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Abstract

This paper considers the train scheduling problem for an urban rail transit network. We propose

an event-driven model that involves three types of events, i.e., departure events, arrival events,

and passenger arrival rates change events. The routing of the arriving passengers at transfer

stations is also included in the train scheduling model. Moreover, the passenger transfer behavior

(i.e., walking times and transfer times of passengers) is also taken into account in the model

formulation. The resulting optimization problem is a real-valued nonlinear nonconvex problem.

Nonlinear programming approaches (e.g., sequential quadratic programming) and evolutionary

algorithms (e.g., genetic algorithms) can be used to solve this train scheduling problem. The

effectiveness of the event-driven model is evaluated through a case study.

Keywords: train scheduling, passenger demands, event-driven, urban rail transit network

1. Introduction

Nowadays, urban rail transit systems play a key role in public transportation for big cities

(e.g., Beijing, New York, Paris) since they combine high transport capacity and high efficiency.

A safe, fast, energy-efficient, and comfortable urban rail system is important for the economic,

environmental, and social objectives of big cities. The railway planning process is essential for

urban rail transit operations and management, and in general it consists of five phases (Bussieck

et al., 1997): demand analysis, line planning, train scheduling, rolling stock planning, and crew

scheduling. The focus of this paper is on train scheduling for an urban rail transit network

where the aim is to reduce the operation costs of the trains and to enhance passenger satisfaction.

Passenger satisfaction can be characterized by the waiting times, the in-vehicle times, and the

number of transfers, while the operation costs are determined by the number of train services

and the energy consumption of the trains.

In most urban rail transit systems, the transit lines are separate from each other and each

direction of a line has a separate rail track. Hence, trains usually do not overtake each other. In
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addition, passengers may need to make several interchanges between different lines to arrive at

their destinations. Therefore, it is important to take passenger transfers into account in the train

scheduling to shorten the total travel time of passengers. Hence, the train schedules for different

lines should be coordinated in order to enable smooth passenger transfer and to minimize the total

travel time of passengers. Moreover, the passenger demands may vary significantly along the day

at different stations, i.e., the number of passengers getting on and getting off trains depends on

the location of the stations and the time of day (e.g., morning-peak hours, afternoon-peak hours,

and off-peak hours).

Train scheduling for interurban rail transit systems has been studied for decades (Szpigel,

1972; Petersen et al., 1986; Kraay et al., 1991; Higgins et al., 1996; Cordeau et al., 1998; Ghoseiri

et al., 2004; D’Ariano et al., 2007). In interurban rail transit systems the available resources, e.g.,

the tracks and the crossings, are shared by trains with different origins and destinations. Thus,

the trains may overtake and cross each other at some specific locations, such as sidings and

crossings. In this paper, we concentrate however on urban rail transit systems, where the lines

usually have double tracks, and train overtaking and crossing are normally not allowed during

the operations.

Regular schedules with fixed headways are often used in practice for urban rail transit sys-

tems, e.g., every seven minutes there is a train entering a station. Kwan and Chang (2005)

applied a heuristic-based evolutionary algorithm to optimize the frequency (or headway) be-

tween trains, where the operation costs and the passenger dissatisfaction are included in the per-

formance index. Liebchen (2006, 2008) formulated the train scheduling problem as a periodic

event-scheduling problem based on a graph model and obtained periodic schedules for the Berlin

subway system using genetic algorithms and integer programming. Su et al. (2013) and Li and

Lo (2014) optimized the cyclic train schedule together with the driving strategy to minimize the

energy consumption through the utilization of regenerative energy. Regular schedules can reduce

the passenger waiting time if the passenger arrival process at stations is a uniform process or a

Poisson process (Niu and Zhou, 2013; Barrena et al., 2014). However, regular schedules may

result in longer passenger waiting times and travel times under time-varying passenger demands.

Cury et al. (1980) obtained a nonperiodic train schedule aimed at minimizing passenger dis-

satisfaction and operation costs based on a model of the train movements and the passenger

behavior. The resulting nonlinear scheduling problem was recast into several subproblems by

Lagrangian relaxation and then solved in a hierarchical manner. The headway between trains

in the optimal schedules obtained by Cury et al. (1980) varies with time instead of being a con-

stant. Since the convergence rate of the hierarchical decomposition algorithm of Cury et al.

(1980) can be quite poor in some cases, Assis and Milani (2004) proposed a model predictive

control algorithm based on linear programming to optimize the train schedule. The algorithm

proposed by Assis and Milani (2004) can effectively generate train schedules for the whole day.

Furthermore, a demand-oriented timetable design has been proposed by Albrecht (2009), where

the optimal train frequency and the capacity of trains are first determined and then the schedules

of the trains are optimized. Niu and Zhou (2013) optimized the train schedules for an urban rail

transit line with consideration of time-varying origin-destination passenger demands in heavily

congested situations. In particular, a genetic algorithm was used to solve the resulting non-

linear programming problem. Furthermore, Niu et al. (2015) considered the train scheduling

with time-dependent demand and skip-stop patterns to minimize the passenger waiting time. A

branch-and-cut algorithm is presented by Barrena et al. (2014) to minimizing average passenger

waiting time with consideration of a dynamic passenger demand. Furthermore, in (Wang et al.,

2015) we proposed an iterative convex programming approach for train scheduling for urban rail
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transit lines with the aim of minimizing the total travel time and the total energy consumption.

As mentioned before, passenger transfers are important when optimizing train schedules for

an urban rail transit system. The passenger transfer behavior and transfer waiting times are con-

sidered by Wong et al. (2008), who present a mixed-integer programming optimization model

to synchronize the train schedules for different urban rail transit lines in order to minimize the

waiting times of the transfer passengers. In addition, Vázquez-Abad and Zubieta (2005) pro-

posed a stochastic approximation approach to adjust the frequencies of different urban transit

lines according to the observed variable passenger demands. However, the energy consumption

of the trains and the dwell times at stations are not included in the model of Vázquez-Abad and

Zubieta (2005).

The current paper extends the previous research in the following aspects:

• In (Wang et al., 2015), we have used a time-driven model for the train scheduling. How-

ever, in this paper, we present an event-driven model, which has a higher computational

efficiency than the time-driven model. With this model, we can characterize the time-

varying origin-destination passenger demand.

• In (Wang et al., 2015), we have considered a single urban transit line. In this paper, we

consider an urban rail transit network. In addition, the passenger transfer behavior and the

route choice of passengers at transfer stations are also included in the problem formulation.

• The passenger travel time is computed more accurately by including the walking time for

passengers from entrances to platforms, the waiting time, the in-vehicle time, the transfer

time, and the walking time for passengers from platforms to exit stations.

The rest of the paper is structured as follows. Section 2 introduces the three types of events

and formulates an event-driven model for trains. Section 3 describes the performance criteria and

constraints of the train scheduling problem. In addition, we also discuss the initial conditions and

solution approaches in this section. In Section 4, the performance of the proposed event-driven

model is evaluated via a case study. Finally, conclusions and recommendations are provided in

Section 5.

2. Model formulation

In this section, we first discuss the assumptions and present notations in Section 2.1. Three

types of events of the event-driven model, i.e., departure events, arrival events, passenger arrival

rates change events, are then proposed in Section 2.2 to describe the departure and arrival of

trains and the time-varying passenger demands. In Section 2.3, a passenger arrival rate query

module is introduced to obtain the actual passenger arrival rates for each platform at any time.

Finally, the state update equations for each type of events of the event-driven model are presented

in Section 2.4 to calculate the number of onboard passengers, the number of waiting passengers,

the number of transfer passengers, etc.

2.1. Notations and assumptions

Table 1 summarizes the parameters and variables used in this paper to describe the train

scheduling problem. In addition, the symbols are also explained in text itself.

[Place Table 1 about here]
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Consider an urban rail transit network with L lines and J stations. Let Sln and Ssta be the sets

of lines and station indices, respectively. In practice, a station could have several platforms and

we denote the set of platforms as Spla. Note that a physical line with two directions is defined as

two separate lines in this paper. We make the following assumptions:

A.1 There is no shared platform for different lines in the urban rail transit network.

A.2 A platform can only accommodate one train at a time and no overtaking can occur at any

point of the line.

Assumption A.1 is made for the sake of simplicity in the numbering of platforms. With As-

sumption 1, a platform is uniquely identified to a specific line, i.e., a line can be defined by a

set of platforms. If passengers want to transfer from one line to the other, they need to walk

from one platform to the other. Note that the assumption holds for most urban transit systems,

e.g. the subway networks in Beijing, New York, Tokyo, Paris, and Rome. However, an island

platform, which is common for passenger transfers from one line to another without walking a

long distance and/or taking escalators or stairs, can be also modeled by considering it as two

distinct platforms, where the average walking time for passenger transfers is relatively small.

Assumption A.2 generally holds for most urban transit systems too. Furthermore, in practice, the

trains of different lines are operated separately, which means that trains are not shared between

different lines.

Platforms are uniquely defined in the network and therefore an urban rail transit line can be

defined by a set of platforms. We denote the predecessor of platform p on a given line as ppla(p)
and the successor of platform p on that line as spla(p). In order to distinguish the different

running cycles of the physical trains, train services are introduced, where each train service has

a unique service number that uniquely identifies a train and its current cycle. Let Iℓ be the total

number of physical trains on transit line ℓ; then the total number of physical trains in the network

is Inet = ∑ℓ∈Sln
Iℓ. So the physical trains in the network could be numbered as 1, 2, . . . , Inet. The

service number of trains can then be written as 1, 2, . . . , Inet, Inet+1, Inet+2, . . . , 2Inet, . . . , NcycInet,

where Ncyc is the number of cycles for trains in the given scheduling period. Therefore, train

service i corresponds to physical train [(i− 1) mod Inet]+ 1. For the sake of simplicity, we use

“train i” as a short-hand for “train service i” from now on. In addition, the set of indices of all

train services is denoted by Stra. The predecessor and successor of train i on a given line are

denoted as ptra(i) and stra(i), respectively. The start time and end time of the scheduling period

are denoted as t0 and tend.

2.2. Three types of events of the event-driven model

We model the train scheduling problem with consideration of passenger demands using three

types of events:

• Departure events: representing the departure of a train at a station,

• Arrival events: representing the arrival of a train at a station,

• λ -change events: representing the change of passenger arrival rates at a platform.

To describe the operation of trains, we propose an event-driven model consisting of a continuous

part describing the movement of trains running from one station to another through the network,
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and of the discrete events listed above. The kth event ek occurring in the event-driven system is

denoted as

ek = (tk,Ytype,k, ik, pk), (1)

where k is the event counter, tk is the time instant at which event ek occurs, Ytype,k is the event

type, which can have three possible values, i.e., ‘d’, ‘a’, or ‘λ ’ corresponding to a departure

event, an arrival event, or a λ -change event, ik is the train number, and pk is the platform number.

[Place Figure 1 about here]

The model structure of the event-driven system is illustrated in Figure 1. The control inputs of

the system are the departure times, the arrival times of trains, and the splitting rates of passenger

flows at transfer stations. So the departure and arrival events at stations are the controlled events

of the urban rail transit system since their event times are directly influenced by the inputs to the

system. All the λ -change events are autonomous events and they are triggered by other events

or by the environment; their event times cannot be controlled directly. We assume that the initial

states, passenger arrival rates, line data, and train data, etc. are known or can be estimated via the

available information. We denote the current time as tcurrent (see also Figure 2). Let τprocess be the

processing time for data preparation for the train scheduling. All the events that happened in the

past, i.e., for which the event time is smaller than tcurrent + τprocess, are known to the event-driven

system and the set of these events is denoted as Sknown. The set of events that will happen in the

future is denoted as Sunknown. In addition, the departure events, arrival events, and the updates

of the states should satisfy the constraints in the system, such as the headway constraints, train

capacity constraints, and running time constraints. Furthermore, we introduce a global event list

for the event-driven system. At any time, this list contains all the possible next events for all the

trains and stations in the urban rail network. The next event of the system will be the event in

the global event list with the smallest value of tk, i.e. the event that will occur first, where ties are

broken arbitrarily (The event-driven model structure is such that the order in which coinciding

events are handled will not influence the state of the system since if an event triggers a next event

there is always a minimum separation between the current event and the next event (see Section

2.4)). As a starting point, the global event list should be initialized based on the initial states of

the system. Moreover, a λ -change query module is present to describe the passenger arrival rates

for each platform (see Section 2.3 for more information). The details about the state updates and

triggered events are given in Section 2.4.

[Place Figure 2 about here]

2.3. λ -profile query module

The triggered λ -change events can be caused by the change of passenger arrivals at stations,

the changes of splitting rates at transfer stations, and the passenger transfers at transfer stations.

We introduce a λ -profile query module for each platform (see also Figure 3) to obtain the passen-

ger arrival rate (Leemis, 1995). If platform p is not at a transfer station, then the query module

only contains the base profile λ station
j,m (·) as explained in Section 2.3.1. However, if platform p

is at a transfer station, then the query module for a platform stores the base profile and possibly

additional update profiles due to splitting rate changes and passenger transfers, as explained in

Section 2.3.2 and 2.3.3. [Place Figure 3 about here]

Remark. The passenger splitting rate proposed in this paper is a fraction of the total passenger

flow with the same destination that goes to a specific platform. The splitting rates are used to

describe the route choices of passengers with the same destination. For example, at a transfer
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station passengers with the same destination could choose to stay on the line or to transfer to

another line. In principle, passengers will make route choices based on the shortest route, or the

minimum number of transfers, or their combination. These choices determine the splitting rates,

which can be reconstructed based on online data estimation using offline data and/or passenger

surveys.

2.3.1. Passenger arrivals at stations

The train scheduling model requires the real-time assessment of passenger arrival rates for

different origins and destinations during the scheduling period. In the case of full state informa-

tion, the actual passenger arrival rates can be obtained. However, this is not the case in practice,

where we need to e.g. use the information collected by the advanced fare collection systems

and estimate the passenger arrival rates based on the historical data and the current passenger

flows (Wong and Tong, 1998). A typical profile for the passenger arrival rate at station j for pas-

sengers with destination m is given as the solid line in Figure 4, where the passenger arrival rate

during the peak hours is much higher than that during the off-peak hours. A piecewise constant

functions λ station
j,m (·) defined for t ∈ [t0, tend] is introduced to approximate the continuous passen-

ger arrival rate at station j for passengers with destination m. [Place Figure 4 about here] These

piecewise functions are the inputs to the event-driven model and we describe these piecewise

constant functions via so-called base profiles. The base profiles are left-hand side continuous

piecewise constant functions, which can be specified by a list of corner points as shown in Figure

5, where the corner points are marked with purple dots. Hence, the base profile shown in Figure

5 can be described by the following set of three corner points:
{

(t1,λ1),(t2,λ2),(t3,λ3)
}

.

[Place Figure 5 about here]

2.3.2. Splitting rates changes at transfer stations

At a transfer station, passengers can choose to go to the platforms of different lines since

there could be multiple routes available to go to their destination. The splitting of passenger

flows at transfer stations can be influenced or controlled by the rail operator by providing route

information and suggestions to passengers through information panels at the entrances of stations

or through personal digital assistant (PDA) devices.

Consider transfer station j and one of its platforms p. Let β station
p,m (·) denote the splitting rate

profile of the passengers flows that arrive at station j, have destination m, and go to platform p

(see Figure 6). Note that the platforms are uniquely defined in the urban rail transit network,

so for simplicity we do not include the index ℓ of the corresponding line in the variables. The

function β station
p,m (·) is also a left-hand side continuous piecewise constant function. In order to

provide a consistent service to the passengers, the splitting rate should not change too often, e.g.,

15 minutes. The passenger arrival rate at the platforms of station j can be calculated as follows:

[Place Figure 6 about here]

λp,m(tk) = β station
p,m (tk)λ

station
j,m (tk), ∀p ∈ Pj, ∀m ∈ Ssta, (2)

where tk is one of the corner points of the base profile or of the splitting rate change profiles and

Pj is the set of platforms at transfer station j. Furthermore, the sum of all the splitting rates at

transfer station j is always equal to 1, i.e.,

∑
p∈Pj

β station
p,m (tk) = 1, ∀m ∈ Ssta. (3)
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The splitting rates at the transfer stations are the control variables for the train scheduling prob-

lem. The change of the splitting rates of passenger flows results in λ -change events at the plat-

forms of a transfer station. The ∆λ profiles caused by splitting rate changes are also piecewise

constant functions, which can be described by a list of corner points in a similar way as base

profiles.

The average walking time for passengers from entrances of station j to platform p at time

instant t can be calculated by

θ walk-in
p (t) = awalk

0,p

(

∑
m∈Ssta

β station
p,m (t)λ station

j,m (t)
)

+bwalk
0,p , (4)

where awalk
0,p and bwalk

0,p are coefficients that depend on the layout of the station, the walking dis-

tance, etc., and that can e.g. be determined based on historical data. The total walking time

for passengers from the entrances to platform p of station j during the scheduling time period

[t0, tend] can be calculated by

twalk-in
p =

Cp

∑
c=1

θ walk-in
p (tstation

p,c )

(

∑
m∈Ssta

β station
p,m (tstation

p,c )λ station
j,m (tstation

p,c )(tstation
p,c+1 − tstation

p,c )

)

, (5)

where tstation
p,c is the time instant at which PWA constant functions β station

p,m (·) and/or λ j,m(·) change

for the cth time. Note that tstation
p,1 = t0 and tstation

p,Cp
= tend.

2.3.3. Passenger transfers triggered by arrival events

If a train arrives at a transfer station, there could be several possible routes for the onboard

passengers to arrive at their destinations. They could choose to stay on the train or to get off

the train and transfer to a train on another line. At transfer station j, the splitting rate of the

passengers that are on board of train i and have destination m and that go to platform p′ of station

j can be denoted as β train
i,p′,m for p′ ∈ Pj. The splitting rates for passengers that stay on train i are

then described by β train
i,p,m with m , j. For train i that stops at platform p of transfer station j, the

sum of all the splitting rates has to be equal to 1, i.e.,

∑
p′∈Pj

β train
i,p′,m = 1, ∀i ∈ Stra, ∀m ∈ Ssta. (6)

Note that the passengers with destination j, i.e., the ones for which m = j, will not choose to

transfer to other platforms but they will exit the transit network at station j; so if train i arrives at

platform p, we set β train
i,p, j = 1 with the platform p at which train i arrives at for and β train

i,p′, j = 0 with

p′ ∈ Pj \{p}. The total walking time for passengers from platform p to exits of station j can be

calculated as

twalk-out
p = ∑

i∈Stra
p

awalk
p,0 n

alight
i,p, j +bwalk

p,0 , (7)

where Stra
p is the set of trains that stop at platform p during the scheduling period [t0, tend], n

alight
i,p, j

is the number of passengers who get off train i, have destination j, and exit the urban rail network

from platform p. The coefficients awalk
p,0 and bwalk

p,0 can be determined in a similar way as awalk
0,p and

bwalk
0,p .

The walking time for transfer passengers depends on the walking distance between two plat-

forms and on the number of transfer passengers. In practice, the walking time could be distributed
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as shown by the solid line in Figure 7. For the sake of simplicity, we approximate the relationship

between the passenger walking time and number of transfer passengers by a rectangular signal

as represented by the dashed line in Figure 7. Hence, we can calculate the average walking time

of the transfer passengers from platform p to the other platforms p′ ∈ Pj \{p} as [Place Figure 7

about here]

θ walk
i,p,p′ = awalk

p,p′ ntransf
i,p,p′ +bwalk

p,p′ , ∀i ∈ Stra, ∀p′ ∈ Pj \{p}, (8)

where ntransf
i,p,p′ is the number of transfer passengers from train i to platform p′ of line ℓ′, awalk

p,p′ and

bwalk
p,p′ are the coefficients for the average walking time, which depend on the layout of the transfer

station, the walking distance, etc., and which can e.g. be determined based on historical data.

The total transfer time t transf
i,p for transferring passengers getting off from train i is

t transf
i,p = ∑

p′∈Pj\{p}

θ walk
i,p,p′n

transf
i,p,p′ . (9)

Similar as the average walking time, the duration time for the transfer process can be approxi-

mated using

θ duration
i,p,p′ = aduration

p,p′ ntransf
i,p,p′ +bduration

p,p′ , ∀i ∈ Stra, ∀p′ ∈ Pj \{p}. (10)

Similar to awalk
p,p′ and bwalk

p,p′ , aduration
p,p′ and bduration

p,p′ can be determined based on historical data. The

updates for the λ -profile due to passenger transfers can be described by a list of corner points:

{

(ai, j,0),(ai, j +θ walk
i,p,p′ ,∆λi,p,p′),(ai, j +θ walk

i,p,p′ +θ duration
i,p,p′ ,0)

}

, (11)

where ∆λi,p,p′ is calculated by

∆λi,p,p′ =
ntransf

i,p,p′

θ duration
i,p,p′

. (12)

2.4. State updates of the event-driven model

When an event occurs, the state of the system should be updated and some other events may

be triggered. For all the events occurring in the given system, the numbers of passengers waiting

at platforms need to be updated. It is important to note that the passenger arrival rate stays

the same between two subsequent events. Immediately before event ek happens, the number of

passengers w
wait,before
pk,m (tk) with destination m that are waiting at platform pk is updated as follows

(see Figure 8): [Place Figure 8 about here]

wwait,before
pk,m

(tk) = wwait,after
pk,m

(tk′)+λpk,m(tk′)(tk − tk′), (13)

where tk′ is the event time of the previous event ek′ = (tk′ ,Ytype,k′ , ik′ , pk′) happening at platform

pk of line ℓk (i.e., pk′ = pk), w
wait,after
pk,m (tk′) is the number of passengers at the platform immedi-

ately after event ek′ , and λpk,m(tk′)(tk−tk′) is the number of passengers that arrive at this platform

between t ′k and tk. The total number of waiting passengers w
wait,before
pk

(tk) at platform pk immedi-

ately before event ek can be calculated as

wwait,before
pk

(tk) = ∑
m∈Ssta

wwait,before
pk,m

(tk). (14)
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The waiting time of passengers at a platform is updated when an event occurs. We use twait
pk

(tk)
to denote the waiting time at the platform of the passengers that are at platform pk when event ek

occurs, which can be calculated by

twait
pk

(tk) = twait
pk

(tk′)+ ∑
m∈Ssta

(

wwait,after
pk,m

(tk′)(tk − tk′)+
1

2
λpk,m(tk′)(tk − tk′)

2

)

, (15)

where tk′ is the event time of the previous event ek′ that occurred at platform pk.

In general, the updates of other states and the triggered events caused by the current event

depend on the event type of the current event. For λ -change events, only the number of wait-

ing passengers at platforms and the waiting time of these passengers need to be updated. For

departure events and arrival events, a detailed description of the updates of other states and the

triggered events is given as follows.

2.4.1. State updates and triggered events for departure events

When a departure event occurs, denoted as ek = (dik,pk
, ‘d’, ik, pk), then train ik departs from

platform pk at time dik,pk
. The number of passengers boarding train ik at platform pk is equal to

the minimum of the number of waiting passengers w
wait,before
pk

(tk) and the remaining space nremain
ik,pk

on the train after the alighting process of passengers, i.e.

nboard
ik,pk

= min(nremain
ik,pk

,wwait,before
pk

(tk)). (16)

The remaining space nremain
ik,pk

on train ik for passengers is

nremain
ik,pk

=Cmax,ik −nik,p
pla(pk)

−n
alight
ik,pk

, (17)

where Cmax,ik is the capacity of train ik, ppla(pk) is the predecessor platform1 of platform pk, ni,p

is the number of passengers on train i when it departs from platform p, and n
alight
i,p is the number

of passengers getting off train i at platform p. The calculation for n
alight
ik,pk

will be given in (31)

below.

At platform pk, the number of passengers w
wait,after
pk

(tk) who cannot get on train ik, i.e., the

number of passengers waiting at the platform immediately after the departure event ek of train ik,

is

wwait,after
pk

(tk) = wwait,before
pk

(tk)−nboard
ik,pk

. (18)

In addition, if there are any passengers left by train ik, i.e., w
wait,after
pk

(tk) > 0, we assume that

the proportion of the passengers with different destinations with respect to the total number of

waiting passengers does not change after the boarding process. This means that the passengers

with different destinations have the same probability to be left by train ik. So the number of

passenger with destination m that are left by train ik is proportional to the number of waiting

passengers with destination m, i.e.,

wwait,after
pk,m

(tk) = wwait,after
pk

(tk)
w

wait,before
pk,m (tk)

w
wait,before
pk

(tk)
. (19)

1Recall that ppla(pk) is the previous platform on the line to which platform pk belongs.
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The number of passengers with destination m that board train ik at platform pk is

nboard
ik,pk,m

= wwait,before
pk,m

(tk)−wwait,after
pk,m

(tk). (20)

After the boarding process has completed, the number of passengers nafter
ik,pk,m

with destination m

that are on board of train ik is updated as

nafter
ik,pk,m

= nbefore
ik,pk,m

+nboard
ik,pk,m

, (21)

and the total number of passengers nafter
ik,pk

on board of train ik at platform pk after the boarding

process is

nafter
ik,pk

= nbefore
ik,pk

+nboard
ik,pk

, (22)

where nbefore
ik,pk,m

and nbefore
ik,pk

are the number of passengers with destination m and the total number

of passengers on board train i before the boarding process of passengers (see Section 2.4.2 below

for more details).

The departure event ek at platform pk will generate an arrival event at the next platform of

the line to which platform pk belongs, which is described as follows:

(

aik,s
pla(pk)

, ‘a’, ik,s
pla(pk)

)

,

where aik,s
pla(pk)

is the arrival time of train ik at platform spla(pk). The arrival time aik,s
pla(pk)

can

be calculated by

aik,s
pla(pk)

= dik,pk
+ rik,pk

, (23)

where dik, jk is equal to tk and rik,pk
is the running time on the track segment between platform pk

and platform spla(pk). This arrival event should then be added to the global event list.

2.4.2. State updates and triggered events for arrival events

When event ek = (aik,pk
, ‘a’, ik, pk) occurs, i.e., the arrival event of train ik at platform pk, the

number of passengers w
wait,before
pk

(tk) waiting at platform pk immediately before this arrival event

should be updated using (13) and (14).

The number of passengers getting off train ik depends on platform pk:

• If platform pk is at the first station of the line, then there are no passengers getting off train

ik, i.e.

n
alight
ik,pk

= 0. (24)

In addition, the number of passengers nbefore
ik,pk,m

that have destination m and are on board of

train ik immediately before the boarding process is also equal to zero, i.e.

nbefore
ik,pk,m

= 0, ∀m ∈ Ssta. (25)

The arrival event ek at platform pk will generate a departure event at this platform, which

is described as follows:
(

dik,pk
, ‘d’, ik, pk

)

, (26)

where dik,pk
is the departure time of train ik at platform pk.

10



• If the station jk to which platform pk belongs, is neither the first station, nor a transfer

station, nor a terminal station, then the passengers with destination jk will get off train ik.

The number of these passengers can be computed as follows:

n
alight
ik,pk

= nafter
ik,p

pla(pk), jk
, (27)

where nafter
ik,p

pla(pk), jk
is the number of onboard passengers with destination jk after the board-

ing process at predecessor platform ppla(pk) has completed. Furthermore, we calculate the

number of passengers nbefore
ik,pk,m

as follows:

nbefore
ik,pk,m

= nafter
ik,p

pla(pk),m
, ∀m ∈ Ssta \{ jk}. (28)

Therefore, the total number of passengers on board train ik before the boarding process is

nbefore
ik,pk

= ∑
m∈Ssta\{ jk}

nbefore
ik,pk,m

. (29)

Moreover, the departure event given in (26) will be generated and included in the global

event list.

• If the station jk to which platform pk belongs is a transfer station, then not only the pas-

sengers with destination jk will get off train ik, but the passengers with other destinations

may also get off train ik. The splitting rates for the passengers with destination m stay-

ing on or getting off train ik are denoted as β train
ik,p

′,m for p′ ∈ Pjk . The number of passengers

nbefore
ik,pk,m

that have destination m and are on board of train ik immediately before the boarding

process can be calculated by

nbefore
ik,pk,m

= β train
ik,pk,m

nafter
ik,p

pla(pk),m
, ∀m ∈ Ssta, (30)

where nafter
ik,p

pla(pk),m
is the number of onboard passengers with destination m immediately

after the boarding process at predecessor platform ppla(pk) has completed.

As mentioned in Section 2.3.3, since the current station is station jk the splitting rate

β train
ik,pk, jk

equals 1 for the passenger flow with destination jk. All these passengers will get

off the train and exit the network from station jk. For the passengers with destination m

with m , jk, the passengers staying on the line to which platform pk belongs, also stay on

train ik. Hence, the number of alighting passengers can be calculated by

n
alight
ik,pk

= nafter
ik,p

pla(pk)
− ∑

m∈Ssta\{ jk}

nbefore
ik,pk,m

. (31)

where nafter
ik,p

pla(pk)
is in fact equal to the number of passengers on board of train ik when

it arrives at platform pk and ∑m∈Ssta\{ jk}
nbefore

ik, jk,m
is the total number of passengers staying

on train ik after the alighting process. The number of transferring passengers ntransf
ik,pk,p

′,m

that have destination m and transfer from platform pk to some other platform p′ can be

calculated by

ntransf
ik,pk,p

′,m = β train
ik,p

′,mnafter
ik,p

pla(pk),m
, ∀p′ ∈ Pjk \{pk}. (32)

11



The total number of transfer passengers from train ik is then

ntransf
ik,pk

= ∑
p′∈Pjk

\{pk}
∑

m∈Ssta\{ jk}

ntransf
ik,pk,p

′,m. (33)

The transfer process of passengers will trigger two λ -change events to increase and de-

crease the passenger arrival rates. These two events can be written as

(

aik,pk
+θ walk

ik,pk,p
′ , ‘λ ’,−, pk

)

, ∀p′ ∈ Pjk \{pk}, (34)

(

aik,pk
+θ walk

ik,pk,p
′ +θ duration

ik,pk,p
′ , ‘λ ’,−, pk

)

, ∀p′ ∈ Pjk \{pk}, (35)

where ‘−’ is a dummy place holder as there is no train included in these events. The above

λ -change events should be added to the global event list. In addition, the departure event

given in (26) will also be generated and included in the global event list.

• If the station jk to which platform pk belongs is a terminal station, there are no passengers

getting on and getting off trains because we assume the terminal station to be a technical

station. So the passenger arrival rate at a technical station is equal to zero and the number

of passengers that have this technical station as destination is also equal to zero. Therefore,

(24) and (25) hold for this case. The arrival event at a terminal station will also generate

a departure event. However, this departure event will be different from that given in (26).

Since the service number of a train will be augmented with the total number of trains in the

network after its arrival at the terminal station, the generated departure event is as follows:

(

dik+Inet,pk
, ‘d’, ik + Inet, pk

)

, (36)

where Inet is the total number of trains in the network.

The passenger in-vehicle time for trains, denoted as t in-vehicle
ik,pk

should be updated when an

arrival event happens. When arrival event ek happens, the passenger in-vehicle time, including

the running time of train ik and the dwell time at platform pk, can be calculated by

t in-vehicle
ik,pk

= nafter
ik,p

pla(pk)
rik,pk

+(nafter
ik,p

pla(pk)
−n

alight
ik,pk

)(dik,pk
−aik,pk

), (37)

where rik,pk
, dik,pk

, aik,pk
are the running time, departure time, and arrival time of train ik at

platform pk.

3. The train scheduling problem

Based on the model formulation of Section 2, we now formulate the train scheduling problem

with consideration of the passenger demands. First, the performance criteria and the constraints

of the train scheduling problem are formulated. Next, we also discuss how a rolling horizon

approach can be adopted for the train scheduling problem and how the initial conditions are

defined. Furthermore, some solution approaches for the train scheduling problem are presented.
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3.1. Performance criteria

In this paper, we minimize the total travel time of all passengers and the energy consumption

of the trains using a weighted sum strategy. Note, however, that we can accommodate other

performance criteria all well, such as the operation cost of rail operators.

The total energy consumption for all I trains running with J stations can be formulated as

Etotal = ∑
i∈Stra

∑
p∈Spla

(Eacc
i,p +Ehold

i,p +Edec
i,p ), (38)

where Eacc
i,p , Ehold

i,p , and Edec
i,p are the energy consumption of the acceleration, speed-holding, and

deceleration phase, respectively. The acceleration and deceleration of train i between platform

p and spla(p) is denoted by aacc
i,p and adec

i,p , respectively. Moreover, the operation time for the

acceleration phase, the speed-holding phase, and the deceleration phase are denoted as tacc
i,p , thold

i,p ,

and tdec
i,p , respectively. The energy consumption for the acceleration phase of train i from platform

p to successor platform spla(p) is

Eacc
i,p =

∫ tacc
i,p

0

(

(me,i +nafter
i,p mpa)

(

aacc
i,p + k1i + k2iv(t)+gsin(θp)

)

+ k3iv
2(t)

)

v(t)dt, (39)

where me,i is the mass of train i itself, mpa is the mass of one passenger, me,i+nafter
i,p mpa is the mass

of train i and the passengers on-board of train i at platform p, k1i,k2i, and k3i are the resistance

coefficients of train i, v(t) is equal to aacc
i,p t, and θp is the average gradient between platform p

and the successor spla(p). The energy consumption for the speed holding phase of train i from

platform p to platform spla(p) is

Ehold
i,p =

∫ tacc
i,p +thold

i,p

tacc
i,p

(

(me,i +nafter
i,p mpa)(k1i + k2ivi, j +gsin(θp))+ k3iv

2
i,p

)

vi,pdt. (40)

In the deceleration phase, electric motors work as electric generators to generate energy for the

urban rail transit system. So The energy consumption of the deceleration phase of train i on the

segment between platform p and spla(p) may become negative in the braking process of trains,

which is calculated by

Edec
i,p = ηi,p

∫ ri,p

tacc
i,p +thold

i,p

(

(me,i +nafter
i,p mp)

(

adec
i,p + k1i + k2iv(t)+gsin(θp)

)

+ k3iv
2
i,p

)

vi,pdt,

(41)

where ηi,p is the energy recovery rate in the deceleration phase of train i on segment between

platform p and spla(p).
The total travel time of all passengers includes the passenger waiting time, the passenger

in-vehicle time, and the passenger transfer time

ttotal = ∑
p∈Spla

(

twait
p + twalk-in

p + twalk-out
p

)

+ ∑
i∈Stra

∑
p∈Spla

(

t transf
i,p + t in-vehicle

i,p

)

, (42)

where twait
p , twalk-in

p , twalk-out
p , t transf

i,p , and t in-vehicle
i,p can be calculated by (15), (5), (7), (9), and (37).

In order to make the trains transport as many passengers as possible, we add a penalty term

for the waiting time of the passengers left by the last train during the scheduling period:

fpenalty = ∑
p∈Spla

(

twait
p (tend)− twait

p (tk′)
)

, (43)
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where tend is the end time of this scheduling period and tk′ is the time instant of the last departure

event on platform p.

We apply a weighted sum strategy to solve the multi-objective train scheduling problem, i.e.,

we consider

fopt =
Etotal

Etotal,nom

+ζ1
ttotal

ttotal,nom

+ζ2

fpenalty

fpenalty,norm

, (44)

where ζ1 and ζ2 are non-negative weights, and the normalization factors Etotal,nom, ttotal,nom,

and fpenalty,norm are the nominal values of the total energy consumption, the total travel time of

passengers, and the waiting time of the passengers left by the last train on each line, respectively.

These nominal values can e.g. be determined using some typical feasible schedules.

3.2. Constraints

The constraints of the train scheduling problem consist of the event time constraints, the

headway constraints, the passenger flow constraints, and the train capacity constraints. The

passenger flow and train capacity constraints are (2)-(3), (6), (13)-(14), (16)-(22), and (24)-(33)

as given in Section 2. The scheduling period in this paper is denoted as [t0, tend]; so the event

times tk of the controlled events, i.e., the departure events and the arrival events, should satisfy

t0 ≤ tk ≤ tend, (45)

The event times of the autonomous events, i.e., the λ -change events, could be larger than tend,

in which case they will be handled in the next scheduling period. In addition, the event times of

the departure events and the arrival events should satisfy the operational constraints as follows.

For an arrival event ek, the arrival time aik,pk
of train ik at platform pk should satisfy the headway

constraints:

aik,pk
−dptra(ik),pk

≥ hpk,min, (46)

where dptra(ik),pk
is the departure time of the previous train at platform pk and hpk,min is the min-

imum headway at platform pk to ensure the safe operation of trains. Note that since all the

platforms are uniquely defined, the turnaround operation is equivalent to the operation to go

from one platform to another platform. Hence, the constraint caused by the turnaround operation

for a cyclic line can be included in the headway constraints. For a transversal line, the turnaround

constraints can be written as follows:

dstra(ik),pk
−dik,pk

≥ hmin,turn, (47)

where pk is the platform where the turnaround operation starts, platform pk and successor plat-

form spla(pk) are at the same station, and hmin,turn is the minimum turnaround headway. Fur-

thermore, for a departure event ek, the departure time dik,pk
of train ik at platform pk, should

satisfy

dik,pk
≥ aik,pk

+ τik,pk,min,

dik,pk
≤ aik,pk

+ τik,pk,max,
(48)

where τik,pk,min and τik,pk,max are the minimal and maximal dwell time for train ik at platform pk.

The minimal dwell time is affected by the number of passengers getting off and getting on the

train, which can be calculated as

τik,pk,min = min

(

τ̃min,α1,d +α2,dn
alight
ik,pk

+α3,dnboard
ik,pk

+α4,d

(

wwait
pk

(tk)

ndoor

)3

nboard
ik,pk

)

, (49)
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where τ̃min is the minimum dwell time predefined by railway operator, α1,d, α2,d, α3,d, and α4,d

are coefficients that can e.g. be estimated based on historical data, ndoor is the number of doors

of the train, n
alight
ik,pk

∈ [0,Cmax,ik ] is the number of passengers that get off train ik at platform pk ,

nboard
ik,pk

∈ [0,Cmax,ik ] is the number of passengers that board train ik at platform pk, wwait
ik,pk

≥ 0 is

the number of passengers waiting for train ik at platform pk, and wwait
ik,pk

/ndoor is the number of

passengers waiting at each door. Note that Since we do not consider the capacity of the platform

in this paper, we do not have an upper bound for wwait
ik,pk

. Moreover, the departure time dik,pk

should satisfy the headway constraint as follows:

dik,pk
−dptra(ik),pk

≤ hpk,max, (50)

where hpk,max is the maximum departure-departure headway between trains at platform pk, which

is introduced to limit passenger dissatisfaction.

The running time ri,p should satisfy

rik,pk,min ≤ rik,pk
≤ rik,pk,max, (51)

where rik,pk,min and rik,pk,max are the minimal and maximal running time of train ik between plat-

form pk and successor platform spla(pk), respectively. The minimum running time is limited by

the train characteristics and the condition of the line. The maximum running time is introduced

to limit passenger dissatisfaction since if trains run too slow, the passengers may complain. The

maximum running time could be decided based on a passenger survey or on the expertise of the

railway operator.

3.3. Rolling horizon approach and initial conditions

In this section, we discuss the rolling horizon approach in detail and we define the corre-

sponding initial conditions.

Since passenger demands vary with time in a daily operation, the train scheduling problem

can be solved in a rolling horizon way, by solving the scheduling problem, e.g., every half an

hour, so as to adapt the train schedule to passenger demands in real time. This works as follows.

First, the train scheduling problem is solved for some period [t0, tend] and the trains will be oper-

ated according to the resulting optimal schedule. After some period of time tp, e.g., half an hour,

we will run the optimization process again, but now for the period [t0 + tp, tend + tp] using the

known, measured, or estimated states of the system at time t0 + tp. We compute the new optimal

schedule and execute it for the next tp time units, and then the whole process is repeated again

for the period [t0 +2tp, tend +2tp] and so on, until the end of the daily operation of the urban rail

transit system.

When solving the train scheduling problem in a rolling horizon way, some of the variables

will no longer be free variables but will have fixed, known values. Assuming that t0 is the start

time instant of the scheduling period, the number of passengers on all trains and the number of

passengers waiting at all platforms at time t0 are known. we now discuss the fixed departure

times and arrival times for an urban rail line:

• If train i is in the terminal station at time t0, i.e., the arrival time ai−Inet,0 of train i− Inet at

the terminal station will be a known value with ai−Inet,0 < t0. So ai−Inet,0 is no longer an

unknown variable.
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• If train i is at a platform of a station at time t0, we use pi,t0 to denote that platform. The

arrival time ai,pi,t0
of train i at platform pi,t0 is known. In addition, the departure times, the

arrival times, and the running times of train i before platform pi,t0 are also known.

• If train i is running on a segment at t0, we use pi,t0 to denote the segment on which train i

is running on at t0. Note that we use the platform index p to denote the segment between

platform p and spla(p). The departure time di,pi,t0
of train i at platform pi,t0 has a known

value with di,pi,t0
< t0. In addition, all the departure times, arrival times, and running times

before segment pi,t0 are known. Furthermore, the running time ri,pi,t0
on segment pi,t0 is

also fixed since we assume that the schedule of a train can only be changed at platforms.

Therefore, the arrival time of train i at platform ppla(pi,t0) is also known.

3.4. Solution approaches

The train scheduling problem for an urban rail transit network is a non-smooth non-convex

programming problem with objective function (44) and constraints (2)-(3), (6), (13)-(14), (16)-

(22), (24)-(33), and (45)-(51), where the non-smoothness is caused by the min function in (16)

and (49), and the non-convexity is due to the nonlinear non-convex objective function and the

non-convex set defined by constraints. Several approaches, e.g., pattern search (Hooke and

Jeeves, 1961), sequential quadratic programming2(SQP) (Boggs and Tolle, 1995), mixed-integer

(non)linear programming (Wang et al., 2013), iterative convex programming (Wang et al., 2015),

and evolutionary algorithms (Bocharnikov et al., 2007; Ding et al., 2009; Yang et al., 2013) can

be applied to solve this train scheduling problem.

4. Case study

In this section, we illustrate the proposed event-driven model for urban rail transit networks

via a case study. The performance of the schedules obtained by SQP and a genetic algorithm

based on this event-driven model is compared with that of a fixed headway schedule.

4.1. Set-up

A small network with two cyclic lines as shown in Figure 9 is considered in this case study.

[Place Figure 9 about here] Line 1, represented by the solid line, has 1 terminal station (station

1) and 5 normal stations; line 2, represented by the dashed line, has 1 terminal station (station

7) and 7 normal stations. The line data of these two lines are given in Table 2. [Place Table 2

about here] The minimum running time in Table 2 is calculated by taking a fixed acceleration

of 0.8 m/s2 and a fixed deceleration of −0.8 m/s2; furthermore, when calculating the minimum

running time the trains are assumed to run at the maximum speed of 22.2 m/s during the holding

phase. The maximum running time is assumed to be ri, j,max = ζ ri, j,min, where we have chosen

ζ as 1.2 to ensure that the passengers do not complain that the train is too slow. The weight

variables ζ1 and ζ2 given in (44) are chosen as 2 and 3, respectively. For each cyclic line, there

are 5 physical trains and the number of train services considered in the train scheduling problem

2When the SQP algorithm is applied to a nonlinear programming problem with a non-differentiable objective function,

it might get stuck in a local solution. In the nonlinear programming problem proposed in this paper, the minimum value

of the objective function is usually not obtained at the points where the objective function is non-differentiable, so in

practice the SQP algorithm will jump over the points in which the function is non differentiable. Therefore, the SQP

approach with multiple initial points does work well in this case.
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is taken as 7. The parameters of trains and passengers are chosen as in Table 3. [Place Table

3 about here] The passenger arrival rates at stations are given in Table 4, where the passenger

arrival rates are piecewise constant functions and the passenger arrival rates at terminals, i.e.,

station 1 and station 7, are equal to 0. In addition, since we only consider one direction of the

cyclic lines, no passengers are arriving at the last stations of these two lines, i.e., station 6 and

station 12. [Place Table 4 about here]

Remark. Note that the event-driven model presented in this paper can also be used to model

cyclic lines. More specifically, for the case study example without terminal stations 1 and 7 and

with non-zero passenger arrival rates at stations 6 and 12, the event-driven model formulated in

Section 2 could be easily modified to present this case and the state updates of the arrival events

at the first and last platform of the line could be changed accordingly.

At time t0 (chosen as 2500 s), the initial states of trains for line 1 are as follows: train 1 and

train 2 are running from station 4 and 2 to station 5 and station 3, respectively, and their arrival

times are fixed, at 2530 s and 2550 s respectively. The number of passengers on train 1 and 2 at

time t0 is given in Table 5 and the numbers of passengers waiting at the platforms of line 1 are

shown in Table 6. [Place Table 5 about here] [Place Table 6 about here] For line 2, the initial

states at time t0 are as follows: train 6, 7, and 8 are running from station 11, 9, and 8 to station

5, 10, and 3, respectively and their arrival times are 2520 s, 2540 s, and 2560 s. The number

of passengers on these trains at t0 is given in Table 5 and the numbers of passengers waiting at

platforms of line 2 are shown in Table 6. In addition, there are 3 and 2 trains stopped at terminal

stations 1 and 7, respectively. We choose the end of the scheduling period tend as 5000 s, where

the schedule of 7 train services will be optimized for each line. To limit passenger dissatisfaction,

the maximum departure-departure headway at stations is chosen as 400 s. The nominal values

for the total travel time, the energy consumption, and the waiting time for the passengers who

did not travel in the scheduling period are calculated based on a random feasible schedule, which

yields 1.454 ·107 s, 3.436 ·109 J, and 7.434 ·106 s respectively.

The model formulation in Section 2 distinguishes between the splitting rates β station
p,m of the

passengers just entering the rail network and the splitting rates β train
i,p,m of the passenger arriving

at the transfer stations by trains. For this case study, we simplify the train scheduling model by

making3 β train
i,p,m equal to β station

p,m (ai, j) with ai, j the arrival time of train i at station j; this reduces the

number of decision variables, especially for cases with a large number of trains. Our approach is

not suitable at all if the number of variables is large. In addition, the walk-in and walk-out time

for passengers in (42) is also taken as zero for the sake of simplicity. Two solution approaches

are adopted to solve the train scheduling problem, i.e., a multistart SQP approach and a genetic

algorithm. The SQP method as implemented by the fmincon function of the Matlab optimization

toolbox is employed and we choose 10 feasible initial points to solve the optimization problem.

For the genetic algorithm, the ga function of the global optimization toolbox of Matlab is used.

4.2. Results

In order to compare the performance of the schedules obtained by the SQP approach and the

genetic algorithm, two reference schedules with a fixed departure headway are considered. In

fixed headway schedule 1, dwell times at stations have the same value, i.e., 60 s, and the fixed

3Recall that the splitting rates β train
i,p,m for trains are numbers and that the splitting rates β station

p,m are piecewise constant

functions that have the time as their argument.
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headways between trains for line 1 and line 2 are 340.0 s and 382.6 s, respectively. In fixed

headway schedule 2, dwell times at normal stations and transfer stations are 60 s and 90 s, re-

spectively. The headways between trains for line 1 and line 2 are 327.7 s and 368.0 s respectively

in fixed headway schedule 2. The headways of the reference schedule are obtained by minimiz-

ing the objective function (44). The train schedules obtained by the fixed-headway approach, the

SQP method, and genetic algorithm are given in Figure 10. [Place Figure 10 about here] The

train schedules with fixed headway for line 1 and line 2 are given in Figures 10a and 10b. The

train schedules obtained by the SQP method for line 1 and line 2 are given in Figures 10c and

10d. Moreover, the train schedules obtained by the genetic algorithm for line 1 and line 2 are

given in Figures 10e and 10f. In addition, the number of passengers on board of trains for line 1

and line 2 obtained by the different solution approaches is given in Figure 11. Since there are no

passenger arrivals at terminal stations (station 1 and station 7 for line 1 and line 2), the number

of passengers on board of trains should be equal to 0 when trains depart or arrive at terminal sta-

tions, which is illustrated in Figure 11. For example, Figure 11c shows that when train 3 departs

from station 2, the number of onboard passengers has already reached the maximum capacity,

i.e., 1500 passengers. Similarly, train 2 and train 4 reach their maximum capacity at station 4

and station 3, respectively. [Place Figure 11 about here]

Station 3 and station 5 are transfer stations in the small rail network shown in Figure 9.

Some passengers need to transfer to arrive at their destinations, e.g., passengers that enter the

network at station 2 but have destination 9, 10, or 11 need to transfer at station 3. The number

of transfer passengers at stations 3 and 5 is given in Figure 12. [Place Figure 12 about here]

For the platform at transfer station 3 of line 1, the number of onboard passengers with different

destinations is shown in Figure 12a, where the number of onboard passengers with destination

1, 2, 7, 8 is equal to 0. The passengers with destination 3 will get off the train at this station and

the passengers with destination 9, 10, and 11 will also get off the train and transfer to line 2. The

other passengers will stay on board. It is noted that the passengers with destination 12 choose

to stay on the train instead of transferring to line 2 at station 3. This is because these passengers

can also transfer at station 5, as shown in Figure 12b, and this will lead to a shorter travel time.

Furthermore, the number of passengers at station 3 for train 1 is 0 in Figure 12a, since train 1 has

already passed station 3 at time t0. Similarly, the number of onboard passengers with different

destinations at station 3 and 5 of line 2 is shown in Figures 12c and 12d.

A comparison of the performance of the three approaches, i.e., the fixed-headway approach,

the SQP method and the genetic algorithm, is illustrated in Table 7, where the values of the

objective function, the computation time of the solution approaches, the energy consumption of

trains, the number and the travel time of the passengers that finished their trip, and the number

and the waiting time of the passengers that did not travel are listed. [Place Table 7 about here]

Additionally, the variance of the solutions obtained by 10 runs of different solution approaches

are provided via the standard deviation (σ ) and the maximum and minimum values. For the

computation for these three approaches we have used Matlab on a 64-bit linux operation system

running on 1.8 GHz Intel Core2 Duo CPU. It is observed that the computation time of the fixed-

headway approach is the smallest and that the SQP method yields the best performance among

these three approaches for this case study. In particular, the objective value of the SQP method

is about 10% smaller than that of the schedule with fixed headway and it is about 4% smaller

than that obtained by the genetic algorithm. The train schedule obtained by the SQP method has

a lower energy consumption and more passengers arrive at their destination within the period

[t0, tend]. However, the travel time for passengers that finished their trip obtained by the genetic

algorithm is smaller than that obtained within the period [t0, tend] by the SQP method. The reason
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for this is that the number of passengers that finished their trips in the schedule obtained by the

genetic algorithm is smaller than that of the SQP method and the fixed-headway approach. In

addition, the number of passengers that did not finish their trip at tend of the SQP approach is

the smallest among these three approaches. These passengers still left at stations at tend will be

picked up by the train services of the next scheduling period.

A simple result of the train scheduling problem for a longer scheduling period, i.e., 3600 s,

is also given in this paper, where train schedules of the fixed-headway approach and the SQP

approach are given in Figure 13 and their performance comparison is given in Table 8. [Place

Table 8 about here] As we can observe from Figure 13, the headway between trains in the sched-

ule obtained from SQP approach is changing with the number of waiting passengers and the

passenger arrival rates at stations. The passenger demand-oriented train schedule yields a better

performance than the fixed headway train schedule (see Table 8). So a similar conclusion to the

one presented above can also be obtained via train scheduling over the longer scheduling period.

[Place Figure 13 about here]

4.3. Discussion

As we can observe for Figure 10, there is a small difference for the end times of the last train

for the different approaches, which is normal because we do not set the end times of trains as

hard constraints but optimize them through the objective function. Based on the results of the

fixed-headway approach 1 and the SQP method, the end times of the last train are close to each

other, e.g., the end times in Figure 10a and Figure 10c are 4989 s and 4967 s, respectively. From a

theoretical point of view, the non-fixed headway schedule is more flexible than the fixed headway

schedule especially when the passenger demands vary during the scheduling period because the

headway of trains can become smaller so as to reduce the waiting time of passengers if many

passengers are waiting at a certain station, and vice versa. In addition, if many passengers are

on board of trains, the running time can become smaller to reduce the passenger onboard time.

However, the smaller running time would increase the energy consumption. So the running

times are optimized to achieve a good trade-off between energy consumption and the passenger

travel time. Therefore, the flexibility of the non-fixed headway schedule will benefit both the

passengers and the train operators.

In addition, the longer dwell times at some stations mean the running times will become

shorter, while the shorter running times results in a larger energy consumption in general. The

dwell times obtained by the event-driven model in Figure 10c-10f and Figure 13c-13d are calcu-

lated based on the number of alighting and boarding passengers. So in principle the dwell times

obtained by the event-driven model can largely reduce the train delays introduced by the boarding

and alighting process of passengers. In the fixed-headway approach, the dwell times at stations

are predefined without considering the detailed information about the passenger flows. On the

one hand, if the predefined dwell time is much longer than the time needed for the alighting and

boarding process, then the total travel time will increase. This is the reason that the objective

value of the fixed-headway approach 2 is higher than that of the fixed-headway approach 1. On

the other hand, if there are many passengers getting on and getting off trains at a certain sta-

tion, the predefined dwell times will not be enough for the alighting and boarding process of

passengers, and train delays will be generated. So the longer dwell times in non-fixed headway

schedules could reduce the delays caused by the passenger boarding and alighting process and

could increase the robustness of the schedules.

The non-fixed schedules obtained by the SQP method and the genetic algorithm have a better

performance than the fixed-headway approach because in this paper the objective function of the
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train scheduling problem is a trade-off between the total passenger travel time and the energy

consumption of trains. In addition, the passenger demands are different at different stations in

the network and are changing with time. In order to reach a good balance between the energy

consumption and the passenger travel time, the running times and headways are optimized in

the train scheduling problem proposed in this paper. In addition, the dwell times of the trains in

the non-fixed headway schedules also satisfy the passenger alighting and boarding constraints.

So the passenger-demands-oriented train schedules obtained by the SQP method and genetic

algorithm yield a better performance than the fixed headway schedule.

5. Conclusions and Future Work

In this paper, the train scheduling problem for an urban rail transit network has been in-

vestigated, where the origin-destination passenger demands are taken into account. We have

developed an event-driven model with three types of events, i.e., departure events, arrival events,

and passenger arrival rate change events, to describe the operation of the trains and the calcu-

lation of the number of passengers onboard of trains and waiting at platforms in the presence

of the time-varying passenger demands. Furthermore, the passenger transfer process and the

splitting of passenger flows at transfer stations are also included in the event-driven model. The

corresponding scheduling problem is a non-convex nonlinear optimization problem, which can

be solved using e.g. multi-start SQP or a genetic algorithm. For the given case study, the SQP

method provides a better trade-off between control performance and computational complexity

than the genetic algorithm. In addition, the performance of the non-fixed headway train sched-

ule obtained by the SQP method is also better than the traditional fixed-headway train schedule;

however, the computation time of the SQP method is much higher than that of the fixed-headway

approach.

An extensive comparison and assessment of the SQP method, the genetic algorithm, and

other solution approaches for different scenarios will be a topic for future work. Since the pas-

senger demand in both directions is not symmetric in general, the optimal headways of these two

directions are not equal. The event-driven model presented in this paper can easily be extended

to the two-directional case. Hence, in our future work, we will consider the train scheduling

problem for more complex cases with both directions of cyclic lines and transversal lines and

also include the change of the number of physical trains in the problem formulation. Note that

we have focused on the generation of non-fixed headway train schedules in this paper. However,

in practice the uncertainties in passenger demands and in the operation of the trains are important

for the feasibility and robustness of non-fixed headway train schedules. In future work, we will

therefore include these uncertainties in the event-driven model, and perform extensive tests to

assess the robustness of non-fixed headway train schedules and to compare their performance

with that of fixed-headway train schedules. For the cases with multiple lines and a large number

of stations and trains, multi-level and/or distributed approaches are expected to be required in

order to model and solve the train scheduling problem efficiently (De Schutter et al., 2012; Shi

and Zhou, 2015; Camponogara et al., 2002). Moreover, we will also investigate simplifications

of the proposed model to obtain a good trade-off between modeling accuracy and computation

speed.
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Table 1: Parameters and variables

ℓ index of lines;

i index of train services;

j index of stations;

p index of platforms;

k index of events;

L total number of lines in the network;

J total number of stations in the network;

Iℓ total number of trains in line ℓ;
Sln set of lines;

Ssta set of stations;

Stra set of train services;

Stra
p set of train services that stop at platform p;

Pj set of platforms at transfer station j;

s
pla(p) successor platform of platform p;

p
pla(p) predecessor platform of platform p;

s
tra(i) successor train of train i;

p
tra(i) predecessor train of train i;

t0 starting time of the scheduling period;

tend end time of the scheduling period;

ek kth event;

tk time instant at which event ek occurs;

Ytype,k event type of ek;

ik train index of ek;

pk platform index of ek;

λ station
j,m passenger arrival rate at station j of passengers with station m as their destination;

λp,m passenger arrival rate at platform p of passengers with station m as their destination;

β station
p,m splitting rate of passengers that arrive at station j, go to platform p ∈ Pj , and have destination m;

β train
i,p,m splitting rate of passengers that are on board of train i at station j and have destination m, and go

to platform p ∈ Pj;

awalk
p,p′ ,bwalk

p,p′ coefficients for the average walking time from platform p to platform p′; p = 0 and p′ = 0 corre-

spond to the entrance and exit of the station to which platform p and p′ belong;

twalk-in
p total walking time for passengers from entrances to platform p;

twalk-out
p total walking time for passengers from platform p to exits of the station;

t transf
i,p total transfer time for transfer passengers getting off train i at platform p;

twait
p waiting time of passengers at platform p during the scheduling period;

t in-vehicle
i,p passenger in-vehicle time of train i including the running time from predecessor platform ppla(p)

to p and the dwell time at platform p;

ntransf
i,p,p′ number of passengers that get off train i and transfer from platform p to p′;

ntransf
i,p number of transfer passengers that get off train i at platform p;

n
alight
i,p number of passengers alighting from train i at platform p;

n
alight
i,p,m number of passengers that have destination m and get off train i at platform p;

nboard
i,p number of passengers boarding train i at platform p;

nremain
i,p remaining space on train i after the alighting process of passengers at platform p;

nbefore
i,p number of passengers on board of train i at platform p before the start of the boarding process;

nafter
i,p number of passengers on board of train i at platform p after the boarding process has completed;

w
wait,before
pk ,m (tk) number of passengers that are waiting at platform pk and have destination m immediately before

event ek occurs, where ek is the event that occurs at time tk at platform pk;

w
wait,after
pk ,m (tk) number of passengers that are waiting at platform p and have destination m immediately after event

ek occurs, where ek is the event that occurs at time tk at platform pk;

di,p departure time of train i at platform p;

ai,p arrival time of train i at platform p;

ri,p running time of train i from predecessor platform ppla(p) to p;

ζ1, ζ2 non-negative weights in the objective function.
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Table 2: Information of the two cyclic lines

Station number (Line 1) 1 2 3 4 5 6

Distance to next station [m] 700 1500 1700 2200 1900 800

Minimal running time [s] 59.3 95.3 104.3 126.8 113.3 63.8

Station number (Line 2) 7 8 3 9 10 11 5 12

Distance to next station [m] 860 1400 1500 1300 1600 1200 1100 730

Minimal running time [s] 66.5 90.8 95.3 86.3 99.8 81.8 77.3 66.5
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Table 3: Parameters of the trains and the passengers

Property Symbol Value

Train mass [kg] me,i 199 ·103

Mass of one passenger [kg] mp 60

Capacity of trains [passengers] Ci,max 1500

Minimum dwell time [s] τ̃min 30

Maximum dwell time [s] τmax 150

[s] α1,d 4.002

Coefficients of the [s/passengers] α2,d 0.047

minimal dwell time [s/passengers] α3,d 0.051

[s/passengers−4] α4,d 1.0·10−6

Coefficients of resistance

[m/s2] k1i 0.012

[s−1] k2i 5.049·10−4

[m−1] k3i 2.053·10−5
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Table 4: Passenger arrival rates (passengers/s) in the small urban rail network (columns correspond to destinations)

Sta- Time
1 2 3 4 5 6 7 8 9 10 11 12

tion period [s]

1 2500 - 5000 0 0 0 0 0 0 0 0 0 0 0 0

2500 - 3000 0 0 0.48 0.64 0.32 0.32 0 0 0.64 0.48 0.32 0.32

2 3000 - 3600 0 0 0.32 0.48 0.32 0.16 0 0 0.48 0.40 0.35 0.16

3600 - 5000 0 0 0.32 0.32 0.32 0.32 0 0 0.48 0.38 0.56 0.16

2500 - 3100 0 0 0 0.32 0.32 0.16 0 0 0.32 0.34 0.29 0.32

3 3100 - 3700 0 0 0 0.48 0.32 0.32 0 0 0.32 0.22 0.42 0.32

3700 - 5000 0 0 0 0.16 0.64 0.16 0 0 0.48 0.38 0.26 0.16

4
2500 - 3250 0 0 0 0 0.45 0.30 0 0 0 0 0 0.30

3250 - 5000 0 0 0 0 0.53 0.38 0 0 0 0 0 0.38

5

2500 - 2850 0 0 0 0 0 0.60 0 0 0 0 0 0.30

2850 - 3390 0 0 0 0 0 0.75 0 0 0 0 0 0.30

3390 - 3830 0 0 0 0 0 0.60 0 0 0 0 0 0.30

3830 - 5000 0 0 0 0 0 0.75 0 0 0 0 0 0.30

6 2500 - 5000 0 0 0 0 0 0 0 0 0 0 0 0

7 2500 - 5000 0 0 0 0 0 0 0 0 0 0 0 0

2500 - 3100 0 0 0.12 0.24 0.36 0.12 0 0 0.24 0.29 0.22 0.24

8 3100 - 3700 0 0 0.12 0.24 0.60 0.12 0 0 0.24 0.34 0.19 0.24

3700 - 5000 0 0 0.12 0.24 0.36 0.12 0 0 0.24 0.29 0.29 0.24

9
2500 - 3100 0 0 0 0 0.12 0.24 0 0 0 0.14 0.19 0.24

3100 - 5000 0 0 0 0 0.12 0.36 0 0 0 0.29 0.31 0.36

10
2500 - 2900 0 0 0 0 0.15 0.15 0 0 0 0 0.21 0.15

2900 - 5000 0 0 0 0 0.15 0.15 0 0 0 0 0.24 0.21

11
2500 - 2900 0 0 0 0 0.24 0.20 0 0 0 0 0 0.24

2900 - 5000 0 0 0 0 0.36 0.32 0 0 0 0 0 0.28

12 2500 - 5000 0 0 0 0 0 0 0 0 0 0 0 0
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Table 5: Number of passengers on board of trains at time t0 for the two cyclic lines

Destination 1 2 3 4 5 6 7 8 9 10 11 12 Total

Train 1 (Line 1) 0 0 0 0 130 150 0 0 0 0 0 80 360

Train 2 (Line 1) 0 0 80 70 90 50 0 0 60 140 130 80 700

Train 6 (Line 2) 0 0 0 0 230 280 0 0 0 0 0 170 680

Train 7 (Line 2) 0 0 0 0 160 180 0 0 0 120 134 162 756

Train 8 (Line 2) 0 0 79 98 100 130 0 0 120 80 120 80 787
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Table 6: Number of passengers waiting at platforms of the two cyclic lines

Destination 1 2 3 4 5 6 7 8 9 10 11 12 Total

Station 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Station 2 0 0 120 240 140 10 0 0 80 200 250 140 1180

Station 3 0 0 0 150 200 130 0 0 0 0 0 90 570

Station 4 0 0 0 0 200 230 0 0 0 0 0 120 550

Station 5 0 0 0 0 0 210 0 0 0 0 0 0 210

Station 6 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination 1 2 3 4 5 6 7 8 9 10 11 12 Total

Station 7 0 0 0 0 0 0 0 0 0 0 0 0 0

Station 8 0 0 150 120 80 100 0 0 180 100 140 140 1010

Station 3 0 0 0 0 100 130 0 0 190 110 130 100 760

Station 9 0 0 0 0 110 150 0 0 0 100 160 120 640

Station 10 0 0 0 0 130 170 0 0 0 0 130 150 580

Station 11 0 0 0 0 100 190 0 0 0 0 0 170 460

Station 5 0 0 0 0 0 0 0 0 0 0 0 210 210

Station 12 0 0 0 0 0 0 0 0 0 0 0 0 0

30



Table 7: Performance comparison of the SQP method and the genetic algorithm (Fixed headway 1 corresponds to the train schedule in which dwell times are the same, i.e., 60 s,

for all stations and fixed headway 2 corresponds to the train schedule in which dwell times are longer, i.e.,90 s, at transfer stations. σ denotes the standard deviation of 10 runs.)

Solution approaches Fixed headway 1 Fixed headway 2 SQP Genetic algorithm

Objective value [-] 4.754 4.836 4.413 4.554

[σ ,max,min] - - [0.017, 4.395, 4.445] [0.139, 4.447, 4.853]

Computation time [s] 14.381 15.985 1.128 ·104 3.490 ·104

[σ ,max,min] [0.848, 16.609, 13.611] [0.811, 17.567, 14.896] [8.898 ·102, 1.256 ·104, 9.645 ·103] [1.423 ·104, 5.765 ·104, 9.476 ·103]

Energy consumption [J] 3.370 ·109 3.370 ·109 2.734 ·109 2.739 ·109

[σ ,max,min] - - [1.676 ·107, 2.709 ·109, 2.764 ·109] [3.423 ·107, 2.698 ·109, 2.823 ·109]

Number of passengers that
2.471 ·104 2.496 ·104 2.558 ·104 2.434 ·104

finished their trip [passengers]

[σ ,max,min] - - [3.654 ·102, 2.483 ·104, 2.608 ·104] [1.235 ·103, 2.227 ·104,2.532 ·104]

Number of passengers that did
9.395 ·103 9.369 ·103 8.808 ·103 9.531 ·103

not finish their trip [passengers]

[σ ,max,min] - - [74.72, 8.707 ·103, 8.906 ·103] [8.523 ·102, 8.849 ·103, 1.132 ·104]

Travel time for passengers
1.862 ·107 1.883 ·107 1.871 ·107 1.885 ·107

that finished their trip [s]

[σ ,max,min] - - [2.172 ·105, 1.852 ·107, 1.924 ·107] [7.676 ·105, 1.688 ·107,1.965 ·107]

Waiting time for passengers
3.005 ·106 2.986 ·106 2.586 ·106 2.887 ·106

that did not travel [s]

[σ ,max,min] - - [4.922 ·104, 2.464 ·106, 2.635 ·106] [5.223 ·105, 2.641 ·106, 4.329 ·106]
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Table 8: Performance comparison of the fixed-headway approach and the SQP method for a longer scheduling period

(i.e., 3600 s)

Solution approaches Fixed headway SQP

Objective value [-] 7.840 7.376

Energy consumption [J] 4.710 ·109 4.018 ·109

Number of passengers that
3.225 ·104 3.406 ·104

finished their trip [passengers]

Number of passengers that did not
1.292 ·104 1.162 ·104

finish their trip [passengers]

Travel time for passengers
2.931 ·107 3.273 ·107

that finished their trip [s]

Waiting time for passengers
5.390 ·106 4.877 ·106

that did not travel [s]
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SQP method over a longer scheduling period (i.e., 3600 s)
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Figure 7: Typical walking time profile for the transfer passengers
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(e) Line 1, genetic algorithm
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Figure 10: Train schedules for line 1 and line 2 obtained by the fixed-headway approach, the SQP method, and the

genetic algorithm
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Figure 11: Number of onboard passengers for line 1 and line 2 obtained by the fixed-headway approach, the SQP method,

and the genetic algorithm
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Figure 12: Number of onboard passengers with different destinations at transfer station 3 and 5 obtained by the SQP

method for line 1 and line 2
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Figure 13: Train schedules for line 1 and line 2 obtained by the fixed-headway approach and the SQP method over a

longer scheduling period (i.e., 3600 s)
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