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bSolar Energy Research Center SERC-Chile

Faculty of Mathematical and Physical Sciences, University of Chile.
cSection of Railway Engineering,

Delft University of Technology, Delft, The Netherlands
dDelft Center for Systems and Control,

Delft University of Technology, Delft, The Netherlands

Abstract

In this paper, a model predictive control approach for improving the efficiency of
bicycling as part of intermodal transportation systems is proposed. Considering
a dedicated bicycle lanes infrastructure, the focus in this paper is to optimize
the dynamic interaction between bicycles and vehicles at the multimodal urban
traffic intersections. In the proposed approach, a dynamic model for the flows,
queues, and number of both vehicles and bicycles is explicitly incorporated in the
controller. For obtaining a good trade-off between the total time spent by the
cyclists and by the drivers, a Pareto analysis is proposed to adjust the objective
function of the MPC controller. Simulation results for a two-intersections urban
traffic network are presented and the controller is analyzed considering different
methods of including in the MPC controller the inflow demands of both vehicles
and bicycles.

Keywords: Bicycle traffic model, multi-modal traffic control,

model predictive control.

1. Introduction

Congestion in urban areas is one of the biggest issues of modern society. It
has several negative environmental, economical, and health impacts. Thus, it is
essential to develop adequate transportation systems to mitigate the effects of
congestion and to increase the sustainable development of cities. Good solutions
will heighten environmental sustainability, yield societal benefits, and reduce en-
ergy problems. Given the importance of mobility different approaches have been
proposed (Shen and Zhang, 2014; Budnitzki, 2014; Fahad et al., 2014) to dimin-
ish the impacts associated with congestion. In particular, in Schmöcker et al.
(2008); Li et al. (2014); Zhang et al. (2013) optimization-based approaches for
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urban congestion management have been studied, considering real urban scenar-
ios and environmental concerns. However, cycling has emerged strongly in the
last years as an alternative transportation mode, and it needs to be explicitly
considered in signal timing design.
The benefits of using bicycles are numerous (Gatersleben and Haddad, 2010).
The use of a bicycle on a regular basis can play an important role as a mode
of transportation, while also addressing climate change problems, and obtain-
ing energy, health, economic, and quality of life benefits. For short journeys,
the use of bicycles instead of motorized forms of transport can help to reduce
the overall level of fuel consumption, while also decreasing emissions from cold
starts caused by short car trips. Bicyclists can often bypass congestion and
grid-locked traffic, and in some instances may even arrive at their destinations
faster than if they had driven a car. In many countries, the cost of owning
and operating a car can account for almost 18 percent of a typical household’s
income, so bicycling can provide options also for those who would like to save
money (U.S. Department of Transportation, 2010). In addition, regular bicy-
cling is an important form of exercise, which is relevant to reduce risk of coro-
nary heart disease, stroke, diabetes, health costs, and to improve quality of
life for people of all ages. However, the growing use of the bicycles has gener-
ated new challenges (Cheng et al., June 2008; Dijkstra, 2012; Guizhu and Bing,
12-15 Oct 1997; Parkin and Meyers, 2010). For instance, the intense competi-
tion between cyclists and drivers (Figure 1), for the common spaces in the urban
traffic network has consequences in the way urban mobility has been conceived
so far. While “pro-bike” users demand for higher safety measures and priority,
these measures might go in detriment of the other transportation modes that
compete for the use of space, at for instance the traffic intersections.

(a) Bicycle road in Delft - Netherlands (b) Bicycle road in Medellin - Colombia

Figure 1: Examples of bicycle roads around the world

In order to cope with the new challenges, the design of new control strate-
gies that take into account the interaction between the vehicles and the arising
transportation modes is mandatory. In He et al. (2014, 2012); Cesme and Furth
(2014); Guler et al. (2014) different approaches were proposed for the control
of transportation networks with several transportation modes. Additionally, in
Wu and Liu (2014) an overview of methodologies towards an effective use of
high-resolution data for traffic modeling and control purposes is presented. In
this paper, we consider the use of a model-based predictive control approach
(Camacho and Bordons, 1999), since in such a control technique the synergies
among the dynamics of the system are exploited to optimize a general perfor-
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mance criterion that can include multiple objectives (Burger et al., 2013).
In the literature, dynamic models representing the behavior of the flow of ve-
hicles in urban environments can be found in van den Berg et al. (2003, 2004);
Hegyi et al. (2005); Daganzo (1995); Le et al. (2013). However, in the case
of bicycle flows, those models are rare. In fact, to the authors’ best knowl-
edge the interaction between the two flows (vehicles and bikes) has not been
addressed yet. In this paper a dynamic model for the traffic of bicycles is pro-
posed. Such model is based on the S model of Lin et al. (2012), and improved
by Jamshidnejad et al. (2015). Based on this model, the dynamic interaction
between bikes and vehicles is defined and included in the controller. Hence, both
flows can be regulated under the influence of each other. The proposed model is
tested for a network consisting of two multimodal traffic light intersections. The
performance of the MPC controller is compared with a state-feedback control
scheme and a fixed-time strategy. We conclude the MPC controller performs
better than the other controllers when a good estimation of the inflow demands
of both vehicles and bicycles is available.
The next sections of this paper are organized as follows: In Section 2 the ur-
ban traffic and the bicycle traffic model are presented. Then, in Section 3
the formulation of a centralized model predictive controller and of a non-linear
state-feedback controller is presented. Section 4 presents the interaction be-
tween these two models and simulation results. Finally, in Section 5 concluding
remarks are presented.

2. Multi-Modal Traffic Model

2.1. Urban Traffic Model

In this section, the S model (Lin et al., 2011) is considered to represent the
behavior of urban traffic. This model is a simplified version of the BLX model
described in Lin et al. (2012), which is itself a modified version of the model
proposed by van den Berg et al. (2003). The extended version of the S model
capable to consider congestion and emission is described in Jamshidnejad et al.
(2015). The main advantage of the S model over the others is its reduced
computational burden and its degree of representation of the real system, which
is similar to that of more complex models. Therefore, it is better suited for use
in real-time to control systems. In the S model, a link (u, d) represents a road
between intersection u and intersection d as shown in Figure 2. In this model
two states are considered at every time step kd: the total number of vehicles
ηvu,d(kd), and the number of vehicles qvu,d,o(kd) waiting in the queue turning to
the direction o (it could be a left-turn, right-turn, or straight-through queue).
The mathematical model describing the behavior of the urban traffic is deter-
mined by the following equations:

ηvu,d(kd + 1) = ηvu,d(kd) +
(

αventer

u,d (kd)− αvleave

u,d (kd)
)

cd, (1)

qvu,d,o(kd + 1) = qvu,d,o(kd) +
(

αvarriv

u,d,o (kd)− αvleave

u,d,o (kd)
)

cd, (2)

αventer

u,d (kd) =
∑

i∈Iv
u,d

αvleave

i,u,d (kd), (3)
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Figure 2: Two interconnected intersections in an urban traffic network.

αvleave

u,d (kd) =
∑

o∈Ov
u,d

αvleave

u,d,o (kd), (4)

αvleave

u,d,o (kd) = min

{

µv
u,d,o g

v
u,d,o(kd)

cd
,
qvu,d,o(kd)

cd
+ αvarriv

u,d (kd),

βv
u,d,o(kd)(C

v
d,o − ηvd,o(kd))

∑

u∈Iv
d,o

βv
u,d,o(kd)cd

}

, (5)

αvarriv

u,d,o (kd) = βv
u,d,o(kd)α

varriv

u,d (kd), (6)

αvarriv

u,d (kd) =
cd − γv

u,d(kd)

cd
αventer

u,d (kd − τvu,d(kd))

+
γv
u,d(kd − 1)

cd
αventer

u,d (kd − τvarriv

u,d (kd − 1)− 1), (7)

τvu,d(kd) = floor







(

Cv
u,d − qvu,d(kd)

)

lv

Nvlane

u,d vvfree

u,d cd







, (8)

γv
u,d(kd) = rem







(

Cv
u,d − qvu,d(kd)

)

lv

Nvlane

u,d vvfree

u,d

, cd







, (9)

qvu,d(kd) =
∑

o∈Ov
u,d

qvu,d,o(kd). (10)

The parameters cd, µ
v
u,d,o, g

v
u,d,o(kd), β

v
u,d,o(kd), η

v
d,o(kd), and Cv

d,o represent the
cycle time, peak flow, green time of the traffic light, the split ratio, the number
of vehicles in link (d, o) at step kd, and the link capacity (d, o) respectively.
Moreover, lv, Nvlane

u,d , Cv
u,d and vvfree

u,d are the average length of the vehicles, the
number of lanes in link (u, d), the link capacity, and the free flow rate. In
addition, Ov

u,d and Ivu,d are the output and input nodes from link (u, d). The
variable αventer

u,d (kd) is the flow rate entering link (u, d) at time step kd and
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αvleave

u,d (kd) is the leaving average flow rate at time step kd. The flow rate leaving
(u, d) to the direction o is denoted by αvleave

u,d,o (kd), and αvarriv

u,d,o (kd) is the arrival
flow at tail of queue after a time delay τvu,d(kd)cd + γv

u,d(kd).

2.2. Bicycle Traffic Model

In Section 2.1, the S model for urban traffic was introduced. Now, the S model is
used to derive a dynamic model for bicycling. With this aim, consider the bicycle
path shown in Figure 2. In this path, the interaction between vehicles and
bicycles is assumed to happen only at the traffic lights. That is, the scheduling
of the traffic lights determines the behavior of the queues of vehicles and bicycles.
Note that our layout will only hold if bikes are in the right-hand side beside the
road, in a cycle path. Let the pair (u, d) denote a road between an intersection u

to another intersection d on the bicycle road. At every time step kd, let η
b
u,d(kd)

be the number of bicycles and qbu,d,o(kd) be the number of bicycles waiting in
the queue turning to the direction o. From the flow balance at each link, the
change in the number of bicycles at each link is determined by

ηbu,d(kd + 1) = ηbu,d(kd) +
(

αbenter

u,d (kd)− αbleave

u,d (kd)
)

cd, (11)

where αbenter

u,d (kd) and αbleave

u,d (kd) denote the average input and output flows at
time step kd, with:

αbenter

u,d (kd) =
∑

i∈Ib
u,d

αbleave

i,u,d (kd), (12)

αbleave

u,d (kd) = min

{

µb
u,d g

b
u,d(kd)

cd
,
qbu,d(kd)

cd

}

, (13)

with µb
u,d and gbu,d(kd) representing the maximum flow of bicycles and the green

time of the traffic light at time step kd; Iu,d being the set of incoming flows of

link (u, d), and αbleave

u,d,o (kd) being the leaving average flow rate of bicycles, i.e.,

αbleave

u,d,o (kd) = βb
u,d,o(kd)α

bleave

u,d (kd), (14)

where βb
u,d,o(kd) is the fraction the bicycles leaving the link (u, d) and turning

to o. Also, qbu,d(kd) is defined as:

qbu,d(kd + 1) = qbu,d(kd) +
(

αbarriv

u,d (kd)− αbleave

u,d (kd)
)

cd. (15)

In (15), the superscript arriv denotes the arrival flow. Then αbarriv

u,d (kd) is the
arrival flow of bicycles to the link (u, d) and is defined as:

αbarriv

u,d (kd) = αbenter

u,d (kd − τbu,d(kd)), (16)

where

τbu,d(kd) = round

{

Cb
u,d − qbu,d(kd)

lbvbfree

u,d cd

}

, (17)

is the delay of the flow arriving to the tail of the queue, with qbu,d(kd) , Cb
u,d ,

lb, and vbfree

u,d the bicycles waiting to go to link (u, d), the capacity of the link
(u, d), the average length of the bicycles, and the free flow speed, respectively.
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Note that the vehicle and bicycle models have some differences. These differ-
ences are:

1. The output flow for vehicles (5) depends on the available space in the
downstream link. However, since in the case of bicycles it is assumed that
they can be accommodated in smaller spaces, the output flow (13) does
not consider the available space in the downstream link.

2. The arrival flow of vehicles (7) corresponds to an exact discretization of
a system with delay, this equation has two terms; a floor approximation
and its remnant. However, in the arrival flow of bicycles, the delay was
simplified in (16) because we assume that rounding delay was enough to
describe the dynamic behavior of bicycles in our case study. Usually simple
models are more handy for real-life MPC implementations; however, since
the vehicle model is still complex, the total CPU time reduction expected
is not that high. As bicycle flow theory is in its infancy, we expect that
nearly in the future more detailed models will be made available and they
can be compared using the MPC framework in terms of accuracy and
control performance.

In the next section two model-based control strategies are proposed, namely,
a state-feedback and a model predictive control strategy. Since both control
strategies demand the use of a model, the S model and the bicycling model are
used in their designs.

3. Controller Design

3.1. State Feedback Control

State feedback control is a control strategy in which the control actions depend
on the values of the system states. Due to its simplicity, this control strategy
is widely used in applications involving multiple-input multiple-output systems.
By its nature, state feedback control is reactive, that is, once the state trajecto-
ries deviate from their desired values, a control action is produced. In the case
of traffic control, the implementation of an state feedback controller implies the
measurement of the queue lengths associated to each stage.

Let x(kd) =
[

xT
v (kd), xT

b (kd)
]T

and u(kd) =

[

(

gvu,d,o(kd)
)T

,
(

gbu,d,o(kd)
)T

]T

be the state vector for all the links and the vector of inputs respectively, where

xv(kd) =

[

(

ηvu,d(kd)
)T

,
(

qvu,d,o1(kd)
)T

,
(

qvu,d,o2(kd)
)T

,
(

qvu,d,o3(kd)
)T

]T

, where

T is the transpose operator, and xb(kd) =

[

(

ηbu,d(kd)
)T

,
(

qbu,d(kd)
)T

]T

. Then,

the following control law is proposed:

uf (kd + 1) = uf (kd)− kf qTf
(kd)− k

f̂
qT

f̂
(kd), (18)

where kf and k
f̂
are constant, uf (kd) is the green time of the traffic light for

stage f and u
f̂
is the total time for all other stages. The proposed control law

is updated considering a weighted sum of the number of bikes and the number
of vehicles waiting in the intersection. The control action is thus updated in
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accordance with its previous value and the result of the weighted sum. In
(18) qTf

(kd) is the queue associated to stage f and qT
f̂
(kd) is the total queue

associated to the others stages f̂ :

qTf
(kd) =

∑

n∈Uf

qn(kd), (19)

qT
f̂
(kd) =

∑

m∈U
f̂

qm(kd), (20)

where Uf and U
f̂
are the sets the lanes related with each one of the stages.

Let△uf (kd) be the change in the control actions (△uf (kd) = uf (kd)−uf (k−1)),

Kf be the vector of gains, i.e, Kf =
[

kTf , kT
f̂

]T

and Qf be the vector of queue

lengths, i.e. Qf (kd) =
[

qTTf
(kd), qTT

f̂
(kd)

]T

. Then from (18):

△uf (kd) = Kf Qf (kd) (21)

Note that Qf (kd) can be expressed as a function of the states as:

Qf (kd) = Cf x(kd) (22)

where Cf is a vector whose entries are equal to one if the state is a queue and
zero otherwise. Thus, (21) is equivalently rewritten as:

△u(kd) ≡ K C x(kd) (23)

with C a matrix whose rows are the Cf vectors and K a matrix whose rows are
the Kf vectors.

3.2. Centralized Model Predictive Control

Model predictive control (MPC) is an optimal control approach whose objective
is to minimize a cost function inside a feasible region (Camacho and Bordons,
1999). This allows MPC to handle complex systems with input and state con-
straints, making such control scheme one of the most successful advanced control
techniques implemented in industry only second to PID (Proportional-Integral-
Derivative) control (Darby and Nikolaou, 2012; Lee, 2011).
MPC schemes rely on the model accuracy and also on the availability of suffi-
ciently fast computational resources. Figure 3 presents the procedures carried
by an MPC controller. Given the current state, the behavior of the system is
predicted over a prediction horizon of Np time steps, assuming a control horizon
of Nu possible changes in the control actions (one per time step), with Nu ≤ Np,
as shown in Figure 3(a). Taking into consideration the predicted behavior of the
system, the possible variations in the control actions, the objective function of
the controller, and the system constraints, an optimization procedure is carried
out. As a consequence, a sequence of optimal control actions is obtained. From
this sequence, the first element is applied to the system. This procedure is called
receding horizon or moving horizon. Figure 3(b) illustrates this procedure.
In the particular case of the traffic network shown in Figure 2, at each sampling
time step kd the aforementioned procedure is carried out. In this case, the
queues, number of vehicles, and number of bicycles waiting at an intersection
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Predicted states

FuturePast

Current State

k k+1 k+Nu k+Np

Prediction horizon
Control horizon

...

Control actions 

(a) State prediction, control sequence,
control and prediction horizons

Traffic

Network

Optimization

Prediction

Model

traffic lights

MPC Controller

Control

actions

Objectives

ConstraintsState

Prediction

Flows,

queues and

number

of vehicles 

and bicycles 

(b) Optimization procedure inside an
MPC controller

Figure 3: Procedures carried out inside an MPC controller.

are measured. With this information, and using the models described in Section
2, the behavior of the traffic network is predicted. Based on the predictions, the
optimal green times for the traffic light that satisfy the system constraints, are
computed.
Regarding the objective function, from the user point of view, when deciding
which route to follow, the total travel time is not the only criterion. Many other
variables often underestimated in traffic projects can be also considered in our
approach, such as: safety, health benefits, stress, pollution level, etc. The MPC
optimization problem at time step kd is defined as follows:

min
Ukd

J
(

Ukd
, xv(kd), xb(kd), D

v
kd
, Db

kd

)

(24)

subject to

xv(kd + t+ 1) = fv (xv(kd + t), u(kd + t), νv(kd + t))

0 6 ηvu,d(kd + t) 6 Cv
u,d

0 6 qvu,d,o(kd + t), (vehicles)

xb(kd + t+ 1) = fb (xb(kd + t), u(kd + t), νb(kd + t))

0 6 ηbu,d(kd + t) 6 Cb
u,d

0 6 qbu,d,o(kd + t), (bicycles)

0 6 gu,d,o(kd + t− 1) 6 cd

for t = 0, ..., Np − 1, (u, d) ∈ L, o ∈ O (25)

where J is the objective function, xv(kd) = xv
kd
, xb(kd) = xb

kd
are defined as in

Section 3.1; Dv
kd

= [νTv (kd), ..., ν
T
v (kd + Np)]

T and Db
kd

= [νTb (kd), ..., ν
T
b (kd +

Np)]
T are the predicted demand; Ukd

= [uT (kd), ..., u
T (kd + Np − 1)]T is the

control sequence for the traffic signals at the intersections in L; Cv
u,d and Cb

u,d

are the vehicle and bicycle capacity of a link (u, d) respectively.
In this particular approach, Ukd

is the sequence of green signal times gu,d,o(kd)
of all traffic lights in the network. The functions fv(·) and fb(·) are given by the
S model including bicycling. Once the nonlinear optimization problem given by
(24)-(25) is numerically solved, from the control sequence only the first control
action u(kd) is applied at each intersection, and the same procedure is repeated
for the next step kd + 1 considering the new measurements (rolling horizon
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procedure).
For now, we consider just the total time spent (TTS) by bicycles and vehicles:

J (Uk, xv(kd), xb(kd)) =

Np
∑

t=1

(

α
∑

(u,d)∈L

ηvu,d(kd + t)cd

+ (1− α)
∑

(u,d)∈L

ηbu,d(kd + t)cd

)

(26)

where α is a weight value that allows to privilege the vehicles traffic or the
bicycles traffic, i.e, when α = 0.5 the TTS of the vehicles will have the same
importance as the TTS of the bicycles. The selection of α will change the overall
performance in favor of the cyclists or in favor of the vehicles. A pro-bikes would
prefer α = 0, while a pro-vehicles would select α = 1. In this paper, we propose
a methodology that facilitate the visualization of the trade-off’s between vehicles
and bicycles, so that a traffic authority can have a well-informed final decision
on a good α for the whole traffic network.
Note that the coupling of the vehicle and bicycle states is due to the control
actions. This assumption is reasonable in cases where bicycles do not share the
same road that vehicles as shown in Figure 2. In these cases, the interaction
between the two flows occurs because of the scheduling of the traffic lights.
The next section presents the simulation results obtained with the control strate-
gies described throughout this section.

4. Simulation Results

Here we present the results obtained when the model derived in Section 2 is
used to design model-based control strategies such as MPC. As a benchmark,
the urban traffic network shown in Figure 2 is used. This traffic network is
composed by two intersections, each of them with interaction between vehicles
and bicycles. Both the flow of vehicles and the flow of bicycles are regulated by
traffic lights. The parameters used in the simulations are: cycle time cd = 60 s
which is equal to the sampling time, initial value of 20 vehicles in each link and
5 vehicles at each input queue, initial value of 10 bicycles in each link and 0
bicycles at each input queue, length of each link 448 m, average length of each
vehicle is 7 m, average length of each bicycle is 1.7 m, 3 lanes each link for
vehicles and 1 lane for bicycles, free flow speed vfree = 50 km/h for vehicles and
vfree = 15 km/h for bikes, the capacity of each link of vehicles is 192 and 264
for bicycles, and the maximum flow is 1800 veh/h/lane and 300 bikes/h.

Additionally, the inlet flow rate of vehicles and bicycles were considered
time-dependent. The evolution of both inlet flow rates is shown in Figure 4. In
this figure, the label “Demand 1” stands for the inlet flow rates of vehicles at
links (i2, u) and (o2, d), whereas the label “Demand 2” stands for the inlet flow
rates of vehicles at links (i1, u),(i3, u), (o1, d) and (o3, d) (Figure 4(a)). Figure
4(b) presents the time evolution of the inlet flow rate of bicycles at link (i2, u).

In the simulation example the set of stages shown in Figure 5 was used.
Each stage in Figure 5 defines the available set of directions. In stage 1 at
intersection u, bicycles and vehicles are allowed to cross the intersection. In the
same stage, vehicles on the link (u, d) and vehicles coming from (i1, u) are also
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Figure 4: Inlet flow profile to the intersections

allowed to turn right. The stages proposed in this paper have the particularity
that bicycles only are allowed to cross an intersection in stage 1. In this way,
the remaining stages can be used to evacuate the vehicles waiting in the queues
at each link. Moreover, a percentage of the sampling time cd is assigned by the
controller to each stage. Thereby, we assume all directions are allowed at least
once every time step kd. Then, the time assigned to each stage depends on how
long cd is. For model-based controllers, aspects such as the length of the queues
and the expected travel time also influence the timing of each stage.

St�ge 1 St�ge 2 St�ge 3 St�ge 4

Figure 5: Stages of the traffic lights.

Figure 6 presents the behavior of the number of vehicles and the number
of bicycles in the intersection u of the network shown in Figure 2. The result
shown in Figure 6 was obtained considering a time span of 12 h. Over this time
span, it was assumed that all vehicles at (i1, u) headed towards the link (u, i3),
and that only interaction between vehicles and bicycles appeared at links (i1, u)
and (i2, u). The simulation was performed for different values of the green time
assigned to the vehicles. As it can be noticed, as the green time assigned to the
vehicles increases the number of vehicles in the queue decreases, whereas the
number of bicycles rises. The opposite occurs when the green time assigned to
the vehicles decreases.

Figure 7 presents the TTS for the aforementioned 12 h simulations, as a
function of the green time of stage 1. In this figure it is evident that as the time
assigned to stage 1 increases the TTS decreases. However, increasing the time
of stage 1 implies a reduction of the time of the remaining stages. Thereby,
the TTS started to increase again, in all the cases analyzed, once the time
assigned to stage 1 exceeded 16 s. This happened because reducing the time of
stages 2, 3 and 4 produced an increase in the number of vehicles waiting on the
corresponding links, which, as expected, implies an increase in the TTS. Indeed,
if the times for stages 1 to 4 are considered fixed and equal to 15.8 s, 14 s, 16 s,
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and 14.2 s, respectively, the minimal TTS is obtained: 837.84 veh and bike.
Now, the performance of this control scheme is compared with those in-

troduced in Section 3. The comparison is carried out assuming three different
conditions on the demand shown in Figure 4, namely, fixed, measured, and pre-
dictable demand (or fully-known in advance). These demand conditions affect
the performance of the MPC controller, since only in this control strategy the
demand is taken into account in the computation of the times for each stage.
For MPC, a prediction horizon of 6 time steps and a control horizon of 3 were
assumed. In addition to the state feedback (S.F.) controller, two other con-
trollers are considered in the comparison. One is called open loop controller
and uses the same green times for all the stages. The other controller is called
fixed-time, which via an offline optimization the best fixed green times are as-
signed to all the stages during the whole simulation. The sections below present
the simulation results.

4.1. MPC Case 1: Constant demand

In this section, the performance of the state feedback and the MPC controller
derived in Section 3 is compared with the performance of the controllers open
loop and fixed-time.

Since MPC requires an estimation of the demand shown in Figure 4, in
MPC Case 1 was assumed that the predictive model of the demand is constant
throughout the full simulation time. This case holds when there are not available
sensors to measure of the inflow demands. Several values for the constant model
of the demand were analyzed, from 0% to 300%, representing 100% the value

11



Percentage of nominal demand

0% 100% 200% 300%

T
T

S
 +

 T
Q

 (
V

e
h

 a
n

d
 B

ik
e

s
)

15000

20000

25000

30000

35000

(a) Impact of changes in the demand used for
MPC.

TTS + TQ (Veh)

10000 15000 20000 25000

T
T

S
 +

 T
Q

 (
B

ik
e

s
)

7500

8000

8500

9000

9500

10000

10500

(b) Trade-off between vehicles and bicycles.

Figure 8: Sensitivity of controller performance against changes in the demand value - MPC
Case 1.

of the average demand. The average values of Demand 1 and Demand 2 were
264.46 veh/h/lane and 215.78 veh/h/lane respectively. The average value of
bicycles was 49.93 bike/h. Figure 8 shows the total statistics for vehicles and
bicycles for different constant demands assumed by the MPC controller. In
Figure 8(a) marked is the performance obtained when the demand is assumed
90% larger than the average. From the results presented in Figure 8, it is
evident that for the MPC controller the way the demand is incorporated has a
high impact on the performance, in terms of the TTS and the time in queues
(TQ). This is consistent with the claim that the performance of MPC controllers
relies on the accuracy of the prediction model. Regarding the outlying points
in Figure 8, they suggest that using the nominal demand (100%) will reduce
the performance of the controller, due to its underestimation of the demand
during rush hours. Assuming a worst-case scenario, by fixing the demands near
their historical maxima (200% or higher) will provide solutions that are too
conservative, with a lower performance level than in the underestimated case
(100% or lower). To mitigate this effect, the sensitivity analysis suggests to
assume a demand higher than the average but a bit less than the maximum
demand in rush hours, around 190%.

In addition, we must find the appropriate values for α in the objective func-
tion. Different values of α were analyzed and the results are shown in Figure 9,
all of them assuming the demand used by the MPC controller is constant and
90% larger than the average. From the figure, in the “MPC Case 1” there is
a single point in the Pareto front, at α = 0.11. This is not usually the case in
multiobjective analysis, as it will be shown for MPC Case 2 and MPC Case 3,
where Pareto sets with multiple values of α are obtained. In those cases, the α

value can be selected taking into account different criteria, finding a reasonable
trade-off between the two objectives proposed in (25).

Figures 10 shows the evolution of the number of vehicles (Figure 10(a)) and
bicycles (Figure 10(b)) throughout the simulation (in both figures the label
“MPC Case 1” stands for the MPC controller). In this figure, it can be seen
that all controllers performs similarly. Indeed, only the so called open loop
exhibited a significant loss of performance in comparison with the other three.
This is more evident in the case of vehicles than in the case of bicycles, where all
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Figure 10: Number of bicycles and vehicles for open loop, fixed time, state feedback (S.F.) and
MPC Case 1 controllers.(a) Number of vehicles, (b) number of bicycles, (c) queue of vehicles,
(d) queue of bicycles.

controllers performed almost the same (differences just appear after kd = 10 h).
It is important to notice that as the number of vehicles in the network grows,
the congestion increases, and therefore the traffic system is closer to its collapse.
The same claim is also valid for bicycles.

Associated with the number of vehicles and bicycles in the network, and thus
with the congestion, is the formation of queues. Figure 10 presents the evolu-
tion of the number of vehicles (Figure 10(c)) and bicycles (Figure 10(d)) waiting
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in a queue of the traffic network. The number of vehicles waiting in a queue
was computed as the sum of all queues of vehicles/bicycles in the network. In
accordance with the result shown in Figure 10, there are only significant differ-
ences with respect to the open loop controller. The remaining three strategies,
namely, fixed time, state-feedback, and MPC performed almost the same, the
greatest difference with respect to the open loop controller being in the number
of vehicles waiting in a queue. In the case of the bicycles, the differences among
the controllers just appeared after kd = 10 h.

4.2. MPC Case 2: Measured demand

In this section, the demand shown in Figure 4 is assumed to be measured.
At each time step kd the inflow demands of vehicles and bicycles are known but
not its evolution, i.e., the demand is not predictable. Hence, in order to carry
out the prediction of the behavior of the network, MPC Case 1 will assume the
demand equal to its measured value and constant during the prediction horizon.
In order to find the appropriate values for α, several simulations were made to
evaluate the performance of vehicles and bicycles. The results are shown in
Figure 11 and α = 0.11 is marked in the figure. The selected α gives full
priority to the vehicles. However, the methodology is generic and a different α
belonging to the Pareto front could be used in benefit of the cyclists.
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Figure 11: MPC Case 2: Trade-off between vehicles and bicycles for different values of α.

In Figure 12 the evolution of the number of vehicles (Figure 12(a)) and
bicycles (Figure 12(b)) in the traffic network is presented (here, the label “MPC
Case 2” stands for the MPC controller). As it can be noticed in Figure 12(a), the
knowledge of the value of the demand significantly improved the performance
of the MPC controller. Indeed, with respect to the other three controllers, the
MPC reduced the number of cars almost with a 50% during the first peak of
demand. In the second peak of demand, fixed time, state-feedback, and MPC
controllers performed almost the same. Also, with respect with the result shown
in Figure 10(a), the improvement of MPC was considerable. Almost a reduction
of 50% was achieved by including the measured value of the demand. However,
despite the improvement for the vehicles, the behavior for the bicycles remained
the same. In fact, the number of bicycles with MPC tended towards the number
of bicycles with the open loop strategy. This is due to the way the demand of
bicycles behaves. As shown in Figure 4(b), the demand of bicycles is less smooth
and less predictable than the demand of vehicles. Thus, the currently measured
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Figure 12: Number of bicycles and vehicles for open loop, fixed time, state feedback (S.F.)
and MPC Case 2 controllers. (a) Number of vehicles, (b) number of bicycles, (c) queue of
vehicles, (d) queue of bicycles.

value provides little information about how the demand of bicycles is expected
to be.

A similar behavior can be noticed in the number of vehicles/bicycles waiting
in a queue. As for the number of vehicles in the network, including the measured
value of the demand allowed a reduction of 50% in the number of vehicles in the
first peak of demand, whereas the behavior during the second peak was almost
the same for the fixed time, state-feedback, and MPC controllers. Furthermore,
in comparison with the results shown in Figure 10(c) a reduction of 50% was also
accomplished in the number of vehicles during both peaks of demand, namely,
at 4 and 8 hours. Nevertheless, as expected from the results in Figure 12, in
comparison with the previous case, a slight improvement is observed in the
behavior of the vehicles (Figure 12(c)) and bicycles (Figure 12(d)) waiting in a
queue when the demand is assumed measured in the MPC controller.

4.3. MPC Case 3: Predictable demand

In this section, in addition to the possibility of measuring the demand it is
assumed that the function describing the demand profiles shown in Figure 4 is
known. That is, given the measured demand it is possible to perfectly estimate
its behavior several time steps ahead. In order to select the parameter α for
this case, several simulations were made to evaluate the performance of vehicles

15



and bicycles. The results are shown in Figure 13 where an α = 0.1 that benefit
the most to the vehicles is marked.
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Figure 13: MPC Case 3: Trade-off between vehicles and bicycles for different values of α.

Figure 14 shows the results obtained in the simulations (here the label “MPC
Case 3” stands for the MPC controller). In comparison with the case shown
in Figure 10, the performance definitely is improved. But, notwithstanding the
additional information provided by the demand estimation, the results obtained
are only slightly different from the results presented in Figure 12. In fact, the
difference between those two results is in the number of bicycles during the
second peak of demand. In this case, perfectly estimating the demand allowed
reducing the number of bicycles to the same level shown in Figure 10.

Figure 14 presents the behavior of the vehicles (Figure 14(c)) and bicycles
(Figure 14(d)) waiting in a queue, when the demand shown in Figure 4 is per-
fectly estimated. Similar as in the case of the number of vehicles/bicycles in
the network, in this figure the main differences are in the number of bicycles
in the queues. In this case the number of bicycles was reduced in comparison
with the results presented in Figure 12(d). As for the number of bicycles in the
network, the estimation allowed to achieve a similar number of bicycles as in
Figure 10(d).

Table 1: Performance comparison of TTS and TQ for each scenario in the MPC cases. Im-
provement is presented with respect to open loop case.

Scheme
TTS TTS TQ TQ Improvement %

(veh.h) (bike.h) (veh) (bike) TTS TQ
Open loop 792,21 209,90 28.682 9.568 – – – –
Fixed time 646,94 190,90 12.781 7.289 16.39 47.53
State Feedback 647,71 186,15 13.085 6.718 16.79 48.23
MPC Case 1 693,04 192,99 18.041 7.538 11.58 33.12
MPC Case 2 608,91 201,68 8.512 8.582 19.11 55.31
MPC Case 3 609,37 192,13 8.579 7.436 20.02 58.13

Table 1 summarizes the results presented in Sections 4.1 to 4.3. Here, the
improvement was computed in two steps: first the TTS for bicycles and vehicles
of each controller was added up; then, the relative deviation with respect to
the result for the open loop controller was calculated for each of the remaining
controllers. In this table the improvement and deterioration of the MPC are
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Figure 14: Number of bicycles and vehicles for open loop, fixed time, state feedback (S.F.) and
MPC Case 3 controllers.(a) Number of vehicles, (b) number of bicycles, (c) queue of vehicles,
(d) queue of bicycles.

evident additional information is added. For instance, as it can be seen the
TTS of vehicles decreases from MPC Case 1 to MPC Case 2, and remains con-
stant from MPC Case 2 to MPC Case 3. This implies that adding information
enhances the performance of the controller.

However, analyzing the TTS for the bicycles it can be noticed that, as men-
tioned in Section 4.2, the addition of the measurement of the demand increases
the TTS, but with the perfect estimation of the demand the TTS decreases
nonetheless. The use of the perfect estimation of demand just produced the
same result as if the bicycles demand were considered fixed, with a value over
its expected average (similar statements apply for the TQ index). This situation
has to do with the selection of the parameter α, which was chosen in benefit of
the vehicles. Besides, analyzing the percentage of improvement with respect to
the open loop controller, MPC Case 2 and MPC Case 3 MPC controllers yield
the highest improvements. Figure 15 also support these statements. A real-
life implementation of MPC Case 3 would require a very sophisticated model
that exactly predicts the future demands, probably combining off-line historical
information with on-line measurements of the inflow demands. MPC Case 2
would only require the installation of inflow demand sensors.

Despite the similarities among the responses of the controllers, there still are
some differences among them. For instance, the control actions applied to the
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Figure 15: Number of bicycles and vehicles.

system. Figure 16 presents the control actions applied by each of the controllers
previously analyzed (this figure has the same legends as Figure 15). Specifically,
stages 1 and 2 of intersections u (Figures 16(a) and 16(b) respectively) and d

(Figures 16(c) and 16(d) respectively) are shown. As it can be noticed in this
figure, controllers with similar performance in terms of TTS and/or TQ applied
different control actions. In particular, the perfect estimate of the demand
reduced the high variations of the control actions by MPC. The use of the
measured demand in the predictions produced a similar effect on MPC labeled
“MPC Case 2”, but the changes in the control actions are more evident. From
these statements it can be concluded that using the wrong demand causes more
variations in the control signals. Further concluding remarks and discussion of
the results are given in the next section.

5. Conclusions

In this paper, we have incorporated explicitly the dynamic effect of bicy-
cling in a systematic methodology to control multi-modal traffic lights based
on a model predictive control approach. The case studies presented show the
importance for MPC of measuring or estimating both, the vehicle demand and
bicycle demand. In “MPC Case 1” traffic demand is not measured, producing
a low controller performance. When the demand is measured (“MPC Case 2”),
the controller improves performance considerably. Finally, in “MPC Case 3”
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Figure 16: Control actions stage 1 and stage 2, for the intersections u and d

the demand is known and it has the best performance. However, real-life imple-
mentation of “MPC Case 3” would require a sophisticated model to accurately
predict the demand value.

The inclusion of bicycling in the urban traffic faces various challenges. Lim-
ited knowledge is available about cycling flows and models at all the levels
of bicycling, from cyclist behavior, activity scheduling, route choices, learning
mechanisms of optimal routes, interaction with automobiles when separate cy-
cle paths are not available. Interaction with the infrastructure, not just at the
level of traffic lights, but also with parking facilities, combination of private
and shared-bikes platforms, electric bikes for difficult high slopes and the use of
crowdsourcing data of cyclists are some of the topics of further research.

Although bicycle flow theory is in its early stage of development, we believe
that the integration of new bicycle models, including social, temporal, and spa-
tial characteristics is very important to facilitate the integration of cyclists in
the multimodal network. Models such as continuum models, discrete models,
and game theory models can enhance the decision making of the MPC and
increase the level of service from the cyclists’ point of view.
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Schmöcker, J.-D., Ahuja, S., Bell, M. G., 2008. Multi-objective signal control
of urban junctions – Framework and a London case study. Transportation
Research Part C: Emerging Technologies 16 (4), 454–470.

Shen, W., Zhang, H., 2014. System optimal dynamic traffic assignment: Prop-
erties and solution procedures in the case of a many-to-one network. Trans-
portation Research Part B: Methodological 65, 1–17.

21



U.S. Department of Transportation, 2010. The national bicycling and walking
study: 15-year status report. Tech. rep.

van den Berg, M., De Schutter, B., Hegyi, A., Hellendoorn, J., Jan. 2004. Model
predictive control for mixed urban and freeway networks. In: Proceedings of
the 83rd Annual Meeting of the Transportation Research Board. Washington,
DC, paper 04-3327.

van den Berg, M., Hegyi, A., De Schutter, B., Hellendoorn, J., Dec. 2003. A
macroscopic traffic flow model for integrated control of freeway and urban
traffic networks. In: Proceedings of the 42nd IEEE Conference on Decision
and Control. Maui, Hawaii, pp. 2774–2779.

Wu, X., Liu, H. X., 2014. Using high-resolution event-based data for traffic mod-
eling and control: an overview. Transportation Research Part C: Emerging
Technologies 42, 28–43.

Zhang, L., Yin, Y., Chen, S., 2013. Robust signal timing optimization with envi-
ronmental concerns. Transportation Research Part C: Emerging Technologies
29, 55–71.

22



Abstract

In this paper, a model predictive control approach for improving the efficiency of
bicycling as part of intermodal transportation systems is proposed. Considering
a dedicated bicycle lanes infrastructure, the focus in this paper is to optimize
the dynamic interaction between bicycles and vehicles at the multimodal urban
traffic intersections. In the proposed approach, a dynamic model for the flows,
queues, and number of both vehicles and bicycles is explicitly incorporated in the
controller. For obtaining a good trade-off between the total time spent by the
cyclists and by the drivers, a Pareto analysis is proposed to adjust the objective
function of the MPC controller. Simulation results for a two-intersections urban
traffic network are presented and the controller is analyzed considering different
methods of including in the MPC controller the inflow demands of both vehicles
and bicycles.
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