1,

i.e., for ℓ ∈ G1(i, j):

Nℓ,i,j = min

{⌈

L− vℓ(i, j)

(

T −

ℓ−1
∑

r=0

hr(i, j)

)

vℓ(i, j)T

⌉

, ncycles − i

}

(13)

The above calculations are done for i = 1, 2, . . . , ncycles.

Now, using the time-space definitions (9), (10), and (11)

together with (3), (5), (6), (7), and (8) we will have:

ρ(i, j) =

∑

ℓ∈G1,1(i,j)

L

vℓ(i, j)
+

∑

r∈G1,2(i,j)

tr(i, j) +
∑

m∈G2,1(i,j)

L− sm(i− 1, j)

vm(i, j)
+

∑

p∈G2,2(i,j)

T

TL

(14)

q(i, j) =

∑

k∈G1,1(i,j)

L+
∑

r∈G1,2(i,j)

dr(i, j) +
∑

m∈G2,1(i−1,j)

(L− sm(i− 1, j)) +
∑

p∈G2,2(i,j)

dp(i, j)

TL

(15)

TSMS(i, j) =

∑

ℓ∈G1,1(i,j)

L+
∑

r∈G1,2(i,j)

dr(i, j) +
∑

m∈G2,1(i−1,j)

(L− sm(i− 1, j)) +
∑

p∈G2,2(i,j)

dp(i, j)

∑

ℓ∈G1,1(i,j)

L

vℓ(i, j)
+

∑

r∈G1,2(i,j)

tr(i, j) +
∑

m∈G2,1(i,j)

L− sm(i− 1, j)

vm(i, j)
+

∑

p∈G2,2(i,j)

T

(16)
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Remark: For the terms
∑

ℓ∈G1,1(i,j)
L and

∑

p∈G2,2(i,j)
T in

(14), (15), and (16), since L and T are constant, the terms

can be evaluated more efficiently using the followings:
∑

ℓ∈G1,1(i,j)

L = L.|G1,1(i, j)| (17)

∑

ℓ∈G2,2(i,j)

T = T.|G2,2(i, j)| (18)

where by |H|, we mean the number of elements in the set

H .

IV. RESULTS

In order to evaluate the performance of the itera-

tive procedure for estimation of the average speed, we

have used the NGSIM real-life data set (available at

http://www.ngsim-community.org/). This data set

provides detailed information on a collection of vehicle tra-

jectories on the I-880 highway in the San Francisco Bay Area.

The data is available for limited time intervals. Therefore, we

will have some distinct group of trajectories within the time-

space plane.

For the simulation, we have selected two groups of these

trajectories (see Figures 3(a) and 4(a)). Since the total time

interval covered by each group of trajectories was relatively

small, we had to define the width of the sampling windows

small enough, i.e., T = 5 s, such that we could consider

several windows. The length of the sampling windows was

chosen to be L = 200 m. Note that the simulation results

corresponding to cycle 1 in Figures 3 and 4 have not been

presented. This is because the information corresponding to

the trajectories that intersect the left edge of cycle 1 should

be given to the procedure as the initial condition, and this

information is not calculated by the procedure itself. Since

we aimed to evaluate the performance of the procedure itself,

we have therefore ignored this cycle and just used its data

for the role they might have in future cycles.

Figures 3(b) and 3(c) represent the relative errors (in

percentage) corresponding to the formulas given by Rakha

and Zhang in [11], by Wardrop in [3] (together with the mod-

ifications proposed in [13]), by Jamshidnejad and De Schutter

in [14], and the iterative procedure proposed in this paper for

the top and bottom rows of the sampling windows shown in

Figure 3(a). Similarly, Figures 4(b) and 4(c) illustrate the

percentage of errors for the top and bottom rows of the

windows in Figure 4(a).

These simulation results show that, in general, the iterative

procedure performs better than the two formulas given by

Rakha and Zhang [11] and by Wardrop [3]. In particular, the

performance is improved for sampling windows that contain

more trajectories that intersect the left edge of the given

window. Compare, for instance, the results corresponding to

cycle 2 in the top and bottom rows of Figure 4(a); for cycle

2 in the top row, the relative errors between the formulas by

Rakha and Zhang [11] and by Wardrop [3] and Han et al.

[13], and the new iterative procedure are larger. One reason

is the higher number of trajectories that intersect the left edge

of the sampling window corresponding to cycle 2 within the

bottom row. These intersecting trajectories are corresponding

to the vehicles that are already on the road section (but not

within the detection zone of the upstream loop detector) at

the beginning of the current sampling cycle. Note that these

vehicles are considered by the iterative procedure proposed

in this paper, while they are not taken into account by

other formulas (i.e., formulas by Rakha and Zhang [11], by

Wardrop [3], and by Jamshidnejad and De Schutter [14]).

As another example, for cycle 5 in Figure 3(a), in the top

row the relative errors produced by the formulas by Rakha

and Zhang [11], by Wardrop [3] (together with the modifi-

cations proposed by Han et al. [13]), and by Jamshidnejad

and De Schutter [14] with respect to the error produced

by the new iterative procedure are more significant (see

Figure 3(b)) compared with the bottom row (see Figure 3(c)).

Furthermore, there are four trajectories in the top row that

intersect the left edge of the sampling window 5, while in

the bottom row only one trajectory intersects the left edge

of the sampling window corresponding to cycle 5. Therefore,

we expect to see a larger difference between the errors in the

top row, as there are more vehicles that are ignored by the

formulas of [11], [3], and [14] and are taken into account by

the new iterative procedure.

Considering the formula given in [14] and this new iterative

procedure, it is observed that they both perform better than the

formulas by Rakha and Zhang and by Wardrop in general (the

exception is for cycle 5 in Figure 3(b)). This is while in some

cases the formula given by Jamshidnejad and De Schutter

[14] shows better performance, and in some cases the new

iterative procedure. Analysis of the situations where each of

the two methods, i.e., the formula given in [14] and the

iterative procedure, shows better performance, and also the

possibility of combining the two methods to produce an

even better approach are the basis of the future work by the

authors.

V. DISCUSSION AND FUTURE WORK

We have presented a new iterative procedure that estimates

the time-space-mean speed (TSMS), i.e., an equivalent to the

generalized average speed introduced by Edie in 1963 [4]

for vehicles traveling on a road. The new iterative procedure

utilizes microscopic traffic data (i.e., individual speeds and

headways of the vehicles) and takes into account the vehicles

that will stay on the same road section, i.e., a part of the road

between two consecutive loop detectors, for several sampling

cycles.

Our simulation results (using the NGSIM real-life data for

the I-880 highway in the San Francisco Bay Area) show that

the values produced by the new iterative procedure give more

accurate estimates of the average speed than the formulas

given by Rakha and Zhang [11] and by Wardrop [3,13]. In

most cases the results are also better than the results by the

formula proposed by Jamshidnejad and De Schutter [14].

A topic of the future work is to combine the new iterative

procedure proposed in this paper and the formula proposed

by Jamshidnejad and De Schutter [14] to produce an even

better approach for estimation of the current TSMS. Another
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Fig. 3: Comparison of the relative errors (in percentage) for the formulas
given by Rakha and Zhang [11], by Wardrop [3], by Jamshidnejad and
De Schutter [14], and the new iterative procedure
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P – 6



topic to take into account for future work is the application

of the iterative procedure together with the microscopic

approach proposed by Jamshidnejad and De Schutter in [14]

for prediction of the TSMS for the current road section in

the near future. In the current paper, we used the iterative

algorithm to estimate the average speed on a road section

within different sampling cycles. Yet, another topic for future

work is to use the information on one road section to predict

the upcoming situation for the succeeding road section.
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