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Abstract

Multi-Terminal high voltage Direct Current (MTDC) transmission lines enable radial or meshed DC grid
configurations to be used in electrical power networks, and in turn allow for significant flexibility in the
development of future DC power networks. In this paper distributed MPC is proposed for providing
Automatic Generation Control (AGC) in Alternating Current (AC) areas connected to MTDC grids.
Additionally, a novel modal analysis technique is derived for the distributed MPC algorithm, which in
turn can be used to determine the convergence and stability properties of the closed-loop system.

Keywords: Distributed model predictive control, Convergence, Stability, Modal analysis, Auxiliary problem
principle, Automatic generation control, Multi-terminal HVDC

1 Introduction

High Voltage Direct Current (HVDC) links provide significant advantages over Alternating Current (AC)
links for transferring electrical energy over large distances (Kundur, 1994). Traditionally HVDC systems
have consisted of point to point links that connect two individual AC areas. HVDC links based on Line
Commutated Converter (LCC) technology enabled the construction of HVDC grids where a number of
individual HVDC lines are connected to an individual HVDC terminal, thus enabling the construction of
Multi-Terminal HVDC (MTDC) grids. However, with HVDC LCC power flows in the lines are unidirectional,
which limits the flexibility of LCC based MTDC grids. Voltage Source Converter (VSC) technology, on the
other hand, allows for the construction of MTDC grids that support bidirectional power flows (Chaudhuri,
Chaudhuri, Majumder, and Yazdani, 2014). In turn VSC HVDC based MTDC grids enable the construction
of large meshed or radial DC grids such as the planned European “Supergrid”, which will be capable
of integrating large quantities of renewable energies over vast geographical distances (Van Hertem and
Ghandhari, 2010). These grids will be capable of providing a range of ancillary services to AC networks.

As DC connections to AC grids increase there is a consequential loss in inertial response in the AC
systems. To counter this, it is therefore of interest to employ frequency control to make DC connections
react to frequency imbalances in a similar fashion to AC systems (Chaudhuri et al., 2014). Furthermore,
allowing the DC system to react to frequency imbalances in this way decreases the necessity for additional
primary and secondary frequency control reserves in AC areas connected to DC grids, as it is possible to
share reserves over large distances via the DC grid (Dai, 2011). The provision of frequency control to AC
areas is therefore of particular interest.
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Thus far in the literature a number of different primary frequency control algorithms, which act on the
milliseconds scale to counteract disturbances, have been developed (Chaudhuri, Majumder, and Chaudhuri,
2013; Dai, Phulpin, Sarlette, and Ernst, 2012; Egea-Alvarez, Bianchi, Junyent-Ferre, Gross, and Gomis-
Bellmunt, 2013; Silva, Moreira, Seca, Phulpin, and Peas Lopes, 2012). By necessity these algorithms act using
local information only, in a decentralised fashion, so as to be less susceptible to the effects of communication
delays, as communication delays can result in instability in the primary control loop (Andreasson et al., 2013;
Dai, Phulpin, Sarlette, and Ernst, 2010). Typically, these methods act by manipulating the DC voltage or
current in response to the local frequency error signal.

While these primary control techniques counteract the initial effects of disturbances, it is necessary to
employ some form of integral action in order to provide long term frequency regulation. Traditionally, in AC
networks this has been conducted using Automatic Generation Control (AGC), which acts on the seconds to
minutes scale in order to regulate frequencies. Decentralised PI based methods have been proposed recently
for this purpose (Chaudhuri et al., 2014; Dai, 2011; Egea-Alvarez et al., 2015) and an optimised PID method
was proposed in de Courreges d’Ustou (2012).

Transmission System Operators (TSOs) are responsible for the balancing of the electricity supply to
match demand across power grids. Different sections of large power systems, such as the European grid, are
controlled by separate TSOs. These TSOs conduct AGC across the interconnected grid in a decentralised
fashion without using inter-TSO communication (ENTSO-E, 2004; Kundur, 1994). Two issues arise from
the perspective of control design here. First of all, the poor performance of traditional decentralised PI
based methods for AGC in modern power systems has been noted. The Nordic grid provides an illustrative
example, where with increased penetration of renewable sources, and under traditional PI frequency control,
there has been a noticeable increase in frequency violations in recent years (Ersdal, Imsland, and Uhlen,
2015). Secondly, it is well known that in highly interconnected networks decentralised control can result in
highly sub-optimal performance and can potentially be a source of instability (Venkat, 2006). This decrease
in performance arises as a result of ignoring the effects of interactions between interconnected areas when
formulating control actions. Thus, when designing AGC for MTDC grids, optimal controllers are of interest,
as well as those capable of considering the interactions between different subsystems when formulating control
inputs, as a means of improving control performance.

Model Predictive Control (MPC) (Maciejowski et al., 2002) algorithms enable the optimal control of a
system based on the use of state-space predictions. In recent years, there has been extensive research in
the field of distributed MPC (Maestre and Negenborn, 2014). Here a number of controllers, called control
agents, are responsible for the control of separate interconnected subsystems in a system, and through
inter-agent communication, it is possible for them to collectively achieve a performance that approximates
that of a centralised MPC controller. Additionally, in certain cases distributed MPC controllers can be
shown to provide stable control in situations where equivalent communication free decentralised control
causes system instability due to the presence of large interconnection coefficients between interconnected
subsystems (Venkat, 2006). Distributed MPC methods have been shown to improve controller performance
for AGC performance in AC networks (Kennel, Gorges, and Liu, 2013), and also in many other power
systems applications (Arnold, Negenborn, Andersson, and De Schutter, 2009; Hermans et al., 2012; Ma,
Chen, Liu, and Allgöwer, 2014; Moradzadeh, Boel, and Vandevelde, 2013). Previously a framework for the
use of MPC for the control of MTDC grids was proposed in Mc Namara, Meere, O’Donnell, and McLoone
(2015), where Centralised MPC (CMPC) and communication free decentralised Selfish MPC (SMPC) were
proposed for the control of MTDC grids. Given distributed control algorithms can outperform decentralised
communication free approaches, it is of interest to investigate distributed MPC for AGC in MTDC grids.

Many different schemes have been proposed for implementing distributed MPC (Maestre and Negen-
born, 2014). Non-iterative schemes, where agents exchange information only once per sample step, were
presented in Camponogara, Jia, Krogh, and Talukdar (2002), Liu, Chen, Muñoz de la Peña, and Christofides
(2010), and Hermans, Lazar, and Jokic (2010). There are also many iterative distributed MPC methods
that have been developed based on game-theoretic approaches that search for optimal equilibria (Sanchez,
Giovanini, Murillo, and Limache, 2011, chap. 4; Li, Zhang, and Zhu, 2005; Zhang and Li, 2007). Other
decomposition-coordination based iterative methods decompose the original control problem into several
smaller optimisation problems and use communication between agents to coordinate their solutions. Ex-
amples of decomposition methods include Jacobian decomposition (Venkat, 2006), Bender’s decomposition
(Moroş Andan, Bourdais, Dumur, and Buisson, 2010), and the Alternating Direction Method of Multipliers
(ADMOM) (Farokhi, Shames, and Johansson, 2014; Negenborn, De Schutter, and Hellendoorn, 2008).

A number of distributed MPC algorithms are based on the decomposition of a centralised augmented
Lagrangian MPC formulation into subproblems which are coordinated via the updating of the dual variables
(Farokhi et al., 2014; Giselsson et al., 2013; Negenborn et al., 2008). The Auxiliary Problem Principle (APP)
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can be used to decompose a centralised augmented Lagrangian problem such that it can be solved in parallel
via a number of subproblems in an iterative fashion (Royo, 2001). In Negenborn et al. (2008) a parallel
distributed MPC method was proposed based on the APP.

Typically in power systems, for applications such as AGC, state and input constraints are not explicitly
considered in control calculations. Usually an unconstrained control law is used for control, and approaches
such as input saturation are used to maintain constraints (Kundur, 1994). The use of fixed feedback gains in
turn allows the eigenvalues of the system to be determined, which can be used to find the system’s modes of
oscillation and their relationship with the various system states (assuming inputs and states are not subject
to inequality constraints). It is therefore important that eigenvalue analysis techniques are developed for
distributed MPC, in order to encourage their adoption in the power systems industry.

While a non-centralised control structure may be preferable for real-time control of power systems, in
practice it is still typical for there to be a coordinating control layer that analyses the oscillatory modes
in the system and that caters for issues such as stability and tuning. For instance, the European Network
of Transmission System Operators for Electricity (ENTSO-E) is the body responsible for coordinating the
actions of the various interconnected TSOs on the European electricity grid. Additionally, while control is
usually conducted over short times scales, i.e., seconds to minutes, the tuning of controllers can be carried
out over significantly longer periods such as hours or days. Therefore, it is reasonable to expect that modal
analysis of the closed-loop system could be carried out at a central hub.

Unconstrained methods for modal analysis of distributed MPC have been developed previously (Li et
al., 2005; Vaccarini et al., 2009; Zhang and Li, 2007; Zheng et al., 2013). Typically, while these techniques
invoke the use of constant feedback gains coupled with centralised eigenvalue analysis, the derivation of
the controllers relies on game theory or other non-Lagrangian optimisation formulations. There are several
advantages to using decomposed Lagrangian techniques for distributed control. Many control practitioners
are already familiar with Lagrangian optimisation theory and so would already be familiar with the theory
behind the formulation of these distributed MPC approaches, which in turn would encourage the adoption of
these techniques in industry. There is a large body of knowledge related to solving decentralised augmented
Lagrangian problems for a range of communication topologies, thus giving practitioners much flexibility
in how the control can be distributed. Additionally, significant research has been carried out to ensure
efficient updating of the Lagrange multipliers, which in turn encourages an efficient implementation of the
decentralised optimisation routines (Bertsekas and Tsitsikilis, 1989; Boyd and Vandenberghe, 2009; Castillo,
Minguez, Conejo, and Garcia-Bertrand, 2006; Censor, 1997).

To summarise, the novel contributions of this paper are as follows:

• The application of distributed MPC for coordinating AGC in AC areas connected to MTDC grids.

• The development of a centralised eigenvalue based analysis for a closed-loop parallel Non-Cooperative
distributed MPC (NCdMPC) approach, which allows for modal analysis of the MTDC system.

With regard to the modal analysis technique, the particular application here is a parallel distributed MPC
technique based on the APP, but the proposed methodology can be used with any distributed MPC tech-
nique based on a decomposed augmented Lagrangian approach for eigenvalue analysis. By extension this
eigenvalue analysis can be used to provide conditions for convergence and stability. The accuracy of the
eigenvalue analysis is demonstrated using a 5 area Multi-Terminal HVDC (MTDC) testbed, in which AGC
is implemented to share power between AC areas over the DC grid.

The remainder of the paper is organised as follows. The modelling of the AC areas and MTDC grid
are given in Section 2. In Section 3 MPC is first introduced and then in Section 4 the derivation of the
APP-based NCdMPC method is explained. In Section 5 the eigenvalue-based convergence and stability
conditions of the algorithm are presented. The formulation of MPC for AGC in MTDC connected AC areas
is described in Section 6. The technique is then tested in simulations studies on the 5 area MTDC testbed
in Section 7. Conclusions and future work are presented in Section 8.

2 Modelling for multi-terminal HVDC grids

An MTDC grid is composed of a Direct Current (DC) grid and N Alternating Current (AC) areas, each
with a converter that serves as an interface for transferring power to and from the DC grid, as in Fig. 1
(Sarlette, Dai, Phulpin, and Ernst, 2012). Each AC area i, for i = 1, 2, . . . , n, is governed by the following
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Figure 1: A multi-terminal DC grid connecting N = 5AC areas via converters (Sarlette et al., 2012).

dynamic equations:

Ji
d

dt
fi(t) =

Pmi(t)− Pli(t)− P dc
i (t)

4π2fi(t)
−Dgi

(
fi(t)− f̄i

)
, (1)

τmi
d

dt
Pmi(t) = P 0

mi(t)− Pmi(t)−
Pnom,i

σi

fi(t)− f̄i
f̄i

, (2)

P1i(t) = P 0
li (t)

(
1 +Dli

(
fi(t)− f̄i

))
, (3)

where Ji is the moment of inertia of aggregated area i (kgm2), fi(t) is the frequency (Hz), Pmi(t) is the
mechanical power (W), Pli(t) is the load disturbance considering frequency effects (W), P dc

i (t) is the DC
power AC area i is injecting into the DC grid (W), Dgi is the damping factor (Ws2), τmi is the time constant
for power adjustment (s), P 0

mi(t) is the reference mechanical power that is manipulated using AGC (W),
σi is the generator droop (dimensionless), P 0

li(t) is the nominal load disturbance at bus i( W), and Dli is
the sensitivity of Pli(t) to deviations of the frequency from the nominal operating frequency f̄i (Hz−1 or s)
(Kundur, 1994). In this paper, for a general variable b, b̄ denotes the operating point of this variable at
equilibrium, e.g., f̄i denotes the nominal value of fi. It should be noted that while this paper considers only
one HVDC point of connection in each AC area, it is possible to extend the approach to the case in which
there are multiple points of connection to the DC grid. This can be done by replacing the −P dc

i (t) term in
(1) with −

∑ndci

j=1 P
dc
ij (t), where P dc

ij denotes the power injected at the j-th point of connection to the DC
grid in the i-th AC area, where there are ndci points of connection to the DC grid in the ith AC area.

A positive P dc
i (t) indicates that area i is injecting P dc

i W into the HVDC grid, and a negative P dc
i (t)

indicates area i is receiving P dc
i W from the HVDC grid. Denoting V dc

i (t) as the voltage at the node in the
DC grid connected to AC area i, it follows that

P dc
i (t) =

N∑
j=1

V dc
i (t)

(
V dc
i (t)− V dc

j (t)
)

Rij
, (4)

where Rij = Rji is the resistance in the HVDC line connecting areas i and j, and Rij = ∞ if areas i and j
are not connected by a DC line.

The voltage at the node in the DC grid connected to AC area i is manipulated as follows:

vi(t) = γixfi(t) + V os
dci(t) , (5)

where vi(t) is the DC input voltage deviation at the node in the DC grid connected to AC area i (vi(t) =
V dc
i (t)− V̄ dc

i ), γi is the DC voltage Primary Frequency Control (PFC) gain of the i-th agent, the state xfi(t)
is the frequency deviation of area i (xfi(t) = fi(t) − f̄i), and V os

dci(t) is a time varying voltage offset signal.
The first term on the right-hand side of the equation is a PFC term that acts to alleviate the worst effects
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of disturbances at a milliseconds level, using a proportional gain (Sarlette et al., 2012). As this proportional
controller will result in an error offset, it is necessary to employ secondary control over longer time scales in
order to eliminate these system errors over longer time periods. Thus the secondary level AGC is employed
to eliminate these long term disturbances.

Here, the DC voltage (and thus the DC power) is manipulated to regulate the frequency in each AC area
about a nominal DC power level. In this paper it is assumed that the dynamics of the converter and DC
lines occur at time scales significantly faster than those that affect the primary and secondary frequency
control of the AC system, as in Sarlette et al. (2012). Thus these faster dynamics are neglected and it is
assumed that Vdci can be treated as an instantaneous input to the system. In reality the Vdci input would be
sent as a setpoint to an inner loop voltage controller in the HVDC converter (Chaudhuri et al., 2014; Cole
et al., 2010).

The controller in (5) operates about a nominal voltage V̄ dc
i . Changing the DC line power to operate

about a new operating point requires the calculation of updated V̄ dc
i values using a load flow calculation

based on the desired DC line powers. This would be necessary, for example, in cases where power markets
determine the power flows on DC grids. However, in this paper V̄ dc

i is taken as constant for the duration
of each simulation. It should be noted that there is a range of other well established primary DC voltage
controllers, including those that explicitly consider a DC power or current setpoint; see for example Beerten,
Cole, and Belmans (2014), Chaudhuri et al. (2014), and Zhang, Harnefors, and Nee (2011).

In order to control the DC voltages using MPC, V os
dci(t) is given the following user defined dynamic

response:
d

dt
V os
dci(t) =

1

τdci

(
V 0
dci(t)− V os

dci(t)
)

, (6)

where V 0
dci(t) is the reference signal for the secondary DC voltage offset control, and τdci is a time constant

in s that is specified by the user in order to determine the speed of the response of V os
dci(t) (Mc Namara et

al., 2015). This method of applying voltage offsets ensures that the voltages are applied to the system in
a smooth manner, which is desirable both in terms of improving prediction accuracy, and avoiding sudden
step jumps in the DC power delivery. The reference signals P 0

mi(t) and V 0
dci(t) are then manipulated using

MPC for the purposes of AGC.

3 Model predictive control

In this section, the centralised implementation of an MPC controller is first outlined, and then in the
following section the distributed APP-based MPC controller is discussed. Consider a system consisting of
n non-overlapping subsystems. A discrete-time, linear, time-invariant state-space model for this system is
given by

x(k + 1) = Ax(k) +Bu(k) (7)

y(k) = Cx(k) , (8)

where x(k) =
[
xT
1 (k) . . .x

T
n (k)

]T
, u(k) =

[
uT
1 (k) . . .u

T
m(k)

]T
, y(k) =

[
yT
1 (k) . . .y

T
p (k)

]T
, and xa(k), ua(k),

and ya(k) are the states, inputs, and outputs of subsystem a at sample step k, respectively. Matrices A, B,
and C are the relevant state-space matrices. An incremental state space model is used for control in order
to ensure integral action:

xaug(k + 1) = Âxaug(k) + B̂∆u(k) , (9)

y(k + 1) = Ĉxaug(k + 1) , (10)

where ∆p(k) = p(k) − p(k − 1) for a general vector p, xaug(k) =
[
∆xT(k)xT(k)

]T
is the augmented state

vector, and Â, B̂, and Ĉ are the incremental state-space matrices.
To simplify notation, the prediction vector, over a horizon H is first introduced. For a general vector p,

its prediction vector is p̃(k) =
[
pT(k) . . .pT(k +H − 1)

]T
. State and output predictions over the prediction

horizon are then determined as follows:

x̃aug(k + 1) = Âfxaug(k) + B̂f∆ũ(k) (11)

ỹaug(k + 1) = Ĉf x̃aug(k + 1) , (12)
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where Âf , B̂f , and Ĉf are the state-space prediction matrices. The derivation of these matrices is well
established in the literature (Maciejowski et al., 2002).

MPC problems are constructed to fulfil control objectives for a system based on knowledge of x(k). A
cost function, J(x(k),∆ũ(k)) (where J(k) will be used henceforth for compactness), is designed so as to
embody the system’s objectives. Typically this cost function is chosen to be a quadratic function in terms
of ∆ũ and in this paper the cost function takes the following form:

J(k) = ẽTQeẽ+∆ũTQu∆ũ , (13)

where the (k + 1) dependency is dropped from ẽ(k + 1), and the (k) dependency is dropped from ∆ũ(k) in

(13) for compactness, the error vector, e(k) =
[
eT1 (k) . . . e

T
n (k)

]T
, where ea(k) = ya(k) − ra(k), and ra(k)

are the reference signals of subsystem a at sample step k. The weighting matrices Qe and Qu determine the
relative importance of minimising errors, the incremental changes in states, and the incremental changes in
inputs, respectively.

The centralised MPC problem that is solved at each sample step is then given by

∆ũ(k) = min
∆ũ(k)∈U

J(k) , (14)

where U defines the set of constraints for ∆ũ(k). Here only ∆u(k) is applied to the system, and the
optimisation process is conducted at each sample step.

As discussed in the Introduction, centralised implementations of AGC may not be feasible given the
traditionally decentralised structure of frequency control. To circumvent these issues, MPC can be performed
in a distributed fashion, allowing individual areas the autonomy to perform AGC locally, while coordinating
their responses with other interconnected subsystems. The distributed MPC approach used in this paper is
described in the next section.

4 Distributed MPC

The distributed MPC method will now be described and the links between this approach and the centralised
MPC approach will be discussed. The centralised state-space model, given by (7) and (8), is expressed in
its equivalent distributed form by

xa(k + 1) = Aaxa(k) +Baua(k) +Vava(k) (15)

ya(k) = Caxa(k) , (16)

where xa(k) are the states of subsystem a, ua(k) are subsystem inputs, ya(k) are subsystem outputs, and
va(k) are external inputs from other subsystems that influence subsystem a at sample step k, for a = 1, . . . , n.
The matrices Aa, Ba, Va, and Ca are the relevant state-space matrices.

It should be noted here that the external input variables va are a modelling necessity from a distributed
modelling point of view. From a centralised MPC modelling perspective the variables va are simply a subset
of the centralised state vector x, originating from some subsystems j ̸= a, that influence the states xa. Thus
these variables serve as means of representing the interconnection between the states of subsystem a and the
states of other subsystems.

An incremental state-space model is used for control in order to ensure integral action:

xaug
a (k + 1) = Âax

aug
a (k) + B̂a∆ua(k) + V̂a∆va(k) (17)

ya(k + 1) = Ĉax
aug
a (k + 1) , (18)

where xaug
a (k) =

[
∆xT

a (k)x
T
a (k)

]T
is the augmented state vector of the a-th subsystem, and Âa, B̂a, V̂a,

and Ĉa are the incremental state space matrices for subsystem a.
State and output predictions for subsystem a over the prediction horizon are then determined using (17)

and (18) as follows:

x̃aug
a (k + 1) = Âf

ax
aug
a (k) + B̂f

a∆ũa(k) + V̂f
a∆ṽa(k) (19)

ỹaug
a (k) = Ĉf

ax̃
aug
a (k) , (20)

where Âf
a, B̂

f
a, V̂

f
a, and Ĉf

a are the incremental state-space prediction matrices, derived using the same
techniques for state space prediction as in the centralised case.
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Figure 2: Interconnecting inputs and outputs for 3 connected subsystems.

Non-cooperative distributed MPC based on the APP, which was originally devised in Negenborn et al.
(2008), is now described. This is formed first by deriving a centralised augmented Lagrangian formulation of
the MPC problem in terms of the distributed state-space representation of the system given by (17) and (18).
Having shown how this centralised augmented Lagrangian problem would be solved, it is then illustrated
how this problem is decomposed into subproblems using the APP, which in turn can be solved in parallel in
a distributed fashion.

Let agent j ∈ Na be connected to agent a, where Na is the set of agents connected to agent a by a
common variable, and a /∈ Na. The interconnecting input vector, win

ja, is defined as the vector of inputs to

control problem a from agent j ∈ N in
a , where N in

a ⊆ Na is the ordered set of agents connected to agent a
by an interconnecting input. Likewise, the interconnecting output vector wout

ja is defined as the vector of
outputs to control problem j ∈ N out

a from agent a, where N out
a ⊆ Na is the ordered set of agents connected

to agent a by an interconnecting output. As an illustration, interconnecting inputs and outputs for a 3 agent
system are shown in Fig. 2.

The vector of all interconnecting inputs win
a (k), and all interconnecting outputs wout

a (k) of the control
problem of agent a are typically defined as follows:

win
a (k) =

[
winT

N in
a {1}a(k) . . . w

inT
N in

a {ma}a(k)
]T

= va(k) ,

wout
a (k) =

[
wout

N out
a {1}a(k) . . . w

outT
N outT

a {qa}a(k)
]T

= Kout
a xa(k) , (21)

where N in
a {i} denotes the i-th element of N in

a , and N out
a {i} denotes the i-th element of N out

a . There are
ma agents connected to agent a by an interconnecting input, qa agents are connected to agent a by an
interconnecting output, and Kout

a is a matrix of zeros and ones, used to select the states in xa(k) that
connect agent a to other subnetworks.

For a system of n subsystems, the overall MPC problem can be stated as follows:

θ∗(k) = argmin
θ(k)

n∑
a=1

J local
a (k) , (22)

subject to the following equality constraints over the prediction horizon:

w̃in
ja(k + 1) = w̃out

aj (k + 1), ∀j ∈ Na, ∀a ∈ {1, . . . , n} , (23)

where θ(k) =
[
∆ũT(k),∆w̃inT(k + 1)

]T
, with ∆ũ(k) =

[
∆ũT

1 (k), . . . ,∆ũT
n (k)

]T
,

∆w̃in(k) =
[
∆w̃inT

1 (k), . . . ,∆w̃inT
n (k)

]T
, and J local

a (k) represents the local control goals for subsystem a.
The vector w̃out

aj (k + 1) is dependent on ∆ũj(k) and w̃in
j (k) as follows:

w̃out
aj (k + 1) = Kaj

(
Âf

jx
aug
j (k) + B̂f

j∆ũj(k) + V̂f
j∆w̃in

j (k)
)

(24)

where Kaj is a matrix of zeros, with entries of 1 such that the equality (24) holds.
It should be noted here that variables ∆w̃in(k + 1) are added to the optimisation problem as duplicate

variables of the interconnecting flows between subproblems. These allow a subsystem to optimise the value of
the interconnecting flows that it would like to receive from connected subsystems over the prediction horizon.
Equality constraint (23) ensures that the interconnecting flows between areas over the prediction horizon
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are equal, which has the effect of improving the overall control performance of the system. Furthermore, it
is the addition of these local variables to the optimisation problem that allows the optimisation problem to
be distributed amongst the individual subproblems once the APP is applied.

An augmented Lagrangian formulation can be derived from (22) to incorporate the equality constraints
(23) into the cost function. Augmented Lagrangian formulations iteratively solve, first, a primal problem
and then update the dual variables related to the active constraints. The primal centralised problem solved
at each augmented Lagrangian iteration l, for sample step k, is given as follows:

θ∗(k, l) = argmin
θ(k)

n∑
a=1

(
J local
a (k, l) +

∑
j∈Na

(
λ̃inT
ja (k + 1, l)

(
w̃in

ja(k + 1, l)− w̃out
aj (k + 1, l)

)
+

c

2

∥∥w̃in
ja(k + 1, l)− w̃out

aj (k + 1, l)
∥∥2
2

))
(25)

where λ̃in
ja(k + 1, l) is the vector of Lagrange multipliers associated with the equality constraints placed on

the variables connecting agents a and j over the prediction horizon, at augmented Lagrangian iteration l
and sample step k.

In this paper, J local
a (k, l) is given by

J local
a (k, l) = ẽTa (k + 1, l)Qaẽa(k + 1, l) + ∆ũT

a (k, l)Ra∆ũa(k, l) (26)

where Qa and Ra are agent a’s local MPC weights, and ea(k + 1, l) = ya(k + 1, l)− ra(k + 1) is the vector
of predicted tracking errors in the MPC problem at iteration l of the distributed MPC cycle for sample step
k + 1, where ya(k + 1, l) are subsystem a’s outputs and ra(k + 1) is a vector of subsystem a’s reference
signals.

After solving (25), the Lagrange multipliers are updated as follows for iteration l + 1 :

λ̃in
ja(l + 1) = λ̃in

ja(l) + c
(
w̃in

ja(l)− w̃out
aj (l)

)
, (27)

where the (k + 1) dependency is dropped from all variables above for compactness. The following is then
conducted in an iterative fashion; (25) is first solved, followed by the updating of the Lagrange multipliers,
as in (27). This process is repeated until the following termination condition is met:∥∥∥λ̃in

ja(k + 1, l + 1)− λ̃in
ja(k + 1, l)

∥∥∥
∞

≤ ϵ ∀j ∈ Na, ∀a ∈ {1, . . . , n} , (28)

where ϵ is a small tolerance and ∥ · ∥∞ denotes the infinity norm. The infinity norm is used here so that the
Lagrange multipliers of all interconnecting inputs agree within a specified tolerance. It should be noted that
the centralised formulation presented here is formed in the same way as in Negenborn et al. (2008), but in
the current paper the only constraints that are explicitly considered are the equality constraints placed on
the interconnecting variables.

Problem (25) is distributed across the agents using the Auxiliary Problem Principle (Royo, 2001). The
APP works by allowing agents to solve an approximation of the centralised augmented Lagrangian problem
in a parallel fashion. As the APP is closely related to the ADMOM, it is shown first how the ADMOM
distributes the solving of augmented Lagrangians exactly. Then it can be seen that the APP is very similar
to the ADMOM in formulation, with the main difference being the addition of an extra quadratic term which
encourages convergence between iterations and allows the problem to be solved in parallel. Further details
on the relationship between the ADMOM and APP can be found in Royo (2001).

Take the optimisation problem:

x =
[
xT
1 ,x

T
2

]T
=arg min

x1,x2

(f1 (x1) + f2 (x2))

such that x1 = x2 . (29)

The unconstrained augmented Lagrangian form of this equation at iteration l of the augmented Lagrangian
optimisation is given as

x(l) = arg min
x1,x2

f1 (x1(l)) + f2 (x2(l)) + λT(l) (x1(l)− x2(l)) +
c

2
∥x1(l)− x2(l)∥22 (30)

where x(l) =
[
xT
1 (l),x

T
2 (l)

]T
, λ(l) are the Lagrange multipliers at iteration l of the augmented Lagrangian

optimisation. Using the ADMOM (30) is solved in a serial fashion for iteration l of the augmented Lagrangian
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optimisation as follows:

x1(l) = arg min
x1(l)

f1 (x1(l)) + λT(l)x1(l) +
c

2
∥x1(l)− x2(l − 1)∥22

x2(l) = arg min
x2(l)

f2 (x2(l))− λT(l)x2(l) +
c

2
∥x1(l)− x2(l)∥22 . (31)

In the above each subproblem solves for its local variables keeping the most recent updates of variables from
the connected subproblem constant. Afterwards each subproblem then communicates its optimised variable
value to the connected subproblem. The second quadratic term in the objective function seeks to achieve
consensus on the value of the variables connecting the two subproblems.

The APP has a similar structure in its final form to the ADMOM, where it solves the primal augmented
Lagrangian problem in a parallel distributed fashion as follows:

x1(l) = arg min
x1(l)

f1 (x1(l)) + λT(l)x1(l) +
c

2
∥x1(l)− x2(l − 1)∥22 +

b− c

2
∥x1(l)− x1(l − 1)∥22

x2(l) = arg min
x2(l)

f2 (x2(l))− λT(l)x2(l) +
c

2
∥x2(l)− x1(l − 1)∥22 +

b− c

2
∥x2(l)− x2(l − 1)∥22 (32)

where b ≥ 2c. It can be seen that the APP now adds a third quadratic cost to the objective function which
encourages subproblems at iteration l to converge on the value for their local interconnecting variables based
on the value from iteration l − 1.

Thus applying the APP to solve the primal augmented Lagrangian MPC problem (30), the optimisation
problem of agent a, for iteration l of the distributed MPC cycle, at sample step k is

θ∗
a(k, l) = arg min

θa(k,l)

(
J local
a (k, l) + J inter

a (k, l)
)

, (33)

where θa(k, l) =
[
∆ũT

a (k, l),∆w̃inT
a (k + 1, l)

]T
.

The interconnecting cost for agent a, J inter
a (k, l), is given by

J inter
a (k, l) =

∑
j∈Na

J inter
ja (k, l) , (34)

and J inter
ja (k, l) is the cost associated with the inter-agent coordination with agent j given by

J inter
ja (k, l) =

[
λ̃in
ja(k + 1, l)

−λ̃in
aj(k + 1, l)

]T [
w̃in

ja(k + 1, l)

w̃out
ja (k + 1, l)

]
+

c

2

∥∥∥∥∥
[

w̃out
ja (k + 1, l)− w̃in

aj(k + 1, l − 1)

w̃in
ja(k + 1, l)− w̃out

aj (k + 1, l − 1)

]∥∥∥∥∥
2

2

+
b− c

2

∥∥∥∥∥
[

w̃out
ja (k + 1, l)− w̃out

ja (k + 1, l − 1)

w̃in
ja(k + 1, l)− w̃in

ja(k + 1, l − 1)

]∥∥∥∥∥
2

2

. (35)

As mentioned previously, it is useful, in power systems, to be able to determine the oscillatory modes of
the closed-loop system under NCdMPC. In the next section it will be shown how these modes can be found.

5 Modal analysis of non-cooperative distributed MPC including
convergence and stability conditions

As the APP results in a decomposition of the centralised MPC problem given in (25), the closed-loop modes
that would be given by using (25), will be equal to the modes of operation of the system under NCdMPC
using the APP (or any other Lagrangian decomposition technique). Thus a closed-loop expression is derived
for (25), in order to analyse the behaviour of the system under NCdMPC.

Firstly, it is desired to derive the optimal value of θ(k, l) at iteration l and sample step k of the centralised
augmented Lagrangian problem (25). Thus in the following paragraphs (25) is expressed in matrix form
and manipulated so as to express (25) as a quadratic optimisation problem. The interconnecting inputs
and outputs and the Lagrange multipliers are grouped into the terms w̃in(k, l), w̃out(k, l), and λ̃(k + 1, l),

9



respectively, where

w̃in(k, l) =



w̃in
N in

1 {1}1(k, l)

w̃in
N in

1 {2}1(k, l)

...

w̃in
N in

1 {m1}1(k, l)

. . . . . .
...

. . . . . .

w̃in
N in

n {1}n(k, l)

w̃in
N in

n {2}n(k, l)
...

w̃N in
n {mn}n(k, l)



, (36)

w̃out(k, l) =



w̃out
N out

1 {1}1(k, l)

w̃out
N out

1 {2}1(k, l)

...

w̃out
N out

1 {q1}1(k, l)

. . . . . .
...

. . . . . .

w̃out
N out

n {1}n(k, l)

w̃out
N out

n {2}n(k, l)
...

w̃out
N out

n {qn}n(k, l)



, (37)

λ̃(k + 1, l) =



λ̃in
N in

1 {1}1(k + 1, l)

λ̃in
N in

1 {2}1(k + 1, l)

...

λ̃in
N in

1 {m1}1(k + 1, l)

. . . . . .
...

. . . . . .

λ̃in
N in

n {1}n(k + 1, l)

λ̃in
N in

n {2}n(k + 1, l)
...

λ̃in
N in

n {mn}n(k + 1, l)



, (38)

where agent a has ma interconnecting inputs and qa interconnecting outputs.
The term J local(k, l) is used to represent the sum of the local cost functions in (25), i.e.,

J local(k, l) =

n∑
a=1

J local
a (k, l) . (39)

Using the incremental prediction models (19) and (20), J local(k, l) is represented using the various system
variables as follows:

J local(k, l) = ẽT(k + 1, l)Qẽ(k + 1, l) + ∆ũT(k, l)R∆ũ(k, l) , (40)
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where ẽ(k + 1, l) = ỹ(k + 1, l)− r̃(k + 1), with outputs y(k) =
[
yT
1 (k),y

T
2 (k), . . . ,y

T
n (k)

]T
, setpoints r̃(k) =[

r̃T1 (k), . . . , r̃
T
n (k)

]T
, Q = diag (Q1, . . . ,Qn), R = diag (R1, . . . ,Rn), and ỹ(k + 1, l) = Kcχ̃

aug (k + 1, l) =

Kc

(
Âfxaug(k) + B̂f∆ũ(k, l) + V̂f

[
∆vT(k),∆w̃inT(k + 1, l)

]T
. The state of the entire system is xaug(k) =[

xaugT
1 (k), . . . ,xaug T

n (k)
]T

, the system’s predicted incremental inputs ∆ũ(k, l) =
[
∆ũT

1 (k, l), . . . ,∆ũT
n (k, l)

]T
,

the vector ∆v(k) =
[
∆vT

1 (k), . . . ,∆vT
n (k)

]T
is a column vector of the incremental changes in the dif-

ferent subsystems’ interconnecting inputs at sample step k, and ∆w̃in(k + 1, l) =
[
∆w̃inT

1 (k + 1, l), . . . ,

∆w̃inT
n (k + 1, l)

]T
is a column vector of the incremental changes in the predicted interconnecting inputs

of each subsystem over the prediction horizon, and their associated prediction matrices are given by Âf =

diag
(
Âf

1, . . . , Â
f
n

)
, B̂f = diag

(
B̂f

1, . . . , B̂
f
n

)
, and V̂f = diag

(
V̂f

1, . . . , V̂
f
n

)
. Here, Kc is a matrix of zeros

and ones, with entries of 1 in the positions that select the outputs ỹ(k + 1, l) from the augmented state
prediction vector x̃aug(k + 1, l).

Let ỹ(k + 1, l) = KcDs(k) + KcZθ(k, l), with D =
[
Âf , V̂f

v

]
and vector s(k) =

[
xaugT(k),∆vT(k)

]T
.

Given the matrix V̂f =
[
Vf

V, V̂
f
win

]
, the matrix V̂f

v determines the effect of ∆v(k) on x̃aug(k + 1, l). The

matrix V̂f
w in similarly determines the effect of ∆w̃in(k + 1, l) on x̃aug(k + 1, l). Note that KcDs(k) is

fixed during the MPC iterations at each sample step. The latter group of terms KcZθ(k, l) varies, via the

manipulation of θ(k, l), where Z =
[
B̂f , V̂f

win

]
.

The interconnecting inputs are given by w̃in(k, l) = Kvs(k) +Kwθ(k, l) where Kv is used to select the
relevant interconnecting variables from s(k), and Kw selects the relevant incremental interconnecting inputs
from θ(k, l). The interconnecting outputs are given by w̃out(k, l) = KI(Ds(k) + Zθ(k, l)), where KI is used
to pick out the relevant outputs. The term w̃in(k, l)− w̃out(k, l) which is used when seeking equality on all
pairs of interconnecting inputs and outputs is now given by

w̃in(k, l)− w̃out(k, l) = Kvs(k) +Kwθ(k, l)−Kl(Ds(k) + Zθ(k, l))

= (Kv −KlD) s(k) + (Kw −KlZ)θ(k, l)

= Kss(k) +Kθθ(k, l)

where Ks = Kv −KlD and Kθ = Kw −KIZ.
Problem (25) can now be stated as

θ∗(k, l) = arg min
θ(k,l)

ETQE+ θT(k, l)Rθθ(k, l)

+ λ̃T(k + 1, l) (Kss(k) +Kθθ(k, l))

+
c

2
(Kss(k) +Kθθ(k, l))

T
(Kss(k) +Kθθ(k, l)) (41)

where E = (Ps(k) +Gθ(k, l)− r̃(k+1)), P = KcD, G = KcZ, and Rθ = diag
(
R,0 (N−1)nv×(N−1)nv) with

nv being the size of v.
With some matrix manipulation, it is possible to represent (41) in the following quadratic form:

θ∗(k, l) = arg min
θ(k,l)

Jquad(k, l) = arg min
θ(k,l)

θT(k, l)Hθ(k, l) + θT(k, l)f(k, l) + ϑ(k) . (42)

Here,

H = GTQG+Rθ +
c

2
KT

θ Kθ , (43)

f(k, l) = 2GTQPs(k)− 2GTQr̃(k + 1) +KT
θ λ̃(k + 1, l) + cKT

θ Kss(k) , (44)

ϑ(k) = sT(k)PTQPs(k)− 2r̃T(k + 1)QPs(k) + λ̃T(k + 1, l)Kss(k)

+
c

2
sT(k)KT

s Kss(k) + r̃T(k + 1)Qr̃(k + 1) (45)

where ϑ(k) is a scalar that does not depend on θ(k, l).
The value of θ∗(k, l) at sample step k and iteration l of the centralised augmented Lagrangian problem

is found by setting ∂
∂θ(k,l)J

quad(k, l) = 0, which yields

θ∗(k, l) = −1

2
H−1f(k, l) , (46)
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where H is a positive definite.
After θ∗(k, l) is found, the Lagrange multipliers are calculated as follows:

λ̃(k + 1, l + 1) = λ̃(k + 1, l) + c
(
w̃in(k, l)− w̃out(k, l)

)
= λ̃(k + 1, l) + c (Kss(k) +Kθθ

∗(k, l))

= λ̃(k + 1, l) + cKss(k)−
c

2
KθH

−1
(
2GTQPs(k)− 2GTQr̃(k + 1)

+KT
θ λ̃(k + 1, l) + cKT

θ Kss(k)
)

=
(
Inλ×nλ

− c

2
KθH

−1KT
θ

)
λ̃(k + 1, l) +Cλ(k) (47)

where nλ is the length of vector λ̃(k + 1, l), and Cλ(k) = cKss(k)− 1
2cKθH

−1
(
2GTQ(Ps(k)− r̃(k + 1)) +

cKT
θ Kss(k)

)
is a constant over the course of the optimisation at sample step k.

The vector of eigenvalues related to the convergence of the NCdMPC algorithm is then given by

ρc = eig
(
Inλ×nλ

− c

2
KθH

−1KT
θ

)
, (48)

where KθH
−1KT

θ is non-singular. The convergence condition for the NCdMPC algorithm is then

∥ρc∥∞ < 1 . (49)

Upon convergence of the augmented Lagrangian iterations λ̃(k + 1, l + 1) → λ̃(k + 1, l) = λ̃∗(k + 1), where
λ̃∗(k + 1) is the optimal Lagrange multiplier vector at sample step k. Eq. (47) then yields

λ̃∗(k + 1) =
(
Inλ×nλ

− c

2
KθH

−1KT
θ

)
λ̃∗(k + 1) +Cλ(k)

λ̃∗(k + 1) =
2

c

(
KθH

−1KT
θ

)−1
Cλ(k) . (50)

Substituting λ̃∗(k + 1) back into (46) and rearranging the matrices gives

θ∗(k) = −1

2
H−1f(k, l) = Fr̃(k + 1)−Ws(k) (51)

where

F = −H−1
(
KT

θ

(
KθH

−1KT
θ

)−1
KθH

−1GTQ−GTQ
)

, (52)

W = −H−1
(
KT

θ

(
KθH

−1KT
θ

)−1
KθH

−1GTQP−GTQP− c

2
KT

θ Ks

−KT
θ

(
KθH

−1KT
θ

)−1
Ks +

c

2
KT

θ

(
KθH

−1KT
θ

)−1
KθH

−1KT
θ Ks

)
. (53)

At this stage it is noted that the interconnecting input variables ∆v(k) are simply a subset of xaug(k).
Thus the following is used to express s(k) in terms of xaug(k) for the purpose of deriving closed-loop equations
in terms of xaug(k):

s(k) =

[
xaug(k)

∆v(k)

]
=

[
Inx×nx

L

]
xaug(k) = rxaug(k) , (54)

where the matrix L selects ∆v(k) from xaug(k).
The optimal input applied to the system is

∆u∗(k) = Sθ∗(k) , (55)

where S selects the optimal system inputs at sample step k from θ∗(k).
The discrete-time state-space equation for the whole system is then

xaug(k + 1) = Ds(k) +B∆u∗(k)

= (DΥ− ZSWY)xaug(k) +BSFr̃(k + 1) (56)
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The vector of the closed-loop eigenvalues of the system under NCdMPC, ρs, is given by

ρs = eig(DΥ− ZSWY) , (57)

and the conditions for the closed-loop stability of the system are then given by

∥ρs∥∞ < 1 . (58)

Using (50) and (58) it is possible to tune the distributed MPC controller in order to ensure that the agents
converge on a final decision each sample step, and that the control itself is stable. Additionally, analysis of
the closed-loop eigenvalues of the system using (57) can allow practitioners to determine what the closed-loop
modes of oscillation will be in the system under closed-loop distributed MPC.

6 MPC formulation for AGC in MTDC connected AC systems

A methodology similar to that given in Mc Namara et al. (2015) for the application of MPC to AGC in
MTDC connected AC systems is used in this paper. To avoid the significant increase in communication
overhead that would arise from having to share DC power measurement information between AC areas,
here, instead the DC powers are estimated from the frequencies and voltage offsets. This is described in the
following. The objective function for area i at sample step k,Ψi(k), is given by

Ψi(k) = Qfix
2
fi(k + 1) +RPi∆u2

Pi(k) +Rvi∆u2
vi(k) , (59)

where uPi(k) = P 0
mi(k) − P̄ 0

mi and uvi(k) = V 0
dci(k) − V̄ 0

dci. The parameters Qfi, RPi, and Rvi are weights
that determine the relative importance of minimising x2

fi(k + 1), ∆u2
Pi(k), and ∆u2

vi(k), respectively. The
first 3 terms in (59) are concerned with fulfilling the power system objectives of minimising the weighted
sum of the frequency deviations about f̄i, the mechanical power offset control effort, and the DC voltage
offset control effort, respectively.

In order to develop a linear model for use in state-space prediction, it is necessary to linearise equations
(1) and (4), in order to generate state predictions. These linearisations are given as follows, as in Dai (2011):

d

dt
fi(t) =

Pmi(t)− Pli(t)− P dc
i (t)

4π2f̄iJi
− Dgi

Ji

(
fi(t)− f̄i

)
(60)

zi(t) =

N∑
j=1

V̄ dc
i (vi(t)− vj(t))

Rij

=
N∑
j=1

V̄ dc
i

(
V os
dci(t) + γixfii(t)−

(
V os
dcj(t) + γjxfj(t)

))
Rij

(61)

where zi(t) = P dc
i (t)− P̄ dc

i .
The state-space equations (2), (6), and (60) are then used to describe the dynamics of the system about

an operating point where the state of agent i is given by xi = [xfi, xPi, xvi]
T
. Here, xPi = Pmi(t) − P̄mi

and xvii = V os
dci(t) − V̄ os

dci are the mechanical power and DC voltage deviations about the operating point,
respectively. Agents are assumed to be capable of communicating with other agents if the AC areas they
control are connected via a HVDC line. The interconnecting inputs to agent i are given by win

ji = [xfj, xvj]
T
,

for j ∈ Ni.
The input to agent i is given by ui = [uPi, uvii]

T
, and its output by yi = Cixi, where Ci = [1, 0, 0]. The

matrices Ai, Bi, and Vi can then be constructed as in (15), using (2), (6), and (60). In turn the state space

can be framed in terms of incremental inputs ∆ui = [∆uPi,∆uvi]
T
, as in (17) and (18), and the state-space

predictions can then be made using (19) and (20). Each subsystem is then allocated its own control agent.
Using state-space predictions each agent generates a local cost function:

J local
i (k) =

k+H−1∑
p=k

Ψi(p) . (62)

This cost function can be described in matrix form as in (26), where Qi = diag (Qii, . . . ,Qii), Ri =
diag (Rii, . . . ,Rii) , Qii = diag (0, 0, 0, Qfi, 0, 0), and Rii = diag (RPi, Rvi). To form the interconnection cost
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Table 1: AC and DC grid parameters (Dai, 2011).

AC grid parameters

Area 1 2 3 4 5

fnom (Hz) 50 50 50 50 50

P 0
m (MW) 50 80 50 30 80

Pnom (MW) 50 80 50 30 80

J (kgm2) 2026 6485 6078 2432 4863

Dg (W s2) 48.4 146.3 140 54.9 95.1

Tsm (s) 1.5 2.0 2.5 2 1.8

P 0
1 (MW) 100.42 59.58 40.31 49.70 39.59

Dl (Hz−1) 0.01 0.01 0.01 0.01 0.01

V̄ dc (kV) 99.17 99.6 99.73 99.59 100

P̄ dc (MW) -50.4 20 10 -20 40.4

σ (no units) 0.02 0.04 0.06 0.04 0.03

γ (kVHz−1) 1 1 1 1 1

τm (s) 1.5 2 2.5 2 1.8

DC grid resistances (Ω)

R12

1.39 4.17 2.78 6.95 2.78 2.78

(34), first variables w̃in
ij (k + 1, l− 1) and w̃out

ij (k + 1, l− 1) must be received from each agent i connected to
agent j and the other variables in (34) are then formed as described in Section 4.

As this paper does not consider inequality constraints when solving the MPC algorithms it is possible to
solve for the distributed MPC problem through the use of fixed feedback gains. This is achieved by solving

d

dθi(k, l)
J local
i (k, l) + J inter

i (k, l) = 0 (63)

which gives θ∗i (k, l) once solved.

7 Experiment on a multi-terminal HVDC system

In this section NCdMPC is used to distribute AGC between AC areas connected to an MTDC grid. The
modal analysis derived in the paper is also employed to analyse the system.

7.1 Simulation setup

Simulations were carried out on a testbed, previously developed in Dai (2011), to evaluate the accuracy of
the modal analysis algorithm. The testbed for simulations was the 5 agent testbed given in Fig. 1. The
frequencies in the AC areas in this testbed are very sensitive to load deviations, which makes it a useful
benchmark problem for evaluating frequency control algorithms. It is also an interesting testbed from the
perspective of parameter tuning as the system becomes unstable for certain combinations of MPC weights;
hence it serves as an illustrative example of the utility of the eigenvalue analysis for predicting instability
in the system, as will be presented in the results. The simulations were carried using a per unit conversion
with base power Sbase = 100 MW, base voltage Vbase = 100 kV, and base frequency fbase = 50 Hz, using the
parameter values for the AC and DC grids given in Table 1. All simulations were conducted using Matlab
and Simulink.

A number of simulations were carried out for various values of RPi, as this parameter has a significant
impact on the position of the closed-loop poles of the system. For these simulations Qfi = 1, Rvi = 5, c =
1, b = 2, and ϵ = 10−6. A sample step of 0.1 s and a prediction horizon of H = 10 was used for the
controller. The sets that define the agents that communicate to coordinate their responses are given as
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Figure 3: Plot of the frequencies in each area when SMPC, CMPC, and NCdMPC controllers are used.

Figure 4: Plot of the mechanical power deviations from their starting values when NCdMPC is used.

Figure 5: Plot of the DC powers deviations about their starting values in each area when NCdMPC is used.
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Figure 6: Plot of the DC voltage deviations about their starting values in each area when NCdMPC is used.

follows: N1 = {2, 5}, N2 = {1, 3, 5}, N3 = {2, 4}, N4 = {3, 5}, and N5 = {1, 2, 4}. In each of the simulations
the system was excited by a 5% increase in P 0

12 which is sufficient to determine whether the dominant modes
in the system are accurately determined by the method developed in this paper. In the first simulation the
NCdMPC controller is compared to a CMPC and an SMPC controller. The equivalent state-space modelling
and tuning used for the NCdMPC controller are used for the CMPC and SMPC controllers. The CMPC
and SMPC controllers are similar to those derived previously in Mc Namara et al. (2015) for the control of
the 5 area MTDC grid testbed, and use the same state-space structure as presented in Section 6.

The nonlinear system was simulated in discrete time with a sample step of ts = 0.01 s using dynamics
equations (1), (2), (3), (4), (5), and (6). Agents did not have access to disturbance measurements and so
the controllers had to compensate for the unknown step disturbance and nonlinearities. It was assumed
that measurements were noise free, that the system states were fully observable, and that a high speed
communication network is in place to allow communication between the control agents that are connected
via a DC line, and between the control agents and their local actuators.

7.2 Results

Plots of the frequencies, mechanical powers, DC powers, and DC voltages from each AC area, taken from
the nonlinear simulation, are given in Figs. 3–6, respectively, for RPi = 0.1. Fig. 3 shows a comparison
of the frequency responses of the NCdMPC controller and the equivalent SMPC and CMPC controllers.
It can be seen that the NCdMPC controller here supplies the fastest frequency setpoint tracking after the
initial disturbance in comparison to the CMPC and SMPC controller. The SMPC controller gives the worst
frequency setpoint tracking performance of the 3 controllers, taking the longest time to return the frequency
to its original setpoint.

Figs. 4 and 5 show the mechanical and DC power reactions when the system is under NCdMPC. It can
be seen that area 2 uses the power generated in other areas, particularly that generated in areas 1 and 5 ,
in order to regulate its frequency, demonstrating the cooperative nature of frequency regulation across the
DC grid. It is typically desirable that DC voltages do not experience large deviations from their nominal
positions. It can be seen in Fig. 6 that the DC voltages remain near their nominal positions, and so the
frequency regulation here does not appear to adversely affect the DC voltage regulation.

Then two more simulations were run for RPi = 10−6 and RPi = 10−7, in order to demonstrate the
accuracy with which the NCdMPC modal analysis predicts the modes of oscillation of the system. Plots of
the frequencies against time from the nonlinear system simulation, and the corresponding positions of the
discrete-time eigenvalues, found from the linearised model, are given in Figs. 7–9, for RPi = 10−6, 10−7 and
0.1 , respectively, where Fig. 9 provides a closer look at the first 10 s of the simulation for RPi = 0.1. Figs.
7 and 8 are illustrative in terms of showing the accuracy with which the eigenvalues can be used here to
predict instability in the system. In Fig. 7 it can be seen that as the largest eigenvalues approach the unit
circle, the resultant response is highly oscillatory but stable. With a very small adjustment to RPi = 10−7,
the system is seen to go unstable and this is predicted by the corresponding eigenvalues, which lie outside
of the unit circle, as can be seen in Fig. 8.

16



Figure 7: Plot of discrete-time poles and corresponding frequency response for RPi = 10−6.

Figure 8: Plot of discrete-time poles and corresponding frequency response for RPi = 10−7.

Figure 9: Plot of discrete-time poles and corresponding frequency response for RPi = 0.1.
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It is now shown how the eigenvalue analysis can be used to predict the frequencies at which the system
will oscillate. Often it can be undesirable for systems to oscillate at certain frequencies, as vibrations at
certain frequencies can have undesirable effects on system components, such as creating excessive wear and
tear. For RPi = 0.1 the discrete-time eigenvalues are found. These are then converted to the continuous
domain where the dominant mode is found at −0.3006±2.2495i. From the analysis, based on a linearisation
of the nonlinear system, this predicts that the system should oscillate with a period of about 2.79 s. When
the period of oscillation is measured from the nonlinear system simulation, it is shown to oscillate with a
period of roughly 2.7 s, which is in good agreement with the predicted value. The contribution of the other
non-dominant poles and the effects of system nonlinearities could account for the small discrepancy between
the predicted and measured period of oscillation.

8 Conclusions and future work

In this paper the use of a distributed Model Predictive Control (MPC) technique, based on the Auxiliary
Problem Principle (APP), is proposed for the implementation of Automatic Generation Control (AGC) in
AC areas connected to a Multi Terminal high voltage Direct Current (MTDC) grid. Additionally a modal
analysis technique is proposed for the distributed MPC, which was also used for a convergence and stability
analysis of the closed-loop system. Results illustrate that stabilising integral control is provided by the
distributed MPC, and that the modal analysis technique accurately predicts the modal behaviour of the
system.

In future work the technique proposed in this paper could be used in tuning algorithms, such as the
distributed MPC tuning algorithm given in Mc Namara, Negenborn, De Schutter, and Lightbody (2013), to
achieve desirable closed-loop behaviour. It is also of interest to investigate the utility of distributed MPC
for MTDC grids in which there are several points of connection in parallel to individual AC grids, as this
more general configuration is anticipated in many MTDC grid deployments.
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Liu, J., Chen, X., Muñoz de la Peña, D., & Christofides, P. D. (2010). Sequential and iterative architectures for
distributed model predictive control of nonlinear process systems. AIChE Journal, 56(8), 2137-2149.
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