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SUMMARY

In this paper, we propose a tractable scenario-based Receding Horizon Parameterized Control (RHPC)
approach for freeway networks. In this approach, a scenario-based min-max scheme is used to handle
uncertainties. This scheme optimizes the worst case among a limited number of scenarios that are considered.
The use of parameterized control laws allows us to reduce the computational burden of the robust control
problem based on the multi-class METANET model w.r.t. conventional model predictive control. To assess
the performance of the proposed approach, a simulation experiment is implemented, in which scenario-
based RHPC is compared with nominal RHPC, standard control ignoring uncertainties, and standard control
including uncertainties. Here, the standard control approaches refer to state feedback controllers (such as
PI-ALINEA for ramp metering). A queue override scheme is included for extra comparison. The results
show that nominal RHPC approaches and standard control ignoring uncertainties may lead to high queue
length constraint violations, and including a queue override scheme in standard control may not reduce
queue length constraint violations to a low level. Including uncertainties in standard control approaches can
obviously reduce queue length constraint violations, but the performance improvements are minor. For the
given case study, scenario-based RHPC performs best as it is capable of improving control performance
without high queue length constraint violations.

KEY WORDS: scenario-based control; receding horizon parameterized control; min-max scheme;
uncertainties; multi-class traffic

1. INTRODUCTION

According to different points of focus, there are various approaches for realizing traffic management.

On-line model-based control approaches are receiving more and more attention in literature recently,

due to their potential for improving control performance [1–4]. In on-line model-based control

approaches, traffic models are critical, since they are used for determining control decisions.

Macroscopic models, which are less accurate than microscopic models in general, are often used

for on-line model-based traffic control in order to reduce the computational complexity with respect

to microscopic models.

According to the level of aggregation, macroscopic traffic models can be divided into

homogeneous models and heterogeneous models. In homogeneous models, all the vehicles are

assumed to have the same characteristics, and the differences among different types of vehicles

∗Correspondence to: Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands. E-mail:s.liu-1@tudelft.nl.
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are neglected. In contrast, in heterogeneous multi-class models, these differences are considered,

and vehicles are divided into different classes, such as cars, trucks, vans, and so on. The density of

vehicles can be maintained around a critical value corresponding to maximum flow with a single-

class fundamental diagram for mixed traffic. However, for Model Predictive Control (MPC), in

which the objective function depends on the dynamics of the controlled system, a more accurate

model implies better prediction of future characteristics of the controlled system, thus the controller

has better information for determining control inputs. In general, the heterogeneous multi-class

models are more accurate than homogeneous sing-class models, without increasing the computing

complexity significantly. Some researchers have investigated the advantages of multi-class models.

Wong and Wong [5] extended the LWR model to a multi-class version, and found that the multi-

class LWR model can reproduce some traffic phenomena (e.g. two-capacity phenomenon, hysteresis

phenomenon of phase transition and platoon dispersion) that the single-class case cannot reproduce.

Schreiter et al. [6] developed a multi-class controller that rerouted the traffic class specifically, and

showed that a multi-class controller outperformed a single-class controller. Liu et al. [7] extended

METANET to a multi-class version, in which each vehicle class is assumed to be limited within its

assigned space of the road, subjecting to its own fundamental diagram. Note, however, that there

are interactions among different classes of vehicles, i.e. the space fractions of different classes of

vehicles vary with the densities of all classes of vehicles. Numerical experiments show that the

multi-class METANET can improve performance more than single-class METANET. In addition,

the calibration and analysis for this multi-class METANET has been done in [8], where it was fitted

with data generated by a microscopic simulator VISSIM with real demands.

Various uncertainties exist in the on-line model-based control procedure for traffic networks. In

particular, demand uncertainties, model uncertainties, missing samples, sensor errors, and delays

are all significant factors in on-line model-based traffic control. In multi-class traffic models, the

fractions of different vehicle classes in the demands at the origins of the network are needed. Thus,

the uncertainties in the estimation of these fractions will affect the control performance. Considering

these uncertainties in the on-line model-based control design is important for improving the control

performance and for ensuring the satisfaction of constraints. In face of uncertainties in the control

procedure, robust control aims to maintain the control performance within a specified range and to

ensure the satisfaction of constraints. There are two strategies to realize robust control for nonlinear

systems. One method is to keep the cost function to be a strictly decreasing Lyapunov function

when the uncertainties are also included [9, 10]. The other method is to consider the uncertainties

in the control design, where both the optimality of performance and the constraint satisfaction

are considered for all possible uncertainties. The robust control problem is computationally very

complex and many approaches have been developed to deal with it. The min-max approach [11, 12],

which considers the worst case among all possible uncertainties, is one of the most popular

approaches. However, the min-max approach is conservative because the worst-case scenario does

not always occur.

Some robust control approaches have been developed for traffic networks. Ukkusuri et al. [13]

proposed a robust optimal traffic signal control approach for urban networks with the future demand

assumed to be uncertain, and they developed a robust system-optimal control approach with an

embedded cell transmission model. Similarly considering the uncertainties in the origin-destination

(OD) demands, Jones et al. [14] proposed the near-Bayes near-Minimax method for robust traffic

signal control for an urban network, and obtained a good compromise solution between the Bayes

case and the Minimax case. Tettamanti et al. [15] developed a min-max MPC approach for urban

networks to minimize the objective function in the worst-case scenario. Zhong et al. [16] dealt with

the robust control problem by using a min-max scheme, and solved the optimal control for freeway

networks using a set of recursive coupled Riccati difference equations. Liu et al. [17] developed

the scenario-based Receding Horizon Parameterized Control (RHPC) approach for single-class

METANET, and found that the nominal RHPC approach can lead to high queue length constraint

violations and the scenario-based RHPC approach can effectively reduce queue length constraint

violations.
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The contributions of the current paper are as follows. We propose a tractable scenario-based

Receding Horizon Parameterized Control (RHPC) approach for freeway networks based on a multi-

class traffic model. RHPC [18] is a variation of standard Model Predictive Control (MPC), which

is based on dynamic model prediction and a receding horizon approach. In MPC, the control inputs

are directly optimized for the whole control horizon, and the number of variables in the optimization

problem is determined by the length of the control horizon. In contrast, in RHPC, the control inputs

are parameterized and only the parameters of the control laws are optimized instead of all control

inputs. These parameters can be time-varying or constant, and therefore the number of variables in

the optimization problem can be decreased with respect to the MPC case. Several parameterized

laws for freeway networks are given in this paper. Moreover, we use a scenario-based scheme to

deal with the robust control problem, considering a limited set of scenarios for the uncertainties to

obtain the worst-case scenario, which is actually optimized in the min-max scheme. The scenario-

based scheme has been discussed and analyzed in [19, 20]. The motivation for adopting this scheme

is to reduce the computational complexity in comparison with other applications of robust control

for traffic networks in which the worst case among all possible scenarios for the uncertainties is

optimized. Intuitively, considering a limited number of scenarios for the uncertainties makes the

control design method tractable relative to considering all the possible scenarios. Queue length

constraints are often considered in freeway networks, and here we include a soft penalty to limit the

queue lengths. The reason for not using hard constraint is to avoid infeasible optimization problems.

In addition, we implement a case study and compare the scenario-based RHPC with nominal RHPC

for multiple scenarios, to illustrate the effectiveness of this new approach.

This paper is organized as follows. Section 2 is about the preliminaries of this paper; this section

introduces the multi-class METANET model that is used for control design in this paper, and also it

gives the basic concepts of robust MPC. In Section 3, we propose the tractable scenario-based RHPC

approach for freeway networks, including analysis of uncertainties, the definition of the performance

index, the new RHPC laws based on the multi-class METANET model, and the development of the

scenario-based RHPC approach for freeway networks. In Section 4, we implement a case study

to assess the novel approach. Finally conclusions and several future research topics are given in

Section 5.

2. PRELIMINARIES

2.1. Traffic Flow Model: Multi-Class METANET

Inspired by the approach in [21] for extending the Lighthill-Whitham-Richards (LWR) model

[22, 23] into a multi-class version, Liu et al.[8] developed a multi-class METANET model based

on the single-class METANET model [24]. This multi-class METANET model is chosen as the

prediction model for traffic flows in this paper. Freeway stretches are represented by links (indexed

by m) and the links are divided into several homogeneous segments (indexed by i). The segments

are described by traffic flow variables of each class (indexed by c) of vehicles: traffic outflow of

vehicles qm,i,c(k) (veh/h), segmental density of vehicles ρm,i(k) (veh/km/h), and space-mean speed

of vehicles vm,i,c(k) (km/h). In addition, nodes are used for describing changes in the geometry of

the roads. In our multi-class METANET model, each vehicle class is assumed to be limited within

its assigned space of the road, subjecting to its own fundamental diagram. This assigned space is

described by the space fraction αm,i,c of vehicles of class c. Note, however, that in our multi-class

METANET model there are interactions among different classes of vehicles, i.e. the space fractions

of different classes of vehicles vary with the densities of all classes of vehicles.
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The flow, density, and speed equations for vehicles of class c are as follows:

qm,i,c(k) = ρm,i,c(k)vm,i,c(k)λm (1)

ρm,i,c(k+1) = ρm,i,c(k)+
T

Lmλm

(qm,i−1,c(k)−qm,i,c(k)) (2)

vm,i,c(k+1) = vm,i,c(k)+
T

τm,c

(

Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

− vm,i,c(k)

)

+
T

Lm

vm,i,c(k)(vm,i−1,c(k)− vm,i,c(k))

−
T ηm,c

Lmτm,c

ρm,i+1,c(k)−ρm,i,c(k)

ρm,i,c(k)+κm,c
(3)

Vm,c (ρm,i,c(k)) = vfree,m,c exp

(

−1

am,c

(

ρm,i,c(k)

αm,i,c(k)ρcrit,m,c

)am,c
)

(4)

in which T is the simulation time step length, k is the simulation time step counter corresponding to

the time instant t = kT , λm is the number of lanes in link m, Lm is the length of link m, τm,c, ηm,c,

κm,c, and am,c are class-dependent model parameters, Vm,c (ρm,i,c(k)) is the desired speed at density

ρm,i,c(k), vfree,m,c is the free flow speed of vehicles of class c in link m, and ρcrit,m,c is the critical

density of vehicles of class c in link m.

Moreover, dynamic speed limits can be included through the desired speed equation as follows

[1]:

Vm,c (ρm,i,c(k)) = min

(

vfree,m,c exp

(

−1

am,c

(

ρm,i,c(k)

αm,i,c(k)ρcrit,m,c

)am,c
)

,(1+ χm,c)vcontrol,m,i(k)

)

(5)

with vcontrol,m,i the dynamic speed limit in segment i of link m and 1+ χm,c the non-compliance

factor, which is used for describing the phenomenon that some drivers may violate the dynamic

speed limits.

The queue length at origin o (mainstream origin or on-ramp) is described as

wo,c(k+1) = wo,c(k)+T (do,c(k)−qo,c(k)) (6)

where wo,c is the queue length of vehicles of class c at the origin o, do,c is the origin demand of

vehicles of class c, and qo,c is the origin outflow of vehicles of class c.

The outflow of origin o is modeled as

qo,c(k) = min

[

do,c(k)+
wo,c(k)

T
,αm,1,c(k)Co,cro(k),

αm,1,c(k)Co,c

(

ρmax,m,c −ρm,1,c(k)/αm,1,c(k)

ρmax,m,c −ρcrit,m,c

)

]

(7)

where αm,1,c is the space fraction of vehicles of class c in the segment that the origin o is connected

to, ρm,1,c is the density of vehicles of class c in that segment, ρmax,m,c is the maximum density of

vehicles of class c in the link m that the origin is connected to, Co,c is the theoretical maximum

capacity of origin o if there would be only vehicles of class c, and ro is the ramp metering rate for

on-ramp o.

In order to determine the space fractions of vehicles of class c, three traffic regimes are

distinguished [8]: free flow, congestion, and semi-congestion.

2.1.1. Free-flow In this case, all classes of vehicles are in the free-flow regime, which means that

the equivalent density of each vehicle class in its assigned space is no more than its critical density.
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The space fraction of vehicle class c is then taken as

αm,i,c(k) =

ρm,i,c(k)
ρcrit,m,c

∑
nc
j=1

ρm,i, j(k)
ρcrit,m, j

(8)

where nc is the number of vehicle classes.

2.1.2. Semi-congestion Here some classes of vehicles are in the free flow regime, while other

classes of vehicles are in the congested regime. The space fractions of the vehicle classes in free

flow are

αm,i,c =
ρm,i,c(k)

ρcrit,m,c
for c ∈ Sm,i,free(k) (9)

where Sm,i,free(k) is the set of all vehicle classes that are in free flow in segment i of link m at time

step k. The space fractions of the congested vehicle classes are computed through the following

system of equations:











Vm,c

(

ρm,i,c(k)

αm,i,c(k)

)

=Vm,lm,i(k)

(

ρm,i,lm,i(k)

αm,i,lm,i(k)

)

for c ∈ Sm,i,cong(k)/{lm,i(k)}

∑c∈Sm,i,cong(k) αm,i,c(k) = 1−∑ j∈Sm,i,free(k)
αm,i, j(k)

(10)

where Sm,i,cong(k) is the set of all vehicle classes that are in congested mode in segment i of link m

at time step k, and lm,i(k) is arbitrary element in Sm,i,cong(k).

2.1.3. Congestion All classes of vehicles are in the congested mode, and the desired speeds of all

classes of vehicles are equal. The space fractions can be obtained by solving the following system

of equations:



































Vm,1(
ρm,i,1

αm,i,1
) =Vm,2(

ρm,i,2

αm,i,2
)

...

Vm,nc−1(
ρm,i,nc−1

αm,i,nc−1
) =Vm,nc(

ρm,i,nc

αm,i,nc
)

nc

∑
c=1

αm,i,c = 1

(11)

For more details about the multi-class METANET model, we refer the interested reader to [8].

2.2. Robust Control

We first give some background on robust MPC, which is the basis of deriving the scenario-based

RHPC approach. Robust MPC takes uncertainties into account for determining control inputs. This

is different from nominal MPC, in which the noncontrollable inputs are assumed to be known, and

uncertainties are neglected in the control design step.

Assume that the traffic network is described as a discrete-time nonlinear system of the following

form:

x(k+1) = f (x(k),u(k),D(k),ω(k)) (12)

where x represents the system variables (e.g. density and speed), u represents the control input

(e.g. ramp metering rates and dynamic speed limits), D represents the non-controllable input (e.g.

demands), and ω represents the uncertainties.

The objective function of the MPC problem is based on the prediction x̃(k) of the states over the

prediction period (with length Np), on the control inputs ũ(k) over the control period (with length
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Nc ≤ Np), and on the non-controllable input D̃(k) which is assumed to be known or estimated via an

adequate prediction model. They are defined as follows:

x̃(k) = [xT (k+1), . . . ,xT (k+Np)]
T (13)

ũ(k) = [uT (k), . . . ,uT (k+Nc −1)]T (14)

D̃(k) = [DT (k), . . . ,DT (k+Np −1)]T (15)

where control input u(k+ l) equals u(k+Nc −1) for l = k+Nc, . . . ,k+Np.

For predicting the future system states, the non-controllable inputs are usually assumed to be

known nominal values in nominal MPC. Thus the prediction states yielded by the nonlinear model

are influenced by the realization ω̃(k) of the uncertainties over the prediction period:

ω̃(k) = [ωT (k), . . . ,ωT (k+Np −1)]T (16)

In case the real values of the non-controllable inputs and the nominal values are significantly

different, the control decisions given by nominal MPC may not satisfy the control requirements.

However, the realizations of the uncertainties ω̃(k) are not known a priori, and the robust MPC

problem is complex if all possible scenarios of uncertainties are considered. The robust MPC

problem based on the min-max scheme is formulated as follows [11]:

min
ũ(k),x̃(k)

max
ω̃(k)∈W

J(x̃(k), ũ(k), D̃(k), ω̃(k)) (17)

subject to

x(k+ l +1) = f (x(k+ l),u(k+ l),D(k+ l),ω(k+ l)),

l = 0,1, . . . ,Np −1, (18)

x(k) = xk, (19)

u(k+ l) = u(k+Nc −1), l = Nc, . . . ,Np −1, (20)

x(k+ l) ∈ X, l = 1,2, ...,Np, (21)

u(k+ l) ∈ U, l = 0,1, ...,Nc −1 (22)

for all ω̃(k) ∈W

where xk represents the state at time step k, W represents the set of all the possible realizations of

uncertainties over the prediction horizon, X is the set containing all the feasible state values, and U

is the set containing all the feasible control inputs values.

According to the receding horizon scheme, only the first element u(k) of optimal input sequence

ũ(k) is applied to the traffic network. After that, the prediction horizon shifts to the next control

step, and the control inputs are optimized again. For the robust problem consisting of (17)-(22),

computational complexity increases rapidly as the size of traffic network grows, making the problem

intractable in practice. As a solution we propose a novel tractable scenario-based RHPC approach

for freeway networks.

3. TRACTABLE SCENARIO-BASED RHPC FOR FREEWAY NETWORKS

3.1. Uncertainties in Freeway Networks

The non-controllable inputs (D̃) in on-line model-based control for freeway networks include the

mainstream demands, on-ramp demands, boundary conditions, etc. As an example, let us here

consider the uncertainties in the traffic demand, including the uncertainties in the total value of

demand and the fractions of different classes of vehicles in the demand. Note, however, that other

types of uncertainties can also be dealt with the scenario-based RHPC approach.

The nominal demand can be estimated in various ways, based on the historical data and on-line

measurement data. An intuitive way is that the nominal demand is estimated as the average of
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Figure 1. An example of real demands and nominal demand

historical data. Considering the difference among different weekdays and weekends, the nominal

demand can be estimated separately from Monday to Sunday. Thus the characteristics of different

weekdays and weekends can be described more accurately. Moreover, if on-line measurements

are available, shifting and scaling the nominal demand according to these measurements can also

improve the estimation. In addition, another way is to build a library of possible uncertainties and

their possibilities of appearance.

The measured total mainstream demands of the Dutch A13 freeway near Rijswijk on several

Fridays in 2013 and 2014 are shown in Figure 1. The real demand are plotted with the same line

type and these real demand profiles overlap with each other. Based on these demands, a nominal

demand is estimated as the average of these historical real demands and shown in Figure 1 with

a different line type. This figure shows that real demands fall within a confidence band around the

nominal demand. Thus it makes sense to model the uncertainties in the total demand as noise limited

by a certain lower bound and upper bound.

The estimations of the fractions of different classes of vehicles can be obtained in a similar way

as the estimation of the total demand profile. However, the estimations of these fractions ask for

separate measurement for different vehicle classes, which requires cameras to be installed along

freeway stretches. Due to economic reasons and practicability, installing cameras in high density

in a freeway network is not that common yet. Therefore, the uncertainties in the estimation of the

fractions of different classes of vehicles are nonnegligible in robust control for freeway networks

based on multi-class traffic models.

3.2. Performance Index for Freeway Networks

The Total Time Spent (TTS) represents the total time that is needed for all vehicles in the traffic

network to leave the network. In on-line model-based control for freeway networks, the TTS is

often used as performance index. Here we also use it as the performance index, but it is important

to note that other performance indices such as Total Emissions (TE) can also be included according

to the aim of the traffic control. Ramp Metering (RM) and Variable Speed Limits (VSL) are chosen

as control measures, since they are efficient in decreasing TTS and easy to realize [25, 26].
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In this paper, as an example the multi-class METANET model is used as the prediction model,

and TTS* can be defined as follows:

TTS(kc)=T

(kc+Np)M−1

∑
j=kcM

nc

∑
c=1

pc

(

∑
(m,i)∈Iall

ρm,i,c( j)Lmλm +∑
o∈Oall

wo,c( j)

)

(23)

in which kc is the control time step counter corresponding to the time instant t = kcTc, Tc is the

control time step length†, nc is the number of vehicle classes, Iall is the set of the indices of all

pairs of segments and links, Oall is the set including the indices of all origins, and pc represents the

passenger car equivalents (pce) for vehicle class c:

pc =
Lc

Lcar
(24)

where Lc is the length of vehicles of class c, and Lcar is the length of the reference class car.

Without including uncertainties, the objective function can be defined as

J(kc) = ξTTS
TTS(kc)

TTSnom
+

ξramp

NcNramp

kc+Nc−1

∑
j=kc

∑
o∈Oramp

∥

∥

∥
rctrl

o ( j)− rctrl
o ( j−1)

∥

∥

∥

+
ξspeed

NcNVSL

kc+Nc−1

∑
j=kc

∑
(m,i)∈Ispeed

∥

∥

∥

∥

∥

vctrl
m,i( j)− vctrl

m,i( j−1)

vfree,m,max

∥

∥

∥

∥

∥

(25)

in which TTSnom is the TTS value for some nominal control profile, rctrl
o (kc) is the ramp metering

rate at origin o at control step kc, ro(k) = rctrl
o (kc) for k = Mkc + 1, . . . ,(M + 1)kc, vctrl

m,i(kc) is

the variable speed limit in segment i of link m at control step kc, vcontrol,m,i(k) = vctrl
m,i(kc) for

k = Mkc + 1, . . . ,(M + 1)kc with M = Tc/T assumed to be an integer, vfree,m,max is the maximum

free-flow speed among all classes of vehicles in link m, Oramp includes all metered origins, Ispeed

includes all the segments with speed limits, ξTTS, ξramp and ξspeed are positive weights, Nramp is

the number of metered on-ramps, and NVSL is the number of variable speed limits. In the objective

function (25) the second term and the third term are used for penalizing the variations of the control

inputs. The second and third terms would limit the freedom for fully optimizing the first term.

However, in general the extent to which this occurs is case-dependent and cannot be determined a

prior.

Note that the three terms in (25) are all normalized, so that they have the same magnitude if their

weights are all the same (ξTTS=ξramp=ξspeed). The first term is normalized with nominal TTS which

is taken as the TTS for the case without control and uncertainties here. The second term includes

Nc control time steps and Nramp metered on-ramps, and ramp metering rates are within [0, 1]. Thus

the second term is normalized by NcNramp. The third term includes Nc control time steps and NVSL

variable speed limits, and variable speed limits are within [0, vfree,m,max]. Hence the third term is

normalized by NcNVSLvfree,m,max. In addition, setting low weights for the last two terms can make

the performance index TTS dominate in the objective function.

3.3. RHPC Laws for Freeway Networks

The RHPC approach for traffic networks has been developed by Zegeye et al. [18] based on a

receding-horizon control scheme and parameterized control laws for single-class traffic models.

Hart [27] also investigated some parameterized MPC laws for freeway networks based on single-

class traffic model. In the RHPC approach, the control inputs are parameterized as a function

of traffic states, and the parameters in these control laws are optimized instead of the full input

∗Note that the TTS index here includes the TTS for all segments, the TTS for all origins, and the TTS for all on-ramps,
and they are treated equally, i.e. their weights equal 1.
†Note that in Section 2 we assume Tc = T . Now we consider the general case with Tc 6= T .



SCENARIO-BASED RHPC FOR MULTI-CLASS FREEWAY NETWORKS 9

sequence ũ(kc). As an extension of [18, 27], here we present new RHPC laws for freeway networks

based on multi-class models:

vctrl
m,i(kc +1) =θm,i,0(kc)vfree,m,max +θm,i,1(kc)

nc

∑
c=1

βm,i,c(kc)
vm,i+1,c(kc)− vm,i,c(kc)

vm,i+1,c(kc)+κv

+θm,i,2(kc)
nc

∑
c=1

βm,i,c(kc)

ρm,i+1,c(kc)

αm,i+1,c(kc)
−

ρm,i,c(kc)

αm,i,c(kc)

ρm,i+1,c(kc)

αm,i+1,c(kc)
+κρ

(26)

vctrl
m,i(kc +1) =θm,i,0(kc)vfree,m,max +θm,i,1(kc)

nc

∑
c=1

βm,i,c(kc)
Vm,c(ρm,i,c(kc))− vm,i,c(kc)

Vm,c(ρm,i,c(kc))+κv

+θm,i,2(kc)
nc

∑
c=1

βm,i,c(kc)

ρm,i+1,c(kc)

αm,i+1,c(kc)
−

ρm,i,c(kc)

αm,i,c(kc)

ρm,i+1,c(kc)

αm,i+1,c(kc)
+κρ

(27)

vctrl
m,i(kc +1) =θm,i,0(kc)vfree,m,max +θm,i,1(kc)

nc

∑
c=1

βm,i,c(kc)
vm,i+1,c(kc)

ρm,i+1,c(kc)

αm,i+1,c(kc)
− vm,i,c(kc)

ρm,i,c(kc)

αm,i,c(kc)

vm,i+1,c(kc)
ρm,i+1,c(kc)

αm,i+1,c(kc)
+κvκρ

(28)

vctrl
m,i(kc +1) =vctrl

m,i(kc)−θm,i,1(kc)
nc

∑
c=1

βm,i,c(kc)(vm,i,c(kc)− vm,i,c(kc −1))

+θm,i,2(kc)
nc

∑
c=1

βm,i,c(kc)(Vm,c(ρm,i,c(kc))− vm,i,c(kc)) (29)

rctrl
o (kc +1) =rctrl

o (kc)+θo,1(kc)
nc

∑
c=1

βm,1,c

ρcrit,m,c −
ρm,1,c(kc)

αm,1,c

ρcrit,m,c
(30)

rctrl
o (kc +1) =rctrl

o (kc)−θo,1(kc)
nc

∑
c=1

βm,1,c(ρm,1,c(kc)−ρm,1,c(kc −1))

+θo,2(kc)
nc

∑
c=1

βm,1,c(ρcrit,m,c −ρm,1,c(kc)) (31)

where βm,i,c =
ρm,i,c

∑
nc
j=1 ρm,i, j

is the density fraction of vehicles of class c in segment i of link m, the index

m in (30) and (31) represents the link that is connected to on-ramp o, the index 1 represents the first

segment of that link, κv and κρ are small positive values to prevent the divisors to be 0, and θm,i,0,

θm,i,1, θm,i,2, θo,1, and θo,2 are the control parameters that are optimized in the control process.

Remark

In (26)-(31), these control parameters are varying over the control horizon. Thus the control inputs

(variable speed limits and ramp metering rates) vary with both the control parameters and traffic

states. The following considerations about these control parameters can be made:

• The control parameters in the RHPC laws are not necessarily optimized at every control time

step (i.e. every Tc). This will introduce a new control time step (different from Tc) for updating

the control parameters for RHPC. However, for simplifying the exposition we just assume that

these control parameters in the RHPC laws are optimized at every control time step (i.e. every

Tc) in this paper.
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• These control parameters can be assumed to be constant during the prediction horizon

([kcTc, (kc +Np)Tc]), which covers the control horizon ([kcTc, (kc +Nc)Tc]). Thus the control

inputs (variable speed limits and ramp metering rates) vary only with the traffic states. In this

case the number of variables in the optimization problem to be solved is reduced with respect

to the case with varying control parameters.

• For a traffic network, the control parameters for different segments and on-ramps can be

grouped, e.g. the parameters for the segments of the same link can be assumed to be equal.

Then the number of variables in the optimization problem to be solved is reduced with respect

to the case that the control parameters are not grouped.

The RHPC laws (26)–(31) are constructed based on the traffic states of the current segment and

the next segment, which reflect future traffic situation for vehicles in the current segment. Inspired

by the speed equation of METANET, Law (26) consists of the free-flow speed, the relative variation

in the speed from the current segment to the next segment, and the relative variation in the equivalent

density from the current segment to the next segment at the current control step. Compared with Law

(26), the second term of Law (27) is the relative difference between the desired speed and the actual

speed in the current segment at the current control step. Law (28) includes the free-flow speed and

the relative variation in the flow from the current segment to the next segment at the current control

step. With the desired speed and actual speeds as inputs, Law (29) is inspired by the PI-ALINEA

law for ramp metering [28]. Law (30) is a generalization of the ALINEA law [29], and Law (31) is

a generalization of the PI-ALINEA law ([28]).

For all the RHPC laws here, the integration of different classes of vehicles is based on a

convex combination with density fractions of different vehicle classes as weights. Directly using

independent parameters for different vehicle classes could be a generalization of the way of

including the traffic states of all classes of vehicles in (26)–(31).

Note that there may be some instability in the speed equation of METANET. In Model Predictive

Control (MPC) for nonlinear systems according to literature [30–32], the instability in the controlled

system can be addressed through making the prediction horizon large enough or by including an

end-point constraint. In our work, we make the prediction horizon large enough. In addition, the

Courant-Friedrichs-Lewy (CFL) [33] condition is often considered as the condition for the stability

of traffic flow models (e.g. METANET). More specifically, no vehicle can cross a segment in one

simulation time step [1, 34], i.e. the simulation time step is chosen based on the principle

T < min
m∈Ilink

Lm

maxc=1,...,nc vfree,m,c
, (32)

where Ilink represents the set including all links, and maxc=1,...,nc vfree,m,c is the free-flow speed of

the fastest class of vehicles for the link m.

Remark

The RHPC laws (26)–(31) are independent from the traffic flow model that is used in this paper.

Even if the multi-class METANET model is replaced by some other traffic flow model, these laws

can still be adopted.

The following constraint conditions‡ are used for ensuring the control inputs stay within their

upper bounds and lower bounds:

vctrl
m,i(kc +1) = max(min(vctrl

m,i(kc +1),vmax,m),vmin,m) (33)

rctrl
o (kc +1) = max(min(rctrl

o (kc +1),rmax,o),rmin,o) (34)

in which vmax and vmin are respectively the upper bound and lower bound of the variable speed limits

in link m, and rmax and rmin are respectively the upper bound and lower bound of the ramp metering

rate in link m.

‡Note that these constraints are hard constraints for control inputs, and they are directly included in the control procedure.
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3.4. Scenario-Based RHPC

In order to obtain optimal control inputs in RHPC for freeway networks, traffic state variables need

to be predicted with future demands as exogenous inputs. Nominal RHPC for freeway networks

adapts nominal demands, which may be very different from the real demands. This difference

may affect the control performance and the constraint satisfaction. Here we propose a tractable

scenario-based RHPC approach, aiming to improve the behavior of the controlled system by taking

the uncertainties into account. The worst-case scenario among a limited number of scenarios is

optimized to realize the control objective. This scenario-based scheme is used for reducing the

computational burden. Moreover, in order to ensure the satisfaction of the queue length constraints,

we include a queue length penalty, which is a soft constraint as in [35]. The objective function of

the tractable scenario-based RHPC approach is as follows:

Jmin-max(x̃(kc), ũ(kc), D̃(kc)) = max
ω̃(kc)∈Ω̃(kc)

{

J(x̃(kc), ũ(kc), D̃(kc), ω̃(kc))

+ γ ∑
o∈Oramp

max

( max
j=kcM,...,(kc+Np)M−1

nc

∑
c=1

pcwo,c( j)

wmax,o
−1,0

)}

(35)

where Ω̃(kc) = {ω̃1(kc), ..., ω̃H(kc)} ⊂ W represents the set of H possible scenarios that will be

considered for the scenario-based RHPC approach for control time step kc, wmax,o is the maximum

queue length (in pce) allowed at on-ramp o, and γ is a positive weight to better penalize queue

length constraint violation under uncertainties ω̃(kc)∈ Ω̃(kc), so that the relation ∑
nc
c=1 pcwo,c(kc)≤

wmax,o(kc) holds for all ω̃(kc) ∈ Ω̃(kc).
The reason for not using hard queue length constraints is that we want to keep queue lengths

within maximum permitted values under uncertainties. If the constraints on queue-lengths at on-

ramps are included as hard constraints, then the scenario-based RHPC controller only optimizes the

scenario with the worst TTS, ensuring that queue length constraints are satisfied for that scenario.

Note, however, that the scenario corresponding to the worst TTS does not necessarily lead to

the worst possible queue lengths. Therefore the scenario-based RHPC controller may easily yield

solutions that lead to constraint violations, causing infeasibility for on-ramps with strict limits on

queue lengths.

The scenario-based RHPC problem for freeway networks is defined as follows:

min
ũ(kc),x̃(kc)

Jmin-max(x̃(kc), ũ(kc), D̃(kc)) (36)

subject to (18)–(22) for all ω̃(kc) ∈ Ω̃(kc)

In the scenario-based RHPC problem, when the maximum queue length is smaller than the

maximum permitted value, the queue length penalty equals 0; thus the TTS is optimized. However,

if the maximum queue length is larger than the maximum permitted value, the queue length penalty

will be taken into account. Due to the high weight γ for the queue length penalty, the queue length

will be in general optimized so that the maximum queue length is smaller than the maximum

permitted value. The inner max operator of the queue length penalty ensures that once the maximum

queue length in the entire prediction horizon is larger than the maximum permitted value, the queue

length penalty will be taken into account.

4. CASE STUDY

4.1. Benchmark Network

The benchmark network shown in Figure 2, which has been simulated with other controllers in some

papers [1, 36], is used for the case study. This network includes one mainstream origin, one on-ramp,
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Figure 2. Benchmark network

one destination, and two links. Link 1 is 4 km long and divided into 4 segments with a length of

1 km. Link 2 is 2 km long and divided into 2 segments with a length of 1 km. Thus the length of

the segments for both links is Lm = 1 km for m = 1,2. The on-ramp connects to the first segment of

link 2. There are two lanes in the main road, and 1 lane in the on-ramp road. It is assumed that the

queue length at the origin is not limited, and the outflow at the destination is unrestricted. Note that

at the origin the vehicles that cannot enter the network in one simulation step are considered to be

in the origin queue, and they are taken into account together with the mainstream demand, i.e. all

demands are taken into account. In the third and fourth segments of link 1 variable speed limits are

present, and ramp metering is used at the on-ramp.

We consider two classes of vehicles in the network: class 1 represents cars, and class 2 represents

trucks. The parameters for these two classes of vehicles are as follows [1, 21, 34]: vfree,m,1 =
106 km/h, am,1 = 1.6761, χm,1 = 0.12, ρcrit,m,1 = 35 veh/km/lane, ρmax,m,1 = 175 veh/km/lane,

and Cmainstream,1 = 2034 veh/h/lane for m = 1,2; vfree,m,2 = 83 km/h, am,2 = 2.1774, χm,2 = 0.05,

ρcrit,m,2 = 19 veh/km/lane, ρmax,m,2 = 75 veh/km/lane, and Cmainstream,2 = 990 veh/h/lane for m =
1,2.

Common parameters for cars and trucks are [1, 34]: τm,c = 18 s, κm,c = 40 veh/h/km, and

ηm,c = 60 km2/h for c= 1,2 and m= 1,2. The passenger car equivalents are p1 = 1 and p2 = 7/3. In

order to avoid spill-back to the upstream of the on-ramp, the total queue length (indexed by wtotal
ramp)

of cars and trucks at the on-ramp is limited to 150 pce.

The simulation time step is T = 10 s (According to Equation (32), T < Lm
vfree,m,1

= 34 s). As for

other parameters, we select ξTTS = 1, ξramp=ξspeed = 0.1, Tc = 60 s, and Np = 7. Here we suppose

that the weights ξTTS, ξramp, and ξspeed are defined by policy makers. The performance index TTS

dominates in the objective function, and the penalties to avoid abrupt variations in control inputs

are minor in comparison with TTS. The weight γ is tested for different values: 0.01,0.1,1,10,100.

The control time step is 6 times larger than the simulation time step, because the control inputs

should not be changed too frequently in practice. The control parameters for RHPC laws depend

on the future predictions. Hence the prediction horizon is not too long to avoid large prediction

errors under certainties. However, the prediction horizon cannot be too short due to the requirement

for emptying the traffic network within the prediction horizon. Thus the length of the prediction

horizon is chosen according to the typical travel time through the network as suggested in [1]. Note

that in this case study we assume that the parameters of the RHPC laws are constant over the entire

prediction horizon, and they are different for Segment 3 and Segment 4 of Link 1. For the parameters

in the RHPC laws the control horizon covers 1 control step, while for the actual control inputs the

control horizon covers 7 control steps, due to the variations of the traffic states used in the RHPC

laws.
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Figure 3. Nominal demands for the benchmark network

4.2. Control Settings

The nominal demands at the mainstream origin and the on-ramp are shown in Figure 3. The nominal

density fraction for trucks is βtruck = 0.1. The real demands are generated by adding random

disturbances to the nominal demands. Here we consider two cases:

• Case 1: there are only uncertainties in the total demands;

• Case 2: there are uncertainties in both the total demands and the estimations of truck fractions.

The uncertainties in the total demand values are limited within 10% with a base value of 100

veh/h. As for the truck fractions, we assume that the range is from 0 to 0.3. Both uncertainties

for the total demands and for the truck fractions are uniform random noise. For each case, 10

scenarios for uncertainties, corresponding to 10 realizations of demands, were investigated to verify

the effectiveness of the scenario-based RHPC approach.

Both nominal RHPC and the scenario-based RHPC are implemented for comparison. In the

scenario-based RHPC, 10 uniform random uncertainty scenarios are used for obtaining the worst-

case objective function. These 10 uncertainty scenarios are different from the aforementioned 10

realizations of demands. This is due to the fact that real realizations of future demands are not

known in previous and not possible to be used in the control procedure. However the uncertainty

scenarios used in the scenario-based RHPC are generated in the same way as the aforementioned

10 realizations of demands.

As examples, the RHPC laws (26) and (29) for variable speed limits, and (30) and (31) for ramp

metering rates are adopted in the case study. We test and compare the following approaches for the

aforementioned two cases of uncertainties in the case study:

• Nominal RHPC 1 (NRHPC 1): Law (26)+Law (30);

• Scenario-Based RHPC 1 (SRHPC 1): Law (26)+Law (30);

• Nominal RHPC 2 (NRHPC 2): Law (29)+Law (31);

• Scenario-Based RHPC 2 (SRHPC 2): Law (29)+Law (31);

For comparison, we also implement a standard control scheme for the combination: Law 29 +

Law 31, which are PI-ALINEA-like laws. In the standard control scheme, the parameters for the

RHPC laws are constant for the entire simulation period, and they are determined beforehand. For

the standard control scheme, we consider two cases, of which one is queue length penalty without

queue override scheme§ [37], and the other is queue length penalty with queue override scheme.

Note that (33) and (34) are also used here. For the standard control scheme, the following approaches

are tested:

§In the queue override scheme, the ramp metering rate is set to be 1 if the maximum queue length exceeds the maximum
permitted value.
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• Standard Control 1 (SC 1): using nominal demands with queue length penalty;

• Standard Control 2 (SC 2): using 10 random scenarios for uncertainties with queue length

penalty;

• Standard Control 3 (SC 3): based on nominal demands with queue length penalty and queue

override scheme;

• Standard Control 4 (SC 4): based on 10 random scenarios for uncertainties with queue length

penalty and queue override scheme.

4.3. Results and Analysis

In the remainder of this section, JTTS
imp represents the relative improvement in Total Time Spent (TTS)

w.r.t. the non-control case, while Jpen represents the relative queue length constraint violation¶:

Jpen = max

( max
j=kcM,...,(kc+Np)M−1

nc

∑
c=1

pcwo,c( j)

wmax,o
−1,0

)

(37)

and the total performance Jtot is defined as

Jtot =
TTS

TTSnom
+ γJpen (38)

For each combination of the values of γ (5 values), the realizations for uncertainties (10

scenarios), and the control approaches (8 control approaches), the simulation with control is

repeated 10 times with different random seeds. For each combination, the average of the results

for these 10 simulations is considered. The average performance improvement and the average

constraint violation of those average results for 10 different realizations for uncertainties are listed

in Tables I-VIII. In order to show the difference for different scenarios, the standard deviations of

the results for these 10 different realizations are also included.

4.3.1. Comparison w.r.t. Performance and Constraint Violations In this section, the approaches

ignoring uncertainties are first compared to the corresponding approaches including uncertainties

with the same control laws, i.e. NRHPC 1 w.r.t. SRHPC 1, NRHPC 2 w.r.t. SRHPC 2, SC 1 w.r.t.

SC 2, and SC 3 w.r.t. SC 4. After that, all approaches are compared together based on Figures 4-9,

which display the performance improvements for TTS, constraint violations, and total performance.

1. Results for NRHPC 1 and SRHPC 1:

According to the results for Case 1 in Table I, the performance improvements for SRHPC 1

(5.8%− 6.6%) are less than the performance improvements for NRHPC 1 (6.2%− 7.4%).

However, NRHPC 1 leads to higher queue length constraint violations (5.5% − 25.5%)

than SRHPC 1 (1.6% − 13.4%) for all values of γ considered. For SRHPC 1, the queue

length constraint violations (1.6%− 2.3%) are relatively small when γ ∈ {0.1,1,10,100}.

Comparing the values of Jtot, we find that SRHPC 1 (15.9-17.3) results in better total

performance than NRHPC 1 (16.3-21.2) for γ ∈ {10,100}. For both NRHPC 1 and SRHPC

1, the standard deviations of JTTS
imp and Jtot are small, and the standard deviations of Jpen are

large.

The results for Case 2 are shown in Table II. Just as for Case 1, the performance improvements

for SRHPC 1 (4.1% − 4.7%) are less than the performance improvements for NRHPC 1

(4.4%−6.1%). For NRHPC 1, the queue length constraint violations (10.6%−53.4%, higher

than for Case 1) are higher than those for SRHPC 1 (1.0% − 18.2%) for all values of γ
considered. For SRHPC 1, the queue length constraint violations (1.0%−2.5%) are relatively

¶Note that the queue length constraint violation is based on joint control through both variable speed limits and ramp
metering.
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Table I. Simulation results for NRHPC 1 and SRHPC 1, Case 1

Approaches NRHPC 1 SRHPC 1

γ 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average

JTTS
imp 7.4% 6.7% 6.5% 6.4% 6.2% 6.6% 6.1% 6.0% 5.9% 5.8%

Jpen 25.5% 9.0% 7.7% 6.6% 5.5% 13.4% 2.3% 1.9% 1.8% 1.6%

Jtot 15.4 15.6 15.6 16.3 21.2 15.6 15.7 15.7 15.9 17.3

Standard

deviation

JTTS
imp 0.3% 0.4% 0.4% 0.3% 0.2% 0.5% 0.4% 0.3% 0.3% 0.3%

Jpen 2.5% 1.2% 1.3% 2.2% 2.1% 2.1% 0.4% 0.3% 0.2% 0.3%

Jtot 0.2 0.3 0.3 0.5 2.3 0.3 0.3 0.3 0.3 0.4

Table II. Simulation results for NRHPC 1 and SRHPC 1, Case 2

Approaches NRHPC 1 SRHPC 1

γ 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average

JTTS
imp 6.1% 4.4% 4.7% 4.6% 4.6% 4.7% 4.3% 4.3% 4.2% 4.1%

Jpen 53.4% 21.5% 12.7% 11.2% 10.6% 18.2% 2.5% 1.6% 1.2% 1.0%

Jtot 18.9 20.9 19.3 20.3 29.7 19.1 19.2 19.3 19.4 20.3

Standard

deviation

JTTS
imp 0.3% 1.2% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.3%

Jpen 4.0% 19.5% 4.2% 2.7% 2.8% 5.3% 1.0% 0.8% 0.7% 0.6%

Jtot 0.4 5.6 0.4 0.5 3.0 0.4 0.4 0.4 0.4 0.7

small when γ ∈ {0.1,1,10,100}; furthermore, for these values of γ , the total performance for

SRHPC 1 (19.2-20.3) is not worse than the total performance for NRHPC 1 (19.3-29.7). The

standard deviations of JTTS
imp and Jtot are small for both NRHPC 1 and SRHPC 1 except for

NRHPC 1 with γ = 0.1. For both NRHPC 1 and SRHPC 1, the standard deviations of Jpen are

large.

2. Results for NRHPC 2 and SRHPC 2:

The results for Case 1 are shown in Table III. The performance improvements for SRHPC 2

(5.0%− 9.4%) are slightly less than the performance improvements for NRHPC 2 (5.1%−
9.5%) when γ ∈ {0.01,0.1,1}. SRHPC 2 (5.2%) can even improve the performance more

than NRHPC 2 (5.0%− 5.1%) when γ ∈ {10,100}. The queue length constraint violations

for NRHPC 2 (3.0%− 70.0%) are higher than those for SRHPC 2 (0.6%− 66.3%) for all

the values of γ considered. For γ ∈ {0.1,1,10,100}, the queue length constraint violations

for SRHPC 2 (0.6% − 0.8%) are quite small. SRHPC 2 (16.0 − 16.4) results in a better

total performance than NRHPC 2 (16.2−19.7) when γ ∈ {10,100}. For both NRHPC 1 and

SRHPC 1, the standard deviations of JTTS
imp and Jtot are small, and the standard deviations of

Jpen are large.

The results for Case 2 are shown in Table IV. For all the values of γ considered, the

performance improvements for SRHPC 2 (3.7% − 6.3%) are less than the performance

improvements for NRHPC 2 (4.0% − 7.2%). However, NRHPC 2 leads to higher queue

length constraint violations (9.1%− 125.7%, higher than for Case 1) than SRHPC 2 (0.8%-

82.0%) for all values of γ considered. When γ ∈ {0.1,1,10,100}, SRHPC 2 can reduce

the queue length constraint violations (0.8%− 2.7%) to relatively low values; furthermore,

for these values of γ , the total performance for SRHPC 2 (19.3-20.2) is not worse than the

total performance for NRHPC 2 (19.3-28.4). For both NRHPC 1 and SRHPC 1, the standard

deviations of JTTS
imp and Jtot are small, and the standard deviations of Jpen are large.

3. Results for SC 1 and SC 2:

The results for Case 1 are shown in Table V. For SC 1 with all values of γ considered and

for SC 2 with γ ∈ {0.01,0.1}, the performance improvements are 2.2%− 12.1%, however,

the queue length constraint violations (52.9% − 114.2%) are quite high. For SC 2 with

γ ∈ {1,10,100}, the queue length constraint violations (0% − 0.1%) are small, but the
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Table III. Simulation results for NRHPC 2 and SRHPC 2, Case 1

Approaches NRHPC 2 SRHPC 2

γ 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average

JTTS
imp 9.5% 5.3% 5.1% 5.1% 5.0% 9.4% 5.0% 5.0% 5.2% 5.2%

Jpen 70.0% 4.5% 3.0% 4.0% 3.8% 66.3% 0.8% 0.8% 0.8% 0.6%

Jtot 15.0 15.8 15.8 16.2 19.7 15.1 15.8 15.9 16.0 16.4

Standard

deviation

JTTS
imp 0.9% 0.2% 0.3% 0.3% 0.2% 0.7% 0.2% 0.3% 0.3% 0.3%

Jpen 8.4% 1.2% 1.5% 2.0% 1.1% 7.1% 0.6% 0.5% 0.3% 0.4%

Jtot 0.3 0.3 0.2 0.2 1.1 0.3 0.2 0.2 0.6 0.5

Table IV. Simulation results for NRHPC 2 and SRHPC 2, Case 2

Approaches NRHPC 2 SRHPC 2

γ 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average

JTTS
imp 7.2% 4.2% 4.0% 4.0% 4.0% 6.3% 3.9% 3.7% 3.7% 3.7%

Jpen 125.7%12.5% 10.1% 8.7% 9.1% 82.0% 2.7% 1.4% 1.0% 0.8%

Jtot 18.7 19.3 19.4 20.1 28.4 18.8 19.3 19.4 19.5 20.2

Standard

deviation

JTTS
imp 0.5% 0.3% 0.2% 0.2% 0.2% 0.6% 0.2% 0.3 0.2% 0.2%

Jpen 22.3% 5.4% 2.6% 2.9% 2.9% 17.5% 1.8% 0.8% 0.6% 0.3%

Jtot 0.4 0.4 0.4 0.6 3.1 0.4 0.4 0.4 0.5 0.4

performance improvements (1.6%−2.2%) are also small. For all the values of γ considered,

the total performance for SC 2 (14.7-16.4) is better than the total performance for SC 1 (14.8-

85.6). For SC 1, the standard deviations of JTTS
imp and Jpen are large in general, and the standard

deviations of Jtot are small except for γ = 0.01. For SC 2, the standard deviations of JTTS
imp ,

Jpen, and Jtot are small except for the standard deviations of Jpen with γ = 100.

The results for Case 2 are shown in Table VI. For SC 1 with all values of γ considered and for

SC 2 with γ = 0.01, the performance improvements are 1.9%−9.3%, with high queue length

constraint violations (82.1%− 241.0%, higher than for Case 1). When γ ∈ {0.1,1,10,100},

the queue length constraint violations are reduced to 0%−1.3% for SC 2, but the performance

improvement are quite small (0.4%− 1.3%). For γ ∈ {1,10,100}, the total performance for

SC 2 (19.9-21.1) is better than the total performance for SC 1 (20.8-169.9). For SC 1 and SC

2, the standard deviations of JTTS
imp and Jpen are large in general, and the standard deviations of

Jtot are small in general.

4. Results for SC 3 and SC 4:

The results for Case 1 are shown in Table VII. For SC 3 with all values of γ considered and

for SC 4 with γ ∈ {0.01,0.1}, the performance is changed by −1.9%− 4.6%, but the queue

length constraint violations (6.6%− 14.1%) are still high, even they are reduced w.r.t. SC 1

without queue override scheme. This is due to the fact that when the mainstream is congested

the vehicles at the on-ramp cannot enter the main road even if the ramp metering rate is 1.

For SC 4 with γ ∈ {1,10,100}, the queue length constraint violations (0%−0.6%) are small,

while the performance improvements (0.7%− 2.8%) are also small. For SC 3 and SC 4, the

standard deviations of JTTS
imp and Jpen are large in general, and the standard deviations of Jtot

are small in general.

The results for Case 2 are shown in Table VIII. For SC 3 with all values of γ considered and

for SC 4 with γ ∈ {0.01,0.1}, the performance is changed by −1.2%−3.8%, with high queue

length constraint violations (8.3%−27.7%, higher than those for Case 1), which are reduced

w.r.t. SC 1 without queue override scheme. For SC 4 with γ ∈ {1,10,100}, the queue length

constraint violations are reduced to 0%−0.4%. Nevertheless, the performance improvements

(1.0%−1.8%) are also small. For SC 3 and SC 4, the standard deviations of JTTS
imp and Jpen are

large in general, and the standard deviations of Jtot are small in general.
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Table V. Simulation results for SC 1 and SC 2, Case 1

Approaches SC 1 SC 2

γ 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average

JTTS
imp 6.1% 11.5% 2.2% 4.1% 6.0% 12.1% 12.1% 1.9% 1.6% 2.2%

Jpen 114.2%86.2% 62.6% 52.9% 70.0% 93.3% 90.0% 0% 0% 0.1%

Jtot 29.8 14.8 16.9 21.3 85.6 14.7 14.7 16.3 16.4 16.4

Standard

deviation

JTTS
imp 1.6% 0.5% 2.8% 1.9% 0.3% 0.3% 0.4% 0.2% 0.2% 0.2%

Jpen 18.9% 6.1% 45.5% 28.5% 8.9% 5.7% 5.8% 0% 0% 0.2%

Jtot 44.8 0.2 0.5 2.6 9.1 0.2 0.3 0.2 0.2 0.4

Table VI. Simulation results for SC1 and SC2, Case 2

Approaches SC 1 SC 2

γ 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average

JTTS
imp 6.1% 8.7% 1.9% 2.6% 6.1% 9.3% 1.0% 0.9% 1.3% 0.4%

Jpen 241.0%167.9%104.5%82.1% 151.0%173.2%0% 0% 1.3% 1.1%

Jtot 18.9 18.5 20.8 27.8 169.9 18.2 19.8 19.9 20.0 21.1

Standard

deviation

JTTS
imp 1.2% 0.4% 2.2% 0.6% 0.4% 0.6% 0.1% 0.2% 0.3% 0.4%

Jpen 38.4% 35.0% 65.1% 25.4% 11.8% 31.0% 0% 0% 3.0% 3.1%

Jtot 0.5 0.4 0.5 2.7 12.0 0.4 0.4 0.5 0.6 3.2

Table VII. Simulation results for SC3 and SC4, Case 1

Approaches SC 3 SC 4

γ 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average

JTTS
imp 2.0% 4.2% -1.9% 1.0% 1.9% 4.6% 4.6% 2.8% 0.7% 2.3%

Jpen 13.5% 12.2% 6.6% 6.7% 6.9% 7.9% 14.1% 0.6% 0.5% 0%

Jtot 16.3 16.0 17.0 17.2 23.2 15.9 15.9 16.2 16.6 16.3

Standard

deviation

JTTS
imp 1.2% 0.2% 1.0% 0.4% 0.7% 1.0% 0.6% 0.7% 1.0% 0.2%

Jpen 2.9% 3.8% 4.1% 3.5% 3.8% 4.0% 2.3% 1.9% 1.2% 0%

Jtot 0.4 0.2 0.3 0.3 4.1 0.3 0.3 0.3 0.3 0.2

Table VIII. Simulation results for SC3 and SC4, Case 2

Approaches SC 3 SC 4

γ 0.01 0.1 1 10 100 0.01 0.1 1 10 100

Average

JTTS
imp 1.1% 3.5% -1.2% 0.6% 1.6% 3.8% 2.7% 1.8% 1.0% 1.5%

Jpen 21.4% 26.2% 8.3% 10.1% 14.0% 27.7% 16.7% 0.4% 0% 0%

Jtot 19.9 19.4 20.4 21.0 33.8 19.3 19.6 19.7 19.9 19.8

Standard

deviation

JTTS
imp 0.6% 0.3% 1.2% 0.3% 0.6% 0.4% 0.5% 0.3% 0.2% 0.2%

Jpen 7.0% 7.8% 4.0% 4.9% 6.6% 4.1% 5.2% 1.3% 0% 0%

Jtot 0.5 0.4 0.6 0.7 7.0 0.4 0.4 0.4 0.4 0.4

5. Overall comparison for all approaches:

The performance improvements for TTS (Jtot), constraint violations (Jpen), and total

performance (Jtot) for all approaches considered are plotted in Figures 4-9. In these figures,

the lines with marker symbols correspond to the approaches ignoring uncertainties (NRHPC

1, NRHPC 2, SC 1, and SC 3), and the lines without marker symbols correspond to the

approaches including uncertainties (SRHPC 1, SRHPC 2, SC 2, and SC 4).

For both cases of uncertainties (Case 1 and Case 2), the performance improvements for TTS

for SC 2, SC 3, and SC 4 are small in comparison with NRHPC 1, NRHPC 2, SRHPC 1, and
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Figure 4. Performance improvements for TTS, Case 1
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Figure 6. Total performance, Case 1 (with Jtot zoomed in for γ ∈ {1,10,100})

SRHPC 2 when γ ∈ {1,10,100}. For SC 1, the queue length constraint violations are much

higher than those for NRHPC 1 and NRHPC 2 for both cases of uncertainties (Case 1 and

Case 2). Including a queue override scheme, the queue length constraint violations for SC 3

are comparable with those for NRHPC 1 and NRHPC 2 for both cases of uncertainties (Case

1 and Case 2). The queue length constraint violations are reduced to low values for SRHPC

1, SRHPC 2, SC 2, and SC 4 when the weight γ for the queue length penalty is large enough,

e.g. γ ∈ {1,10,100}. In Jtot, a larger weight γ for the queue length penalty corresponds to

assigning more importance to satisfying the queue length constraint. When the weight γ is

large enough (e.g. γ ∈ {10,100}), the total performance for SRHPC 1, SRHPC 2, SC 2, and

SC 4 is better than NRHPC 1, NRHPC 2, SC 1, and SC 3.
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4.3.2. Analysis for Queue Lengths and Control Inputs In this section one realization for Case 1

of uncertainties and one realization for Case 2 of uncertainties are chosen as examples. The queue

lengths for the origin, the queue lengths for the on-ramp, variable speed limits, and ramp metering

rates for all the considered control approaches with γ = 100 are respectively shown in Figures 10-

17. The plots of other traffic variables (origin flows, on-ramp flows, flows for segments, speeds for

segments, and densities for segments) that are used for describing the traffic network are included

and discussed in Appendix A.

According to Figures 10-11, the queue lengths at the origin are decreased in comparison with

the non-control cases for both the nominal RHPC approaches (NRHPC 1 and NRHPC 2) and the
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scenario-based RHPC approaches (SRHPC 1 and SRHPC 2). For standard control approaches (SC

1, SC 2, and SC 4), the queue lengths at the origin can also be reduced, except for SC 3 from t=0.8 h

on.

According to Figures 12-13, the control approaches ignoring uncertainties (NRHPC 1, NRHPC 2,

SC1, and SC 3) lead to queue length constraint violations. These queue length constraint violations

are effectively reduced by the control approaches considering uncertainties (SRHPC 1, SRHPC 2,

SC 2, and SC 4).

As shown in Figure 14 and Figure 16, the variable speed limits of the nominal RHPC approaches

(NRHPC 1 and NRHPC 2) are similar with those of the scenario-based RHPC approaches (SRHPC

1 and SRHPC 2), and there are no large fluctuations for both of them. However, the standard control

approaches (SC 2, SC 3, and SC 4) except SC 1 yield variable speed limits that fluctuate more than

the nominal RHPC approaches (NRHPC 1 and NRHPC 2) and the scenario-based RHPC approaches

(SRHPC 1 and SRHPC 2).

Figure 15 and Figure 17 show the ramp metering rates. The nominal RHPC approaches (NRHPC

1 and NRHPC 2) and the scenario-based RHPC approaches (SRHPC 1 and SRHPC 2) can

appropriately address the variations in the demand for the on-ramp, i.e. the ramp metering rates

increase when there is a peak in the on-ramp demand from t=0.1 h to t=0.35 h (as shown in Figure

3). However, for the standard control approaches the ramp metering rates do not increase in a similar

way.

4.3.3. Conclusions of Results According to the results of the above approaches, we can give the

following conclusions:

1. The nominal RHPC approaches ignoring uncertainties (NRHPC 1 and NRHPC 2) can

improve the performance with high queue length constraint violations for all the considered

values of the weight γ for the queue length penalty.

2. The scenario-based RHPC approaches including uncertainties (SRHPC 1 and SRHPC 2)

can also improve the performance, while there may be a small sacrifice in the performance

improvement compared to the nominal RHPC approaches ignoring uncertainties (NRHPC

1 and NRHPC 2). The queue length constraint violations are significantly reduced w.r.t. the

nominal RHPC approaches ignoring uncertainties (NRHPC 1 and NRHPC 2) when the weight

γ for the queue length penalty is large enough.

3. The scenario-based RHPC approaches including uncertainties (SRHPC 1 and SRHPC 2) are

more conservative in improving performance and satisfying the queue length constraints than
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Figure 13. Queue lengths at the on-ramp, Case 2
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Figure 14. Variable speed limits, Case 1
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Figure 15. Ramp metering rates, Case 1
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Figure 16. Variable speed limits, Case 2
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Figure 17. Ramp metering rates, Case 2

the nominal RHPC approaches ignoring uncertainties (NRHPC 1 and NRHPC 2). This may

be due to the fact that the scenario-based RHPC approaches including uncertainties (SRHPC

1 and SRHPC 2) are optimizing the worst case among all the considered scenarios.

4. The standard control approach ignoring uncertainties (SC 1) can improve the control

performance; however, the queue length constraint violations are quite high for all the

considered values of the weight γ for the queue length penalty. Even when a queue override

scheme is included in the standard control approach ignoring uncertainties (SC 3), there are

still high constraint violations. This is due to the fact that when the mainstream is congested

the vehicles at the on-ramp cannot enter the main road even if the ramp metering rate is 1.

5. The standard control approaches including uncertainties (SC 2 and SC 4) can significantly

reduce the queue length constraint violations when the weight γ for the queue length penalty

is large enough. However, the performance improvements for these approaches are less than

those for the scenario-based RHPC approaches including uncertainties (SRHPC 1 and SRHPC

2).

6. When there are also uncertainties in the truck fractions (Case 2), the queue length constraint

violations may be even higher in comparison with the case that there are only uncertainties in

the total demand (Case 1).
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7. There are still small queue length constraint violations for the approaches including

uncertainties (SRHPC 1, SRHPC 2, SC 2, and SC 4). This is probably due to the fact that

we use only a limited number of scenarios for the uncertainties when solving the control

problem.

8. When the weight γ for the queue length penalty is large enough (in general, γ = 1 in our

case study) for the approaches including uncertainties (SRHPC 1, SRHPC 2, SC 2, and SC

4), the queue length constraint violations are reduced significantly. Increasing this weight γ
to be even larger (γ ∈ {10,100}) does not significantly affect the performance improvements

and the ability of reducing queue length constraint violations. However, a larger weight γ for

the queue length penalty corresponds to putting more emphasis on satisfying the queue length

constraint. When the weight γ is large enough (e.g. γ ∈ {10,100}), the total performance for

the approaches including uncertainties (SRHPC 1, SRHPC 2, SC 2, and SC 4) is better than

that for the approaches ignoring uncertainties (NRHPC 1, NRHPC 2, SC 1, and SC 3).

9. According to standard deviations, the RHPC approaches (NRHPC 1, NRHPC 2, SRHPC

1, and SRHPC 2) are comparable in the performance improvement for different scenarios

considered, but they differ in the queue length constraint violations for different scenarios

considered. Note that for the scenario-based RHPC approaches (SRHPC 1 and SRHPC 2), the

queue length constraint violations are minor when the weight γ for the queue length penalty is

large enough; although the relative standard deviations are large, the actual variations in these

violations are still small. The standard control approaches SC 1, SC 3, and SC 4 differ in both

the performance improvement and the queue length constraint violations for the different

scenarios considered.

10. The variable speed limits of the standard control approaches SC 2, SC 3, and SC4

fluctuate more than those of the RHPC approaches (NRHPC 1, NRHPC 2, SRHPC 1, and

SRHPC 2). The RHPC approaches (NRHPC 1, NRHPC 2, SRHPC 1, and SRHPC 2) can

appropriately address the peak in the on-ramp demand by increasing the ramp metering rates

at corresponding time; however, the standard control approaches (SC 1, SC 2, SC 3, and SC4)

do not increase the ramp metering rates in a similar way.

In conclusion, we can say that the scenario-based RHPC approaches are effective for satisfying

the queue length constraint, at the cost of a small sacrifice in performance. Avoiding high queue

length constraint violations is significant for those on-ramps with strict limits on queue lengths, e.g.

the on-ramps that are connected to busy urban stretches or intersections in upstream. High queue

length constraint violations at these on-ramps may cause spill-back to upstream; thus, scenario-

based RHPC approaches are helpful for these on-ramps.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a tractable scenario-based Receding Horizon Parameterized

Control (RHPC) approach for freeway networks. In this approach, the worst-case scenario among

a selected number of scenarios for uncertainties is considered in the control design step. On the

basis of traffic states, we have developed several RHPC laws for freeway networks based on the

multi-class METANET model. In addition, a soft queue length constraint penalty is included in

the objective function instead of hard constraint, to prevent infeasible optimization problems under

uncertainties. In the analysis of the uncertainties for freeway networks we in particular consider

uncertainties in the demand profiles, consisting of the uncertainties in the total demand and the

uncertainties in the estimations of the fractions of different classes of vehicles. However, other

types of uncertainties can also be dealt with using the proposed scenario-based RHPC approach.

A case study was implemented to assess the effectiveness of this newly proposed approach. Two

combinations of the RHPC laws for Variable Speed Limits (VSL) and Ramp Metering (RM) were

considered: VSL law based on the variations in the speeds and densities from one segment to

the next + ALINEA-like RM law, and PI-ALINEA-like VSL law + PI-ALINEA-like RM law, for

which both nominal RHPC approaches and scenario-based RHPC approaches were implemented.
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Standard control approaches (PI-ALINEA-like) were implemented for comparison, and a queue

override scheme was also considered as extra comparison. The results show that the nominal

RHPC approaches may lead to high queue length constraint violations even if the weight for the

queue length penalty is high. The scenario-based RHPC approaches are more conservative than the

nominal RHPC approaches, and they can significantly reduce the queue length constraint violations

when the weight for the queue length penalty is high enough, with small sacrifices in performance

improvements. The standard control approach ignoring uncertainties may lead to high queue length

constraint violations, which are still high even when the queue override scheme is used. This is

due to the fact that when the mainstream is congested the vehicles at the on-ramp cannot enter

the main road even if the ramp metering rate is 1. The standard control approaches including

uncertainties can reduce the queue length constraint violations to low level when the weight for the

queue length penalty is large enough; however, the performance improvements are less than those

for the scenario-based RHPC approaches. Overall, we can conclude that scenario-based RHPC is

capable of significantly improving performance without high queue length constraint violations for

the given case study.

For the future research, we will consider further extension of the RHPC laws for multi-class

traffic networks, validation in real motorway with real data and larger freeway networks, theoretical

guarantees for scenario-based RHPC, and the sensitivity to model parameters. In addition, it is hard

to analyze analytically the stability and robustness for nonlinear systems, in-depth assessments using

simulations for multiple setups and scenarios can be implemented in the future.
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A. EXAMPLES FOR THE PLOTS OF TRAFFIC VARIABLES

For Case 1 and Case 2 of uncertainties, the same realizations as in Section 4.3.2 are chosen as

examples. The origin flows, on-ramp flows, flows for segments, speeds for segments, and densities

for segments for all the considered control approaches with γ = 100 are respectively shown in

Figures 18-33.

The flows for the mainstream origin and the on-ramp are plotted in Figures 18-21. We can see that

the flows for the mainstream origin are similar for all the considered approaches except for SC 1. For

different control approaches, the flows for the on-ramp correspond to ramp metering rates shown in

Figure 15 and Figure 17. The flows for segments are plotted in Figures 22-25. As shown in these

figures, the flows for the standard control approaches (SC 1, SC 2, SC 3, and SC 4) fluctuate more

than those for the RHPC approaches (NRHPC 1, NRHPC 2, SRHPC 1, and SRHPC 2). The speeds

for segments are plotted in Figures 26-29. The speeds for the standard control approaches (SC 1,

SC 2, SC 3, and SC 4) fluctuate more than those for the RHPC approaches (NRHPC 1, NRHPC

2, SRHPC 1, and SRHPC 2). The fluctuations in the flows and speeds for segments correspond to

variable speed limits shown in Figure 14 and 16. The densities for segments are plotted in Figures

30-33. According to these figures, the evolution of the densities for segments is similar for all the

considered approaches.
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Figure 18. Flows at the origin and the on-ramp for cars, Case 1
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Figure 19. Flows at the origin and the on-ramp for trucks, Case 1
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Figure 20. Flows at the origin and the on-ramp for cars, Case 2
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Figure 21. Flows at the origin and the on-ramp for trucks, Case 2

Transportation Systems, 13(4):1556–1565, December 2012.

[5] G. C. K. Wong and S. C. Wong. A multi-class traffic flow model-an extension of LWR model

with heterogeneous drivers. Transportation Research Part A: Policy and Practice, 36(9):827–

841, November 2002.

[6] T. Schreiter, R. Landman, J. van Lint, A. Hegyi, and S. Hoogendoorn. Vehicle class-specific

route guidance of freeway traffic by model-predictive control. Transportation Research

Record, 2324:53–62, 2012.



SCENARIO-BASED RHPC FOR MULTI-CLASS FREEWAY NETWORKS 27

Time (h)

0 0.2 0.4 0.6 0.8 1

F
lo

w
s
 f
o
r

N
R

H
P

C
 1

(v
e
h
/h

)

1000

2000

3000

4000

Time (h)

0 0.2 0.4 0.6 0.8 1

F
lo

w
s
 f
o
r

S
R

H
P

C
 1

(v
e
h
/h

)

1000

2000

3000

4000

Time (h)

0 0.2 0.4 0.6 0.8 1

F
lo

w
s
 f
o
r

N
R

H
P

C
 2

(v
e
h
/h

)

1000

2000

3000

4000

Time (h)

0 0.2 0.4 0.6 0.8 1

F
lo

w
s
 f
o
r

S
R

H
P

C
 2

(v
e
h
/h

)

1000

2000

3000

4000

Time (h)

0 0.2 0.4 0.6 0.8 1

F
lo

w
s
 f
o
r

S
C

 1

(v
e
h
/h

)

2000

3000

4000

Time (h)

0 0.2 0.4 0.6 0.8 1

F
lo

w
s
 f
o
r

S
C

 2

(v
e
h
/h

)

1000

2000

3000

4000

Time (h)

0 0.2 0.4 0.6 0.8 1

F
lo

w
s
 f
o
r

S
C

 3

(v
e
h
/h

)

1000

2000

3000

4000

Time (h)

0 0.2 0.4 0.6 0.8 1

F
lo

w
s
 f
o
r

S
C

 4

(v
e
h
/h

)

1000

2000

3000

4000

Link 1,

Segment 1

Link 1,

Segment 2

Link 1,

Segment 3

Link 1,

Segment 4

Link 2,

Segment 1

Link 2,

Segment 2

Figure 22. Flows for segments, cars, Case 1
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Figure 23. Flows for segments, trucks, Case 1
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Figure 24. Flows for segments, cars, Case 2
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Figure 25. Flows for segments, trucks, Case 2

[9] P. O. M. Scokaert, J. B. Rawlings, and E. S. Meadows. Discrete-time stability with

perturbations: Application to model predictive control. Automatica, 33(3):463–470, March

1997.

[10] G. De Nicolao, L. Magni, and R. Scattolini. Stabilizing receding-horizon control of non-linear

time-varying systems. IEEE Transactions on Automatic Control, 43(7):1030–1036, July 1998.

[11] P. J. Campo and M. Morari. Robust model predictive control. In Proceedings of the American

Control Conference, pages 1021–1026, Minneapolis, USA, June 1987.



SCENARIO-BASED RHPC FOR MULTI-CLASS FREEWAY NETWORKS 29

Time (h)

0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
s
 f
o
r

N
R

H
P

C
 1

 (
k
m

/h
)

0

50

100

Time (h)

0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
s
 f
o
r

S
R

H
P

C
 1

 (
k
m

/h
)

0

50

100

Time (h)

0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
s
 f
o
r

N
R

H
P

C
 2

 (
k
m

/h
)

0

50

100

Time (h)

0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
s
 f
o
r

S
R

H
P

C
 2

 (
k
m

/h
)

0

50

100

Time (h)

0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
s
 f
o
r

S
C

 1

 (
k
m

/h
)

0

50

100

Time (h)

0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
s
 f
o
r

S
C

 2

 (
k
m

/h
)

0

50

100

Time (h)

0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
s
 f
o
r

S
C

 3

 (
k
m

/h
)

0

50

100

Time (h)

0 0.2 0.4 0.6 0.8 1

S
p
e
e
d
s
 f
o
r

S
C

 4

 (
k
m

/h
)

0

50

100

Link 1,

Segment 1

Link 1,

Segment 2

Link 1,

Segment 3

Link 1,

Segment 4

Link 2,

Segment 1

Link 2,

Segment 2

Figure 26. Speeds for segments, cars, Case 1
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Figure 27. Speeds for segments, trucks, Case 1
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Figure 28. Speeds for segments, cars, Case 2
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Figure 29. Speeds for segments, trucks, Case 2
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Figure 30. Densities for segments, cars, Case 1
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Figure 31. Densities for segments, trucks, Case 1
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Figure 32. Densities for segments, cars, Case 2
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Figure 33. Densities for segments, trucks, Case 2

[20] G. Schildbach, L. Fagiano, C. Frei, and M. Morari. The scenario approach for stochastic model

predictive control with bounds on closed-loop constraint violations. Automatica, 50(12):3009–

3018, December 2014.

[21] S. Logghe and L. H. Immers. Multi-class kinematic wave theory of traffic flow. Transportation

Research Part B: Methodological, 42(6):523–541, July 2008.

[22] M. J. Lighthill and G. B. Whitham. On kinematic waves. II. A theory of traffic flow on long

crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and

Physical Sciences, 229(1178):317–345, May 1955.



SCENARIO-BASED RHPC FOR MULTI-CLASS FREEWAY NETWORKS 33

[23] P. I. Richards. Shock waves on the highway. Operations Research, 4(1):42–51, February 1956.

[24] A. Messmer and M. Papageorgiou. METANET: A macroscopic simulation program for

motorway networks. Traffic Engineering and Control, 31(8–9):466–470, 1990.

[25] S. Smulders. Control of freeway traffic flow by variable speed signs. Transportation Research

Part B: Methodological, 24(2):111–132, April 1990.

[26] M. Papageorgiou and A. Kotsialos. Freeway ramp metering: An overview. IEEE Transactions

on Intelligent Transportation Systems, 3(4):271–280, December 2002.

[27] J. ’t Hart. Comparison of conventional and parameterized mpc for traffic control. Master’s

thesis, Delft University of Technology, Delft, Netherlands, April 2011.

[28] M. Papageorgiou Y. Wang, J. Gaffney, I. Papamichail, G. Rose, and W. Young. Local ramp

metering in random-location bottlenecks downstream of metered on-ramp. Transportation

Research Record, 2178:90–100, 2010.

[29] M. Papageorgiou, H. Haj-Salem, and J-M. Blosseville. ALINEA: A local feedback control

law for on-ramp metering. Transportation Research Record, 1320:58–64, 1991.

[30] S. S. Keerthi and E. G. Gilbert. Optimal infinite-horizon feedback laws for a general class of

constrained discrete-time systems: Stability and moving-horizon approximations. Journal of

Optimization Theory and Applications, 57(2):265–293, May 1988.

[31] D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems. IEEE

Transactions on Automatic Control, 35(7):814–824, July 1990.

[32] A. Jadbabaie and J. Hauser. On the stability of receding horizon control with a general terminal

cost. IEEE Transactions on Automatic Control, 50(5):674–678, May 2005.

[33] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical

physics. IBM Journal of Research and Development, 11(2):215–234, March 1967.

[34] A. Kotsialos, M. Papageorgiou, and A. Messmer. Optimal coordinated and integrated

motorway network traffic control. In Proceedings of the 14th International Symposium on

Transportation and Traffic Theory, pages 621–644, Jerusalem, Israel, July 1999.

[35] A. Kotsialos, M. Papageorgiou, M. Mangeas, and H. Haj-Salem. Coordinated and integrated

control of motorway networks via non-linear optimal control. Transportation Research Part

C: Emerging Technologies, 10(1):65–84, February 2002.
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