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Abstract

Traffic congestion together with emissions has become a big problem in urban areas. In order

to make the best use of the existing road capacity, traffic control systems are widely used. In

this paper, we propose a model-predictive controller which uses an integrated flow-emission

model as its internal prediction model. The cost function is a weighted combination of the total

time spent (TTS) and the total emissions (TE) of the vehicles within the network. We also add

the expected time spent and the expected total emission caused by the vehicles that remain in

the network at the end of the prediction horizon until they leave the network.

1. INTRODUCTION

Traffic congestion has always been a problem in modern urban areas since it is time and energy

consuming. Furthermore, traffic emissions are considered as a major risk to people’s health and

to the environment, since they contain harmful substances including nitrogen oxides (NOx),

hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), and particulate matter. To

reduce traffic congestion, several solutions have been proposed such as to increase the supply

(i.e., the road capacity), to decrease the traffic demand, and to manage the existing capacity.

The most feasible approach in the short time consists management of the existing road capacity

using appropriate traffic control strategies.

Real-time traffic-responsive control systems are well known as an efficient approach for man-

agement of the capacity (Diakaki et al. [2002, 2003]). Among traffic-responsive control ap-

proaches, optimization-based control systems and especially model-predictive control (MPC)

have proven to be efficient both for freeways and for urban traffic networks (Aboudolas et al.

[2010], van den Berg et al. [2007], Bellemans et al. [2006]). In optimization-based control sys-
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tems, a cost function is minimized subject to the system dynamics and the structural and phys-

ical constraints that are formulated as equality and non-equality equations. In this paper, the

focus is on designing an MPC-based controller for an urban traffic network. In MPC the op-

timization problem is solved along a finite (rolling) horizon, called the prediction horizon, of

length Np (i.e., the horizon covers Np time steps). An MPC-based controller has an internal

prediction model that estimates the future states of the system along the prediction horizon. The

optimization problem is then solved using the dynamics of the internal model together with the

measurements received as feedback at the beginning of the horizon as the initial conditions

of the problem. The optimal control signal (i.e., the solution of the optimization problem) is

implemented for one time step only, and the optimization problem is solved again at the next

time step using the updated measurements as the initial conditions (see Maciejowski [2002] for

more details).

A majority of the available literature on urban traffic model predictive control considers the

total time spent (TTS) by the vehicles as cost function. While reduction of emissions is also

considered as an objective that should be obtained by the control system (Stevanovic et al.

[2009], Zegeye et al. [2011], Liao and Machemehl [1996]), only a limited amount of work was

carried out in this field.

Some work previously done on MPC for urban traffic networks are as follows; Aboudolas et al.

[2010] propose a rolling horizon approach that solves an MPC optimization problem using

quadratic programming. The objective of the controller is to minimize and to balance the occu-

pancies of the links so that the risk of over-saturation and spill-back of the queues in the links

decreases. A network-wide traffic signal control strategy for congested urban areas is given

by Aboudolas et al. [2009], where the modeling is based on the store-and-forward paradigm.

Three different control strategies are formulated and discussed: a linear-quadratic optimal con-

trol approach, an open-loop quadratic programming control approach, and an open-loop nonlin-

ear optimal control approach. Reduction of traffic emissions is considered by Lin et al. [2013],

where an MPC-based controller is designed with the aim to reduce both the congestion and the

traffic emissions.

Here, we propose a model-predictive controller that optimizes a multi-objective cost function

that includes both the emissions and the congestion. In formulating the objective function

we will add two additional terms that account for the expected travel time and the expected

emissions of the vehicles that remain in the network at the end of the prediction time.

2. INTEGRATED FLOW-EMISSION MODEL FOR URBAN TRAFFIC NETWORKS

In order to design a model-predictive controller, we need a model of the system that predicts the

states of the system as well as the emissions, and at the same time provides a balanced trade-

off between computational efforts and accuracy of the predictions. The S-model proposed by

Lin et al. [2012] is a macroscopic urban flow model. Using the S-model all traffic scenarios

including under-saturated, saturated, and over-saturated are covered. The time step of the S-

model differs from link to link, i.e., the simulation time step for a link (u, d) that connects the

(upstream) intersection u and the (downstream) intersection d is considered to be cd, which is

equal to the cycle time cd of intersection d. The state variables of the S-model are the number

nu,d of vehicles and the queue lengths qu,d,o in link (u, d) that intend to move towards the

destination o. These state variables are updated by:

nu,d(kd + 1) = nu,d(kd) +
(

αenter
u,d (kd)− αleave

u,d (kd)
)

cd (1)

qu,d,o(kd + 1) = qu,d,o(kd) +
(

αarriv
u,d,o(kd)− αleave

u,d,o(kd)
)

(2)
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where kd is the time step counter, αenter
u,d and αleave

u,d are the entering and exiting flow rates

according to link (u, d), αarriv
u,d,o and αleave

u,d,o are the arriving and the leaving average flow rate of

the sub-stream moving towards o. Note that in the S-model nu,d and qu,d,o are approximated

using real values.

Different parameters play a role in production of emissions, including the speed and the ac-

celeration of the vehicles. There are some models, such as COPERT (Kouridis et al. [2000]),

that consider the effect of the average speed on the emissions. However, the speed alone seems

not to be sufficient for accurate estimation of emissions. Therefore, here we use VT-micro

(Ahn et al. [2002]), which is a microscopic urban emission model that estimates the emissions

Eθ,i of any type θ ∈ {CO,NOx,HC} produced by the vehicle i at time step k considering

both the speed and the acceleration of vehicles. The emissions Eθ,i are given by the following

equation using the VT-micro model:

Eθ,i(vi(k), ai(k)) = exp(ṽ⊤i (k)Pθãi(k)) (3)

with Pθ a pre-calibrated matrix given by Ahn et al. [2002], and:

ṽi(k) =
[

1 vi(k) v2i (k) v3i (k)
]⊤

, ãi(k) =
[

1 ai(k) a2i (k) a3i (k)
]⊤

In this paper we use the integrated version of the S-model and the VT-micro model given by

Lin et al. [2013].

3. MODEL-PREDICTIVE CONTROL

Our proposed approach for real-time signal control of an urban traffic network includes a

model-predictive controller. As we explained it before in Section 1, the optimization prob-

lem is solved online over the prediction horizon at each control time step. Suppose that the

control time interval Tctrl is the same for all intersections. Then we have Tctrl = Nd · cd for

all d ∈ J where J is the set of all intersections in the network, and Nd is an integer, and thus

kd = Nd · kctrl. Here, we aim to find a balanced trade-off between reduction of the congestion

(i.e., reduction of the total time spent (TTS) by the vehicles), and reduction of the total emis-

sions (TE). Therefore, we have a multi-objective optimization problem, for which we define

the objective function as a linear weighted combination of different objectives:

J (kctrl) =w1
TTS

TTSnominal

+
∑

θ∈Θ

w2,θ
TEθ

TEθ,nominal

+

w3
TTSend-point(kctrl)

TTSend-point,nominal

+
∑

θ∈Θ

w4,θ
TEθ,end-point(kctrl)

TEθ,end-point,nominal

+ w5
Var(g)

Varnominal

(4)

where Var(g) is the variations in the control signal g (this term is added to the objective func-

tion to suppress possible oscillations of the control signal), and TTS and TEθ denote the total

time spent and the total estimated emission of θ ∈ Θ = {CO,NOx,HC} in the network during

the prediction interval, i.e.,:

TTS =

kctrl+Np
∑

i=kctrl

TTS(i), TEθ =

kctrl+Np
∑

i=kctrl

TEθ(i)

with TTS(i) and TEθ(i) the total time spent and the total emissions during one time step

[ikctrl, (i + 1)kctrl), and TTSnominal and TEθ,nominal the nominal performances for TTS and

TEθ. The 3rd and the 4th terms in (4) correspond to the vehicles that have entered the network
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within the prediction interval [kctrlcd, (kctrl + Np)cd) and that are still in the network at the

end of the prediction time interval. These two terms consider the expected time spent and the

expected emissions resulted by the remaining vehicles until they leave the network. Next we

explain how these terms are computed. Suppose that:

- we have a destination independent model,

- traffic situation is fixed after the prediction interval.

For every pair of links (x, y), (y, z) ∈ L, with L the set of all links in the network, we define::

βend−point,x,y,z = βctrl,x,y,z(kctrl +Np) (5)

Now we consider a given link (u, d), and for the link we define: :

nend−point,u,d = nctrl,u,d(kctrl +Np) (6)

If we consider all the possible routes to the end-points of the network that are reachable via

(u, d), for some networks such as grid-shaped networks vehicles might move within cycles;

then the number of the routes will become infinity, and hence the 3rd and the 4th terms in (4)

will grow exponentially. To prevent this situation, we determine a limited number Ku,d of the

most likely used routes for the link to the end-points of the network. The aim is to use an

existing shortest path algorithm for this, in particular we want to use Yen’s K shortest path

routing algorithm (Yen [1971]).

First, the problem should be transformed into a point-to-point problem by connecting all the

end-points of the network to a single virtual end-point “v” (see Figure 1) so that the problem

reduces to finding the Ku,d shortest routes that connect d (for all d ∈ J ) and v. A route Rj

between d and v is defined as:

Rj = {(d, dj,1), (dj,1, dj,2), . . . , (dj,nj−1, v)} (7)

with nj the number of links in route Rj .

In our problem, we look for the Ku,d most likely used routes from (u, d) to v, i.e., the routes

with the largest
∏

(x,y),(y,z)∈(Rj

⋃
{(u,d)}) βend−point,x,y,z for j ∈ {1, 2, . . . , nj}, and this is

equivalent to finding the largest log
(

∏

(x,y),(y,z)∈(Rj

⋃
{(u,d)}) βend−point,x,y,z

)

. Yen’s algo-

rithm seeks for the minimized summation of the costs, hence our problem could be refor-

mulated as finding the least
∑

(x,y),(y,z)∈(Rj

⋃
{(u,d)}) (− log βx,y,z), i.e., we look for the Ku,d

shortest routes where the costs C(y, z) of the links are redefined as (see Figure 1):

C(y, z) = − log βx,y,z (8)

Note that (8) is a legitimate definition for the cost, as 0 ≤ βx,y,z ≤ 1 and hence C(y, z) ≥ 0.

Now suppose that we have found the Ku,d shortest routes from the current link (u, d) to the

end-points of the network. Then we put them all in a set called Ru,d,Ku,d
.

Moreover, at d the summation of the turning rates should be unity. Indeed, by considering only

Ku,d routes, we assume that the turning rates towards the other routes are zero. Therefore,

we need to define γu,d,r for r ∈ {1, 2, . . . ,Ku,d} where γu,d,r indicates the percentage of the

vehicles that are within link (u, d) at the end of the prediction interval and that will travel the

rth route. Then γu,d,r for r ∈ {1, 2, . . . ,Ku,d} is defined as:

γu,d,r =

∏

(x,y),(y,z)∈(Rr

⋃
{(u,d)})

βend−point,x,y,z

Ku,d
∑

l=1





∏

(x,y),(y,z)∈(Rl

⋃
{(u,d)})

βend−point,x,y,z





(9)
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Figure 1: Recast the problem of finding the Ku,d most likely used routes into a point-to-point

K shortest path problem

Now that the least costly routes are determined, we can compute TTSend-point and TEθ,end-point

in (4) as follows:

TTSend-point(kctrl) =
∑

(u,d)∈L



nend−point,u,d

Ku,d
∑

r=1

γu,d,rTTSu,d,r



 (10)

TEθ,end-point(kctrl) =
∑

(u,d)∈L



nend−point,u,d

Ku,d
∑

r=1

(

γu,d,r
∑

θ∈Θ

TEθ,u,d,r

)



 (11)

where TTSu,d,r and TEθ,u,d,r are the total time spent and the total emissions of θ along route

r.

4. FUTURE WORK

For future work, the theory proposed in this paper will be applied to an urban traffic model

to evaluate the efficiency of the proposed controller. Moreover, smoothing methods will be

applied to the flow S-model so that the efficient available optimization algorithms could be

applied for the smooth formulation.
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