
Delft University of Technology
Delft Center for Systems and Control

Technical report 15-043

Residential demand response of
thermostatically controlled loads using

batch reinforcement learning∗

F. Ruelens, B.J. Claessens, S. Vandael, B. De Schutter, R. Babuška,
and R. Belmans

If you want to cite this report, please use the following reference instead:
F. Ruelens, B.J. Claessens, S. Vandael, B. De Schutter, R. Babuška, and R. Belmans,
“Residential demand response of thermostatically controlled loads using batch rein-
forcement learning,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2149–2159,
Sept. 2017. doi:10.1109/TSG.2016.2517211

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/15_043.html

https://doi.org/10.1109/TSG.2016.2517211
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/15_043.html


1

Residential Demand Response of
Thermostatically Controlled Loads

Using Batch Reinforcement Learning
Frederik Ruelens, Bert J. Claessens, Stijn Vandael, Bart De Schutter, Robert Babuška, and Ronnie Belmans

Abstract—Driven by recent advances in batch Reinforcement
Learning (RL), this paper contributes to the application of batch
RL to demand response. In contrast to conventional model-
based approaches, batch RL techniques do not require a system
identification step, making them more suitable for a large-scale
implementation. This paper extends fitted Q-iteration, a standard
batch RL technique, to the situation when a forecast of the
exogenous data is provided. In general, batch RL techniques do
not rely on expert knowledge about the system dynamics or the
solution. However, if some expert knowledge is provided, it can be
incorporated by using the proposed policy adjustment method.
Finally, we tackle the challenge of finding an open-loop schedule
required to participate in the day-ahead market. We propose
a model-free Monte-Carlo method that uses a metric based on
the state-action value function or Q-function and we illustrate
this method by finding the day-ahead schedule of a heat-pump
thermostat. Our experiments show that batch RL techniques
provide a valuable alternative to model-based controllers and
that they can be used to construct both closed-loop and open-
loop policies.

Index Terms—Batch reinforcement learning, Demand re-
sponse, Electric water heater, Fitted Q-iteration, Heat pump.

I. INTRODUCTION

THE increasing share of renewable energy sources intro-
duces the need for flexibility on the demand side of the

electricity system [1]. A prominent example of loads that
offer flexibility at the residential level are thermostatically
controlled loads, such as heat pumps, air conditioning units,
and electric water heaters. These loads represent about 20%
of the total electricity consumption at the residential level
in the United States [2]. The market share of these loads
is expected to increase as a result of the electrification of
heating and cooling [2], making them an interesting domain
for demand response [1], [3]–[5]. Demand response programs
offer demand flexibility by motivating end users to adapt their
consumption profile in response to changing electricity prices
or other grid signals. The forecast uncertainty of renewable
energy sources [6], combined with their limited controllability,
have made demand response the topic of an extensive number
of research projects [1], [7], [8] and scientific papers [3], [5],
[9]–[11]. The traditional control paradigm defines the demand
response problem as a model-based control problem [3], [7],
[9], requiring a model of the demand response application, an
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optimizer, and a forecasting technique. A critical step in setting
up a model-based controller includes selecting accurate models
and estimating the model parameters. This step becomes more
challenging considering the heterogeneity of the end users and
their different patterns of behavior. As a result, different end
users are expected to have different model parameters and
even different models. As such, a large-scale implementa-
tion of model-based controllers requires a stable and robust
approach that is able to identify the appropriate model and
the corresponding model parameters. A detailed report of the
implementation issues of a model predictive control strategy
applied to the heating system of a building can be found
in [12]. Moreover, the authors of [3] and [13] demonstrate
a successful implementation of a model predictive control
approach at an aggregated level to control a heterogeneous
cluster of thermostatically controlled loads.

In contrast, Reinforcement Learning (RL) [14], [15] is a
model-free technique that requires no system identification
step and no a priori knowledge. Recent developments in the
field of reinforcement learning show that RL techniques can
either replace or supplement model-based techniques [16]. A
number of recent papers provide examples of how a pop-
ular RL method, Q-learning [14], can be used for demand
response [4], [10], [17], [18]. For example in [10], O’Neill et
al. propose an automated energy management system based
on Q-learning that learns how to make optimal decisions for
the consumers. In [17], Henze et al. investigate the potential
of Q-learning for the operation of commercial cold stores
and in [4], Kara et al. use Q-learning to control a cluster of
thermostatically controlled loads. Similarly, in [19] Liang et
al. propose a Q-learning approach to minimize the electricity
cost of the flexible demand and the disutility of the user.
Furthermore, inspired by [20], Lee et al. propose a bias-
corrected form of Q-learning to operate battery charging in
the presence of volatile prices [18].

While being a popular method, one of the fundamental
drawbacks of Q-learning is its inefficient use of data, given
that Q-learning discards the current data sample after every
update. As a result, more observations are needed to propagate
already known information through the state space. In order
to overcome this drawback, batch RL techniques [21]–[24]
can be used. In batch RL, a controller estimates a control
policy based on a batch of experiences. These experiences can
be a fixed set [23] or can be gathered online by interacting
with the environment [25]. Given that batch RL algorithms
can reuse past experiences, they converge faster compared to
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Fig. 1. Building blocks of a model-free Reinforcement Learning (RL) agent (gray) applied to a Thermostatically Controlled Load (TCL).

standard temporal difference methods like Q-learning [26] or
SARSA [27]. This makes batch RL techniques suitable for
practical implementations, such as demand response. For ex-
ample, the authors of [28] combine Q-learning with eligibility
traces in order to learn the consumer and time preferences of
demand response applications. In [5], the authors use a batch
RL technique to schedule a cluster of electric water heaters
and in [29], Vandael et al. use a batch RL technique to find a
day-ahead consumption plan of a cluster of electric vehicles.
An excellent overview of batch RL methods can be found
in [25] and [30].

Inspired by the recent developments in batch RL, in par-
ticular fitted Q-iteration by Ernst et al. [16], this paper builds
upon the existing batch RL literature and contributes to the
application of batch RL techniques to residential demand
response. The contributions of our paper can be summarized
as follows: (1) we demonstrate how fitted Q-iteration can be
extended to the situation when a forecast of the exogenous
data is provided; (2) we propose a policy adjustment method
that exploits general expert knowledge about monotonicity
conditions of the control policy; (3) we introduce a model-
free Monte Carlo method to find a day-ahead consumption
plan by making use of a novel metric based on Q-values.

This paper is structured as follows: Section II defines the
building blocks of our batch RL approach applied to demand
response. Section III formulates the problem as a Markov
decision process. Section IV describes our model-free batch
RL techniques for demand response. Section V demonstrates
the presented techniques in a realistic demand response setting.
To conclude, Section VI summarizes the results and discusses
further research.

II. BUILDING BLOCKS: MODEL-FREE APPROACH

Fig. 1 presents an overview of our model-free learning agent
applied to a Thermostatically Controlled Load (TCL), where
the gray building blocks correspond to the learning agent.

At the start of each day the learning agent uses a batch
RL method to construct a control policy for the next day,
given a batch of past interactions with its environment. The
learning agent needs no a priori information on the model
dynamics and considers its environment as a black box.
Nevertheless, if a model of the exogenous variables, e.g.
a forecast of the outside temperature, or reward model is
provided, the batch RL method can use this information to

enrich its batch. Once a policy is found, an expert policy
adjustment method can be used to shape the policy obtained
with the batch RL method. During the day, the learning agent
uses an exploration-exploitation strategy to interact with its
environment and to collect new transitions that are added
systematically to the given batch.

In this paper, the proposed learning agent is applied to two
types of TCLs. The first type is a residential electric water
heater with a stochastic hot-water demand. The dynamic be-
havior of the electric water heater is modeled using a nonlinear
stratified thermal tank model as described in [31]. Our second
TCL is a heat-pump thermostat for a residential building. The
temperature dynamics of the building are modeled using a
second-order equivalent thermal parameter model [32]. This
model describes the temperature dynamics of the indoor air
and of the building envelope. However, to develop a realistic
implementation, this paper assumes that the learning agent
cannot measure the temperature of the building envelope and
considers it as a hidden state variable.

In addition, we assume that both TCLs are equipped with
a backup controller that guarantees the comfort and safety
settings of its users. The backup controller is a built-in overrule
mechanism that turns the TCL 'on' or 'off' depending on the
current state and a predefined switching logic. The operation
and settings of the backup controller are assumed to be
unknown to the learning agent. However, the learning agent
can measure the overrule action of the backup controller (see
the dashed arrow in Fig. 1).

The observable state information contains sensory input data
of the state of the process and its environment. Before this
information is sent to the batch RL algorithm, the learning
agent can apply feature extraction [33]. This feature extraction
step can have two functions namely to extract hidden state
information or to reduce the dimensionality of the state vector.
For example, in the case of a heat-pump thermostat, this
step can be used to extract a feature that represents the
hidden state information, e.g. the temperature of the building
envelope. Alternatively, a feature extraction mapping can be
used to find a low-dimensional representation of the sensory
input data. For example, in the case of an electrical water
heater, the observed state vector consists of the temperature
sensors that are installed along the hull of the buffer tank.
When the number of temperature sensors is large, it can be
interesting to map this high-dimensional state vector to a low-
dimensional feature vector. This mapping can be the result
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of an auto-encoder network or principal component analysis.
For example in [34], Curren et al. indicate that when only a
limited number of observations are available, a mapping to a
low-dimensional state space can improve the convergence of
the learning algorithm.

In this paper, the learning agent is applied to two relevant
demand response business models: dynamic pricing and day-
ahead scheduling [1], [35]. In dynamic pricing, the learning
agent learns a control policy that minimizes its electricity cost
by adapting its consumption profile in response to an external
price signal. The solution of this optimal control problem is
a closed-loop control policy that is a function of the current
measurement of the state. The second business model relates to
the participation in the day-ahead market. The learning agent
constructs a day-ahead consumption plan and then tries to
follow it during the day. The objective of the learning agent is
to minimize its cost in the day-ahead market and to minimize
any deviation between the day-ahead consumption plan and the
actual consumption. In contrast to the solution of the dynamic
pricing scheme, the day-ahead consumption plan is a feed-
forward plan for the next day, i.e. an open-loop policy, which
does not depend on future measurements of the state.

III. MARKOV DECISION PROCESS FORMULATION

This section formulates the decision-making problem of the
learning agent as a Markov decision process. The Markov
decision process is defined by its d-dimensional state space
X ⊂ Rd, its action space U ⊂ R, its stochastic discrete-time
transition function f , and its cost function ρ. The optimization
horizon is considered finite, comprising T ∈ N \ {0} steps,
where at each discrete time step k, the state evolves as follows:

xk+1 = f(xk, uk, wk) ∀k ∈ {1, . . . , T − 1}, (1)

with wk a realization of a random disturbance drawn from
a conditional probability distribution pW(·|xk), uk ∈ U the
control action, and xk ∈ X the state. Associated with each
state transition, a cost ck is given by:

ck = ρ(xk, uk, wk) ∀k ∈ {1, . . . , T}. (2)

The goal is to find an optimal control policy h∗ : X → U that
minimizes the expected T -stage return for any state in the
state space. The expected T -stage return starting from x1 and
following a policy h is defined as follows:

Jh
T (x1) = E

wk∼pW(·|xk)

[
T∑

k=1

ρ(xk, h(xk), wk)

]
. (3)

A convenient way to characterize the policy h is by using a
state-action value function or Q-function:

Qh(x, u) = E
w∼pW(·|x)

[
ρ(x, u, w) + γJh

T (f(x, u, w))
]
, (4)

where γ ∈ (0, 1) is the discount factor. The Q-function is the
cumulative return starting from state x, taking action u, and
following h thereafter.

The optimal Q-function corresponds the best Q-function that
can be obtained by any policy:

Q∗(x, u) = min
h

Qh(x, u). (5)

Starting from an optimal Q-function for every state-action pair,
the optimal policy is calculated as follows:

h∗(x) ∈ arg min
u∈U

Q∗(x, u), (6)

where Q∗ satisfies the Bellman optimality equation [36]:

Q∗(x, u) = E
w∼pW(·|x)

[
ρ(x, u, w) + γmin

u′∈U
Q∗(f(x, u, w), u′)

]
.

(7)

The next three paragraphs give a formal description of the state
space, the backup controller, and the cost function tailored to
demand response.

A. State description

Following the notational style of [37], the state space X
is spanned by a time-dependent component Xt, a controllable
component Xph, and an uncontrollable exogenous component
Xex:

X = Xt ×Xph ×Xex. (8)

1) Timing: The time-dependent component Xt describes
the part of the state space related to timing, i.e. it carries timing
information that is relevant for the dynamics of the system:

Xt = Xq
t ×Xd

t with Xq
t = {1, ..., 96} , Xd

t = {1, ..., 7} , (9)

where xq
t ∈ Xq

t denotes the quarter in the day, and xd
t ∈

Xd
t denotes the day in the week. The rationale is that most

consumer behavior tends to be repetitive and tends to follows
a diurnal pattern.

2) Physical representation: The controllable component
Xph represents the physical state information related to the
quantities that are measured locally and that are influenced by
the control actions, e.g. the indoor air temperature or the state
of charge of an electric water heater:

xph ∈ Xph with xph < xph < xph, (10)

where xph and xph denote the lower and upper bounds, set to
guarantee the comfort and safety of the end user.

3) Exogenous Information: The state description of the
uncontrollable exogenous state is split into two components:

Xex = Xph
ex ×Xc

ex. (11)

When the random disturbance wk+1 is independent of wk

there is no need to include exogenous variables in the state
space. However, most physical processes, such as the outside
temperature and solar radiation, exhibit a certain degree of
autocorrelation, where the outcome of the next state depends
on the current state. For this reason we include an exogenous
component xph

ex ∈ Xph
ex in our state space description. This

exogenous component is related to the observable exogenous
information that has an impact on the physical dynamics and
that cannot be influenced by the control actions, e.g. the
outside temperature.

The second exogenous component xc
ex ∈ Xc

ex has no
direct influence on the dynamics, but contains information to
calculate the cost ck. This work assumes that a deterministic
forecast of the exogenous state information related to the
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cost x̂c
ex and related to the physical dynamics, i.e. outside

temperature and solar radiation, x̂ph
ex is provided for the time

span covering the optimization problem.

B. Backup controller
This paper assumes that each TCL is equipped with an over-

rule mechanism that guarantees comfort and safety constraints.
The backup function B : X × U −→ Uph maps the requested
control action uk ∈ U taken in state xk to a physical control
action uph

k ∈ Uph:

uph
k = B(xk, uk). (12)

The settings of the backup function B are unknown to the
learning agent, but the resulting action uph

k can be measured
by the learning agent (see the dashed arrow in Fig. 1).

C. Cost function
In general, RL techniques do not require a description of the

cost function. However, for most demand response business
models a cost function is available. This paper considers two
typical cost functions related to demand response.

1) Dynamic pricing: In the dynamic pricing scenario an
external price profile is known deterministically at the start of
the horizon. The cost function is described as:

ck = uph
k x̂c

k,ex∆t, (13)

where x̂c
k,ex is the electricity price at time step k and ∆t is

the length of a control period.
2) Day-ahead scheduling: The objective of the second

business case is to determine a day-ahead consumption plan
and to follow this plan during operation. The day-ahead con-
sumption plan should be minimized based on day-ahead prices.
In addition, any deviation between the planned consumption
and actual consumption should be avoided. As such, the cost
function can be written as:

ck = ukx̂
c
k,ex∆t+ α

∣∣∣uk∆t− uph
k ∆t

∣∣∣ , (14)

where uk is the planned consumption, uph
k is the actual

consumption, x̂c
k,ex is the forecasted day-ahead price and

α > 0 is a penalty. The first part of (14) is the cost for
buying energy at the day-ahead market, whereas the second
part penalizes any deviation between the planned consumption
and the actual consumption.

D. Reinforcement learning for demand response
When the description of the transition function and cost

function is available, techniques that make use of the Markov
decision process framework, such as approximate dynamic
programming [38] or direct policy search [30], can be used to
find near-optimal policies. However, in our implementation we
assume that the transition function f , the backup controller B,
and the underlying probability of the exogenous information w
are unknown. In addition, we assume that they are challenging
to obtain in a residential setting. For these reasons, we present
a model-free batch RL approach that builds on previous theo-
retical work on RL, in particular fitted Q-iteration [23], expert
knowledge [39], and the synthesis of artificial trajectories [21].

Algorithm 1 Fitted Q-iteration using a forecast of the exoge-
nous data (extended FQI)

Input: F = {(xl, ul, x
′
l, u

ph
l )}#F

l=1, {(x̂
ph
l,ex, x̂

c
l,ex)}

#F
l=1, T

1: let Q̂0 be zero everywhere on X × U
2: for l = 1, . . . ,#F do
3: x̂′

l ← (xq ′
l,t , x

d ′
l,t , x

′
l,ph, x̂

ph ′
l,ex ) ▷ replace the observed

exogenous part of the next state xph ′
l,ex by its forecast

x̂ph ′
l,ex

4: end for
5: for N = 1, . . . , T do
6: for l = 1, . . . ,#F do
7: cl ← ρ(x̂c

l,ex, u
ph
l )

8: QN,l ← cl + min
u∈U

Q̂N−1(x̂
′
l, u)

9: end for
10: use regression to obtain Q̂N from

Treg = {((xl, ul), QN,l) , l = 1, . . . ,#F}
11: end for

Output: Q̂∗ = Q̂T

IV. ALGORITHMS

Typically, batch RL techniques construct policies based on
a batch of tuples of the form: F = {(xl, ul, x

′
l, cl)}

#F
l=1 , where

xl = (xq
l,t, x

d
l,t, xl,ph, x

ph
l,ex) denotes the state at time step l

and x′
l denotes the state at time step l+1. However, for most

demand response applications, the cost function ρ is given
a priori, and of the form ρ(x̂c

l,ex, u
ph
l ). As such, this paper

considers tuples of the form (xl, ul, x
′
l, u

ph
l ).

A. Fitted Q-iteration using a forecast of the exogenous data

Here we demonstrate how fitted Q-iteration [23] can be
extended to the situation when a forecast of the exogenous
component is provided (Algorithm 1). The algorithm itera-
tively builds a training set Treg with all state-action pairs
(x, u) in F as the input. The target values consist of the
corresponding cost values ρ(x̂c

ex, u
ph) and the optimal Q-

values, based on the approximation of the Q-function of the
previous iteration, for the next states min

u∈U
Q̂N−1(x̂

′
l, u).

Since we consider a finite horizon problem with T control
periods, Algorithm 1 needs T iterations until the Q-function
contains all information about the future rewards. Notice
that for N = 1 (first iteration), the Q-values in the training
set correspond to their immediate cost QN,l ← cl (line 7
in Algorithm 1). In the subsequent iterations, Q-values are
updated using the value iteration based on the Q-function of
the previous iteration.

It is important to note that x̂′
l denotes the successor state

in F , where the observed exogenous information xph ′
l,ex is

replaced by its forecast x̂ph ′
l,ex (line 3 in Algorithm 1). Note

that in our algorithm the next state contains information on
the forecasted exogenous data, whereas for standard fitted
Q-iteration the next state contains past observations of the
exogenous data. By replacing the observed exogenous parts
of the next state by their forecasts, the Q-function of the next
state assumes that the exogenous information will follow its
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forecast. In other words, the Q-value of the next state becomes
biased towards the provided forecast of the uncontrollable
exogenous data. Also notice that we recalculate the cost for
each tuple in F by using the price for the next day x̂c

ex (line 7
in Algorithm 1). The proposed algorithm is relevant for de-
mand response applications that are influenced by exogenous
weather data. Examples of these applications are heat-pump
thermostats and air conditioning units.

In principle, any function approximator, such as a neural
network [40], can be applied in combination with fitted Q-
iteration. However, because of its robustness and fast calcula-
tion time, an ensemble of extremely randomized trees [23] is
used to approximate the Q-function.

A discussion on the convergence properties of the proposed
method and a comparison with Q-learning can be found in the
appendix section.

B. Expert policy adjustment

Given the Q-function from Algorithm 1, a near-optimal
policy ĥ∗ can be constructed by solving (6) for every state in
the state space. However, in some cases, e.g. when F contains
a limited number of observations, the resulting policy can be
improved by using general prior knowledge about its shape.

In this section, we show how expert knowledge about the
monotonicity of the policy can be exploited to regularize
the policy. The method enforces monotonicity conditions by
using convex optimization to approximate the policy, where
expert knowledge is included in the form of extra constraints.
These constraints can result directly from an expert or from a
model-based solution. In order to define a convex optimization
problem we use a fuzzy model with triangular membership
functions [30] to approximate the policy. The centers of the
triangular membership functions are located on an equidistant
grid with N membership functions along each dimension of
the state space. This partitioning leads to Nd state-dependent
membership functions for each action. The parameter vector θ∗

that approximates the original policy can be found by solving
the following least-squares problem:

θ∗ ∈ arg min
θ

#F∑
l=1

(
[F (θ)](xl)− ĥ∗(xl)

)2

,

s.t. expert knowledge

(15)

where F (θ) denotes an approximation mapping of a weighted
linear combination of a set of triangular membership functions
ϕ and [F (θ)](x) denotes the policy F (θ) evaluated at state
x. The triangular Membership Functions (MFs) for each state
variable xd, with d ∈ {1, . . . ,dim(X)} are defined as follows:

ϕd,1(xd) = max

(
0,

cd,2 − xd

cd,2 − cd,1

)
ϕd,i(xd) = max

[
0,min

(
xd − cd,i−1

cd,i − cd,i−1
,
cd,i+1 − xd

cd,i+1 − cd,i

)]
,

ϕd,Nd
(xd) = max

(
0,

xd − cd,Nd−1

cd,Nd
− cd,Nd−1

)
for i = 2, . . . , Nd − 1. The centers of the MFs along
dimension d are denoted by cd,1, . . . , cd,Nd

which must satisfy:

cd,1 < · · · < cd,Nd
. These centers are chosen equidistant along

the state space in such a way that xd ∈ [cd,1, cd,Nd
] for

d = 1, . . . ,dim(X).
The fuzzy approximation of the policy allows us to add

expert knowledge to the policy in the form of convex con-
straints of the least-squares problem (15), which can be solved
using a convex optimization solver. Using the same notation
as in [39], we can enforce monotonicity conditions along the
dth dimension of the state space as follows:

δd[F (θ)](xd) ≤ δd[F (θ)](x′
d) (16)

for all state components xd ≤ x′
d along the dimension d. If δd

is -1 then [F (θ)] will be decreasing along the dth dimension
of X , whereas if δd is 1 then [F (θ)] will be increasing along
the dth dimension of X . Once ĥ∗ is found, the adjusted
policy ĥ∗

exp, given this expert knowledge, can be calculated
as ĥ∗

exp(x) = [F (θ∗)](x).

C. Day-ahead consumption plan

This section explains how to construct a day-ahead schedule
starting from the Q-function obtained by Algorithm 1 and
using cost function (14). Finding a day-ahead schedule has
a direct relation to two situations:

• a day-ahead market, where participants have to submit
a day-ahead schedule one day in advance of the actual
consumption [35];

• a distributed optimization process, where two or more
participants are coupled by a common constraint, e.g.
congestion management [9].

Algorithm 2 describes a model-free Monte Carlo method to
find a day-ahead schedule that makes use of a metric based
on Q-values. The method estimates the average return of a
policy by synthesizing p sequences of transitions of length
T from F . These p sequences can be seen as a proxy of
the actual trajectories that could be obtained by simulating
the policy on the given control problem. Note that since we
consider a stochastic setting, p needs to be greater than 1.
A sequence is grown in length by selecting a new transition
among the samples of not-yet-used one-step transitions. Each
new transition is selected by minimizing a distance metric with
the previously selected transition.

In [21], Fonteneau et al. propose the following distance
metric in X×U : ∆ ((x, x′) , (u, u′)) = ∥x− x′∥+ ∥u− u′∥,
where ∥ ·∥ denotes the Euclidean norm. It is important to note
that this metric weighs each dimension of the state and action
space equally. In order to overcome specifying weights for
each dimension, we propose the following distance metric:

|Q̂∗(xi
k, u

i
k)− Q̂∗(xl, ul)|+ ξ∥xi

k − xl∥. (17)

Here Q̂∗ is obtained by applying Algorithm 1 with cost
function (14). The state xi

k and action ui
k denote the state and

action corresponding to the ith trajectory at time step k. The
control action ui

k is computed by minimizing the Q-function
Q̂∗ in xi

k (see line 6). The next state x′
li is found by taking

the next state of the tuple that minimizes this distance metric
(see line 8). The regularization parameter ξ is a scalar that
is included to penalize states that have similar Q-values, but
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Algorithm 2 Model-free Monte Carlo method using a Q-
function to find a feed-forward plan

Input: F = {(xl, ul, x
′
l, u

ph
l )}#F

l=1 , {(x̂ph
l,ex, x̂

c
l,ex)}

#F
l=1 , T , x1,

p, ξ
1: G ← F
2: Apply Algorithm 1 with cost function (14), to obtain Q̂∗

3: for i = 1, . . . , p do
4: xi

1 ← x1

5: for k = 1, . . . , T do
6: ui

k ← arg min
u∈U

Q̂∗(xi
k, u)

7: Gs ← {(xl, ul, x
′
l, u

ph
l ) ∈ G|ul = ui

k}
8: H ← arg min

(xl,ul,x′
l,u

ph
l )∈Gs

|Q̂∗(xi
k, u

i
k) − Q̂∗(xl, ul)| +

ξ∥xi
k − xl∥

9: li ← lowest index in G of the transitions in H
10: P i

k ← ui
k

11: xi
k+1 ← x′

li

12: G ← G\
{
(xli , uli , x

′
li , u

ph
li )

}
▷do not reuse tuple

13: end for
14: end for

Output: p artificial trajectories: [P 1
k ]

T
k=1, . . . , [P

p
k ]

T
k=1

have a large Euclidean norm in the state space. When the Q-
function is strictly increasing or decreasing ξ can be set to 0.
The motivation behind using Q-values instead of the Euclidean
distance in X × U is that Q-values capture the dynamics of
the system and, therefore, there is no need to select individual
weights.

Notice that once a tuple with the lowest distance metric
is selected, this tuple is removed from the given batch (see
line 12). As a result, this ensures that the p artificial trajectories
are distinct and thus can be seen as p stochastic realizations
that could be obtained by simulating the policy on the given
control policy.

V. SIMULATIONS

This section presents the simulation results of three ex-
periments and evaluates the performance of the proposed
algorithms. We focus on two examples of flexible loads,
i.e. an electric water heater and a heat-pump thermostat.
The first experiment evaluates the performance of extended
FQI (Algorithm 1) for a heat-pump thermostat. The rationale
behind using extended FQI for a heat-pump thermostat, is
that the temperature dynamics of a building is influenced
by exogenous weather data, which is less the case for an
electric water heater. In the second experiment, we apply the
policy adjustment method to an electric water heater. The final
experiment uses the model-free Monte Carlo method to find
a day-ahead consumption plan for a heat-pump thermostat. It
should be noted that the policy adjustment method and model-
free Monte Carlo method can also be applied to both heat-
pump thermostat and electric water heater.

A. Thermostatically controlled loads
Here we describe the state definition and the settings of the

backup controller of the electric water heater and the heat-

pump thermostat.
1) Electric water heater: We consider that the storage tank

of the electric water heater is equipped with ns temperature
sensors. The full state description of the electric water heater
is defined as follows:

xk = (xq
k,t, T

1
k , . . . , T

i
k, . . . , T

ns

k ), (18)

where xq
k,t denotes the current quarter in the day and T i

k

denotes the temperature measurement of the ith sensor. This
work uses feature extraction to reduce the dimensionality of
the controllable state space component by replacing it with
with the average sensor measurement. As such the reduced
state is defined as follows:

xk = (xq
k,t,

∑ns

i=1 T
i
k

ns
). (19)

More generic dimension reduction techniques, such as an auto-
encoder network and a principal components analysis [41],
[42] will be explored in future research.

The logic of the backup controller of the electric water
heater is defined as:

B(xk, uk) =


uph
k = umax if xk,soc ≤30%

uph
k = uk if 30%< xk,soc <100%.

uph
k = 0 if xk,soc ≥100%

(20)

The electric heating element of the electric water heater can
be controlled with a binary control action uk ∈ {0, umax},
where umax = 2.3 kW is the maximum power. A detailed
description of the nonlinear tank model of the electric water
heater and the calculation of its state of charge xsoc can be
found in [31]. We use a set of hot-water demand profiles with
a daily mean load of 100 liter obtained from [43] to simulate
a realistic tap demand.

2) Heat-pump thermostat: Our second application con-
siders a heat-pump thermostat that can measure the indoor
air temperature, the outdoor air temperature, and the solar
radiation. The full state of the heat-pump thermostat is defined
as follows:

xk = (xq
k,t, Tk,in, Tk,out, Sk), (21)

where the physical state space component consists of the
indoor air temperature Tk,in and the exogenous state space
component contains the outside air temperature Tk,out and
the solar radiation Sk. The internal heat gains, caused by
user behavior and electric appliances, cannot be measured and
are excluded from the state. We included a measurement of
the solar radiance in the state since solar energy transmitted
through windows can significantly impact the indoor temper-
ature dynamics [32]. In order to have a practical implementa-
tion, we consider that we cannot measure the temperature of
the building envelope. We used a feature extraction technique
based on past state observations by including a virtual building
envelope temperature, which is a running average of the past
nr air temperatures:

xk = (xq
k,t, Tk,in,

∑k−1
i=k−nr

Ti,in

nr
, Tk,out, Sk). (22)

The backup controller of the heat-pump thermostat is de-
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fined as follows:

B(xk, uk) =


uph
k = umax if Tk,in ≤ T k

uph
k = uk if T k < Tk,in < T k,

uph
k = 0 if Tk,in ≥ T k

(23)

where T k and T k are the minimum and maximum temperature
settings defined by the end user. The action space of the
heat pump is discretized in 10 steps, uk ∈ {0, ..., umax},
where umax = 3kW is the maximum power. In the simulation
section we define a minimum and maximum comfort setting
of 19◦C and 23◦C. A detailed description of the temperature
dynamics of the indoor air and building envelope can be found
in [32]. The exogenous information consists of the outside
temperature, the solar radiation, and the internal heat gains
from a location in Belgium [1].

In the following experiments we define a control period
of one quarter and an optimization horizon T of 96 control
periods.

B. Experiment 1

The goal of the first experiment is to compare the per-
formance of Fitted Q-Iteration (standard FQI) [23] to the
performance of our extension of FQI (extended FQI), given by
Algorithm 1. The objective of the considered heating system is
to minimize the electricity cost of the heat pump by responding
to an external price signal. The electricity prices are taken
from the Belgian wholesale market [35]. We assume that a
forecast of the outside temperature and of the solar radiance
is available. Since the goal of the experiment is to assess the
impact on the performance of FQI when a forecast is included,
we assume perfect forecasts of the outside temperature and
solar radiance.

1) FQI controllers: Both FQI controllers start with an
empty batch F . At the end of each day, they add the tuples of
the given day to their current batch and they compute a T -stage
control policy for the next day. Both FQI controllers calculate
the cost value of each tuple in F (line 7 in Algorithm 1). As
such, FQI can reuse (or replay) previous observations even
when the external prices change daily. The extended FQI
controller uses the forecasted values of the outside temperature
and solar radiance to construct the next states in the batch
x̂′
l ← (xq ′

l,t , T
′

l,in, T̂
′

l,out, Ŝ
′

l ), where (̂.) denotes a forecast.
In contrast, standard FQI uses observed values of the outside
temperature and solar radiance to construct the next states in
the batch.

The observed state information of both FQI controllers
is defined by (22), where a handcrafted feature is used to
represent the temperature of the building envelope (nr set
to 3). During the day, both FQI controllers use an ε-greedy
exploration strategy. This exploration strategy selects a random
control action with probability εd and follows the policy with
probability 1 − εd. Since more interactions result in a better
coverage of the state-action space, the exploration probability
εd is decreased on a daily basis, according to the harmonic
sequence 1/dn, where n is set to 0.7 and d denotes the
current day. As a result the agent becomes greedier, i.e. it
selects the best action more often, as the number of tuples
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Fig. 2. Simulation results for a heat-pump thermostat and a dynamic
pricing scheme using an optimal controller (Optimal), Fitted Q-Iteration (FQI),
extended FQI, and a default controller (Default). The top plot depicts the
performance metric M and the bottom plot depicts the cumulative electricity
cost.

in the batch increases. A possible route of future work could
be to include a Boltzmann exploration strategy that explores
interesting state-action pairs based on the current estimate of
the Q-function [38].

The exploration parameters and exploration probabilities of
both FQI and extended FQI are identical. Moreover, we used
identical disturbances, prices and weather conditions in both
experiments.

2) Results: In order to compare the performance of the FQI
controllers we define the following metric:

M =
cfqi − cd
co − cd

, (24)

where cfqi denotes the daily cost of the FQI controller, cd de-
notes the daily cost of the default controller and co denotes the
daily cost of the optimal controller. The metric M corresponds
to 0 if the FQI controller obtains the same performance as the
default controller and corresponds to 1 if the FQI controller
obtains the same performance as the optimal controller. The
default controller is a hysteresis controller that switches on
when the indoor air temperature is lower than 19◦C and stops
heating when the indoor air temperature reaches 20◦C. The
optimal controller is a model-based controller that has full
information on the model parameters and has perfect fore-
casts of all exogenous variables, i.e the outside temperature,
solar radiation and internal heat gains. The optimal controller
formalizes the problem as a mixed integer problem and uses a
commercial solver [44]. The simulation results of the heating
system for a simulation horizon of 80 days are depicted in
Fig. 2. The top plot depicts the daily metric M , where the
performance of the default controller corresponds to zero and
the performance of the optimal controller corresponds to one.
The bottom plot depicts the cumulative electricity cost of both
FQI controllers, and of the default and optimal controller.
The average metric M over the simulation horizon is 0.56
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Fig. 3. Simulation results for an electric water heater and a dynamic pricing
scheme. The left column depicts the original policies for day 7, 14, and 21
where the color corresponds to the control action, namely white (off) and black
(on). The corresponding repaired policies are depicted in the right column.
The price profile corresponding to each policy is depicted in the background.

for standard FQI and 0.71 for extended FQI, which is an
improvement of 27%. The performance gap of 0.29 between
extended FQI and the optimal controller is a reasonable result
given that the model dynamics and disturbances are unknown,
and that exploration is included.

This experiment demonstrated that fitted Q-iteration can be
successfully extended to incorporate forecasted data. Extended
FQI was able to decrease the total electricity cost with 19%
compared to the default controller over the total simulation
horizon, whereas standard FQI decreased the total electricity
cost with 14%. It is important to note that the reduction of
19% is not the result of a lower energy consumption, since
the energy consumption increased with 4% compared to the
default controller when extended FQI was used.

C. Experiment 2

The following experiment demonstrates the policy adjust-
ment method for an electric water heater. As an illustrative
example we used a sinusoidal price profile. As stated in (19),
the state space of an electric water heater consists of two
dimensions, i.e. the time component and the average temper-
ature.

1) Policy adjustment method: As described in Section IV-B,
the policy obtained with Algorithm 1 is represented using
a grid of fuzzy membership functions. Our representation
consists of 5× 5 membership functions, located equidistantly
along the state space. We enforce a monotonicity constraint
along the second dimension, which contains the average sensor
temperature, as follows:

[F (θ)] (xq
t , Ta) ≤ [F (θ)] (xq

t , T
′
a) , (25)

for all states xq
t and Ta, and where Ta < T ′

a. These monotonic-
ity constraints are added to the least-squares problem (15).

2) Results: The original policies obtained with fitted Q-
iteration after 7, 14 and 21 days are presented in the left col-
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Fig. 4. The top plots depict the metric M (left) and the daily deviation
between the day-ahead consumption plan and actual consumption (right). The
day-ahead consumption plan and the indoor temperature obtained with the
Model-Free Monte Carlo (MFMC) method are depicted in the middle and
bottom plot.

umn of Fig. 3. It can be seen that the original policies, obtained
by fitted Q-iteration, violate the monotonicity constraints along
the second dimension in several states. The adjusted policies
obtained by the policy adjustment method are depicted in
the right column. The policy adjustment method was able to
reduce the total electricity cost by 11% over 60 days compared
to standard FQI. These simulation results indicate that when
the number of tuples in the batch increases, the original and the
adjusted policies converge. Furthermore, the results indicate
that when the number of tuples in F is small, the expert policy
adjustment method can be used to improve the performance
of standard fitted Q-iteration.

D. Experiment 3

The final experiment demonstrates the Model-Free Monte
Carlo (MFMC) method (Algorithm 2) to find the day-ahead
consumption plan of a heat-pump thermostat.

1) MFMC method: First, the MFMC method uses Algo-
rithm 1 with cost function (14) to calculate the Q-function.
The parameter α was set to 103 to penalize possible devia-
tions between the planned consumption profile and the actual
consumption. The resulting Q-function is then used as a metric
to build p distinct artificial trajectories (line 8 of Algorithm 2).
The regularization parameter ε was set to 0.1 to penalize
states with identical Q-values, but with a large Euclidean
norm in the state space. The parameter p, which indicates the
number of artificial trajectories, was set to 4. Increasing the
number of artificial trajectories beyond 4 did not significantly
improved the performance of the MFMC method. A day-ahead
consumption plan was obtained by taking the average of these
4 artificial trajectories.

2) Results: In order to assess the performance of our
MFMC method, we introduce an optimal model-based con-
troller. Similar as in experiment 1, the model-based controller
has exact knowledge about the future exogenous variables and
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model equations. The solution of the model-based controller
was found using a commercial solver [44]. Moreover, we
define a performance metric M = cMFMC/co, where cMFMC

is the daily cost of the MFMC method and co is the daily
cost of the optimal model-based controller. If M equals to
1, the performance of the MFMC controller is equal to the
performance of the optimal model-based controller.

The results of an experiment, spanning 100 days, are
depicted in Fig. 4. The experiment starts with an empty batch
and the tuples of the current day are added to the batch at
the end of each day. The top left plot depicts the daily metric
M of our MFMC method, where the metric of the optimal
model-based controller corresponds to 1.

The right top plot indicates the absolute value of the daily
imbalance between the day-ahead consumption plan and the
actual followed consumption. This plot demonstrates that the
daily imbalance decreases as number of observations (days)
in F increases. The mean metric M of the MFMC method
over the whole simulation period, including the exploration
phase is 0.81. Furthermore, the mean deviation relative to
the consumed energy of the MFMC method over the whole
simulation period corresponded to 4, 6%. Since α was set
to 103, the solution of the optimal model-based controller
resulted in a deviation of 0%. This implies that for the optimal
model-based controller, the forward consumption plan and
actual consumption are identical.

A representative result of a single day, obtained with a
mature MFMC controller, is depicted in the middle and bottom
plot of Fig. 4. As can be seen in the figure, the MFMC method
minimizes its day-ahead cost and follows its day-head schedule
during the day. These results demonstrate that the model-free
Monte Carlo method can be successfully used to construct a
forward consumption plan for the next day.

VI. CONCLUSION

Driven by the challenges presented by the system identifica-
tion step of model-based controllers, this paper has contributed
to the application of model-free batch Reinforcement Learning
(RL) to demand response. Motivated by the fact that some
demand response applications, e.g a heat-pump thermostat,
are influenced by exogenous weather data, we have adapted a
well-known batch RL technique, fitted Q-iteration, to incorpo-
rate a forecast of the exogenous data. The presented empirical
results have indicated that the proposed extension of fitted
Q-iteration was able to improve the performance of standard
fitted Q-iteration by 27%. In general, batch RL techniques do
not require any prior knowledge about the system behavior or
the solution. However, for some demand response applications,
expert knowledge about the monotonicity of the solution, i.e.
the policy, can be available. Therefore, we have presented an
expert policy adjustment method that can exploit this expert
knowledge. The results of an experiment with an electric
water heater have indicated that the policy adjustment method
was able to reduce the cost objective by 11% compared to
fitted Q-iteration without expert knowledge. A final challenge
for model-free batch RL techniques is that of finding a
consumption plan for the next day, i.e. an open-loop solution.
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Fig. 5. Mean daily cost and standard deviation of 100 simulation runs with
Q-learning for different learning rates α, fitted Q-iteration and model-based
solution (Optimal) during 300 iterations.

In order to solve this problem, we have presented a model-
free Monte Carlo method that uses a distance metric based
on the Q-function. In a final experiment, spanning 100 days,
we have successfully tested this method to find the day-ahead
consumption plan of a residential heat pump.

Our future research in this area will focus on employing
the presented algorithms in a realistic lab environment. We
are currently testing the expert policy adjustment method on
a converted electric water heater and an air conditioning unit
with promising results. The preliminary findings of the lab
experiments indicate that the expert policy adjustment and
extended fitted Q-iteration can be successfully used in a real-
world demand response setting.

APPENDIX: CONVERGENCE PROPERTIES AND COMPARISON
WITH Q-LEARNING

This section discusses the convergence properties of the
fitted Q-iteration algorithm and the model-free Monte Carlo
method. In addition, it provides an empirical comparison
between a well-known reinforcement learning method, i.e. Q-
learning, and fitted Q-iteration.

Fitted Q-iteration: In this paper, we build upon the the-
oretical work of [16], [23] and [24], and we demonstrate
how fitted Q-iteration can be adapted to work in a demand
response setting. In [16], Ernst et al., starting from [24], show
that when a kernel-based regressor is used fitted Q-iteration,
converges to an optimal policy. For the finite horizon case, they
show that the solution of the T -stage optimal control problem
yields a policy that approximates the true optimal policy. As
the ensemble of extremely randomized trees [23], used in the
current work, readjusts its approximator architecture to the
output variables, it is not possible to guarantee convergence.
However, empirically we observed that they perform better
than a frozen set of trees.

An empirical evaluation of fitted Q-iteration with an en-
semble of extremely randomized trees is presented in Fig. 5.
In this experiment, we implemented Q-learning [26] and we
applied it to a heat-pump thermostat with a time-varying price
profile as described in Section V. The intent of the experiment
is to compare fitted Q-iteration with two other approaches
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namely Q-learning and the optimal solution. Since Q-learning
discards the given tuple after each observation and assumes no
model of the reward and the exogenous data is provided, we
repeated the same day, i.e. identical price profile, disturbances
and outside temperature, during 300 iterations. Specifically,
Fig. 5 shows the mean daily cost and standard deviation of
100 simulation runs with Q-learning for different learning
rates. Note that each simulation run uses a different random
seed during the exploration step. As seen in Fig. 5, fitted
Q-iteration converges to a near-optimal solution within 25
days. The solution of the model-based controller was found
by solving the corresponding mixed integer problem with a
commercial solver [44]. The model-based controller knows
the exact future disturbance at the start of the optimization
horizon. These empirical results indicate that the fitted Q-
iteration algorithm clearly outperforms the standard Q-learning
algorithm for the given demand response problem.

Model-free Monte-Carlo: This paper uses a model-free
Monte-Carlo (MC) method to construct a day-ahead consump-
tion schedule of a flexible load based on the Q-function ob-
tained from fitted Q-iteration. Specifically in [45], Fonteneau
et al. infer bounds on the returns of the model-free MC method
given a batch of tuples. They demonstrate that the lower and
upper bounds converge at least linearly towards the true return
of the policy, when the size of the batch grows, i.e. new tuples
are added to the batch.
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