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Robust model predictive control for train regulation

in underground railway transportation
Shukai Li, Bart De Schutter, Senior Member, IEEE, Lixing Yang, and Ziyou Gao

Abstract—This paper investigates the robust model predictive
control for train regulation in underground railway transporta-
tion. By considering the uncertain passenger arrival flow, a
constrained state-space model for the train traffic of a metro
loop line is developed. The goal of the paper is to design a
state-feedback control law at each decision step to optimize a
metro system cost function subject to safety constraints on the
control input. Based on Lyapunov function theory, the problem
of optimizing an upper bound on the system cost function subject
to input constraints is reduced to a convex optimization problem
involving linear matrix inequalities (LMIs). Moreover, for the
inevitable disturbances leading to the delays, the robust model
predictive control strategy of train regulation is designed for a
metro loop line such that it ensures the minimization of an upper
bound on metro system cost function, and meanwhile guarantees
a disturbance attenuation level with respect to the disturbances.
Numerical examples are given to illustrate the effectiveness of
the proposed methods.

Index Terms—Train regulation, metro loop line, inevitable
disturbance, robust model predictive control, linear matrix in-
equalities.

I. INTRODUCTION

In modern large cities, urban underground railway trans-

portation is an attractive mode of transport for relieving the

traffic pressure in an eco-friendly and sustainable manner.

On a high-frequency line, the train delays increase at each

station with the accumulation of passengers. Additionally,

the inevitable disturbances such as equipment failure and

inadequate driver/passenger action will also lead to deviations

from the nominal time schedule. Since any deviation with

respect to the nominal time schedule of a given train will be

amplified with time, a high-frequency metro line is naturally

unstable [1], [2]. Therefore, train regulation by manipulating

the running time and the staying time of each train is necessary

to recover from delays and to prevent the instability of metro

line operations [3], [4].

Usually, the buffer times or supplements in timetable are

designed to absorb the train delays resulting from disturbances

[5], [6]. However, the buffer times allocation is static and

cannot be used dynamically and flexibly from a system-wide

point of view, which may reduce system capacity utilization.
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In particular, automatic train regulation (ATR) can be applied

to recover the schedule/headway deviations resulting from

disturbances by dynamically adjusting the running time and

the staying time of each train. In [2], a state feedback control

algorithm based on linear quadratic regulator approach was

adopted to ensure the system stability and the minimization of

a given performance index. From the passenger perspective,

a constrained nonlinear programming problem for the metro

traffic regulation was considered in [7]. In [8], a genetic algo-

rithm was applied to solve the optimal train regulation problem

efficiently. By using dual heuristic dynamic programming, the

authors in [9] proposed an automatic train regulation approach,

in which a near-optimal regulation can be obtained more

rapidly and accurately. Besides, in [10], an adaptive-optimal-

control algorithm was devised to optimize the train regulator

through reinforcement learning. However, with the increase

of the variables and constraints, the computation burden of

the existing linear or nonlinear programming methods will

increase, and as a result they are not suited for the computation

of schedules for a whole day of operations.

As one of the most powerful directions of the modern

control, model predictive control (MPC) is able to efficiently

handle large scale optimization problems with hard physical

constraints [11]–[15]. This feature makes MPC an ideal candi-

date for real-time metro traffic regulation too. In [16], a linear-

programming-based MPC methodology for the computation of

optimal train schedules in metro lines was proposed, which can

effectively generate a metro line train schedule for a whole

day. Besides, a predictive traffic regulation model for metro

loop lines to optimize a cost function along a time horizon

was addressed in [17]. Moreover, it is important to consider

the uncertain passenger flow fluctuation and the inevitable dis-

turbances leading to the delays of trains. MPC that takes into

account such uncertainties/disturbances within its formulation,

is called robust model predictive control scheme [18], [19].

Therefore, it is necessary to study the train regulation problem

in underground railway transportation within the framework

of robust MPC to deal with the uncertain passenger flow

fluctuations and the inevitable disturbances.

Motivated by the above discussions, in this paper, we will

design a new methodology for train regulation in underground

railway transportation based on the robust MPC scheme. By

considering the safety constraints, we develop a constrained

state-space model for the train traffic of a metro operation.

Based on Lyapunov function theory, the problem of minimiz-

ing an upper bound on the system cost function subject to

input constraints is reduced to a convex optimization problem

involving linear matrix inequalities (LMIs). Moreover, a robust
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MPC train regulation strategy is designed that ensures the

minimization of an upper bound on the metro system cost

function, and meanwhile guarantees a disturbance attenuation

level with respect to the inevitable disturbance. The proposed

robust MPC law is computed through a sequence of low-

dimensional LMIs optimizations which help to reduce the

online computation burden. Numerical examples are given to

illustrate the effectiveness of the proposed methods.

The rest of this paper is organized as follows. In Section

2, a constrained train traffic model of a metro loop line with

uncertain passenger arrival flow and disturbances is presented.

In Section 3, the robust MPC law for train regulation of a

metro loop line is designed. In Section 4, numerical examples

are provided to demonstrate the effectiveness of the proposed

methods. We conclude this paper in Section 5.

II. PROBLEM FORMULATION

Consider a set of M trains that are operating simultaneously

on a metro loop line with N stations (M < N). The

considered structure of the metro loop line is shown in Figure

1.

S  N

S  2 S  3

S  1 S N-1
S

S

S

Figure 1. The structure of the metro line.

To describe the dynamic evolution of the traffic behavior, we

use a two-index notation to identify the variables relative to a

given train at a given station, in which the superscript i denotes

the train number and the subscript k denotes the station

number. For the metro loop line with M trains operating on

N stations, the trains are running periodically, where train

M is followed by train 1. To describe the train regulation

problem within the framework of a state-space model, we

adopt the number i − 1 to denote the train ahead of train

i. According to the above definition, the train ahead of train

1 is train 0, the ahead train of train 0 is train −1, and so on.

Thus to facilitate the study, we adopt the virtual train number

{2−M, 3−M, . . . ,−1, 0, 1, 2, . . . ,M} to denote the physical

train index, which is explained in the definition of the state

vector t̄ij in the sequel. Additionally, to describe the state-

transfer from one station to the next station, we use the virtual

station number {1, 2, . . . , N,N+1, . . .} to denote the physical

station index.

A. The train traffic model of metro line

According to the practical operation of the metro line, the

departure time of train i from station k + 1 is given as [2]

tik+1 = tik + rik + sik+1, (1)

where tik is the departure time of train i from station k, rik is

running time of train i from station k to k + 1, and sik is the

staying time of train i at station k.

The running time of train i from station k to station k + 1
is

rik = Rk + u1
i
k + w1

i
k, (2)

where Rk is the nominal running time from station k to k+1,

u1
i
k represents the control strategy to adjust the running time

of train i between station k and k+1, and w1
i
k is the uncertain

disturbance term to the running time.

Suppose that the staying time of the trains at the station

increases proportionally to the number of passengers getting

on the train [2], [9]. According to this, the staying time sik is

modeled as

sik = aλk(t
i
k − ti−1

k ) + Sk + u2
i
k + w2

i
k, (3)

where a is the average boarding time per passenger, λk is the

average passenger arrival rate at station k, Sk is the minimal

staying time at station k when no passenger gets on the train,

u2
i
k is the staying time adjustment on train i at station k, and

w2
i
k is the uncertain disturbance term to the staying time. In

practice, the average passenger arrival rate λk will change with

the time. We assume the realized values of λk vary within a

range of values that are symmetric around the known nominal

value λ with half-length d. Then the realized values of the

average passenger arrival rate λ̃k are given by

λ̃k = λ+ αkd, −1 ≤ αk ≤ 1. (4)

where αk will be changing at different stations. For the sake

of simplicity, the known nominal value λ and the half-length

d are assumed to be the same for each station. Since αk is

changing with the different stations k, the considered average

passenger arrival rates λ̃k are different for different stations,

which are more general and practical than the case in [2] that

assumed that the average passenger arrival rates are identical

for all stations. In addition, by adjusting the nominal value

λ and the half-length value d, we can ensure a maximum

allowance passengers arrival rate, so as to satisfy the limited

capacity of the train for carrying passengers.

Combining (1)–(4), the train traffic model for the operation

of the metro loop line is described by

(1− aλ̃k+1)t
i
k+1

= tik − aλ̃k+1t
i−1
k+1 + Sk+1 +Rk + ui

k + wi
k, (5)

where ui
k = u1

i
k+u2

i
k+1, w

i
k = w1

i
k+w2

i
k+1. For the security

requirement to prevent collisions between trains, the control

input ui
k satisfies the bounded constraint −ǔi

k ≤ ui
k ≤ ûi

k.

In order to study the train regulation problem in the metro

loop line from a system-theoretic standpoint, we will define

the matrix form of the train traffic model in the metro loop

line.

B. The matrix form of train traffic model

To study the train regulation problems by using the control

theory conveniently, we develop a state-space formulation for

the train traffic of metro loop line. Firstly, the state vector and
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the control vector for each train i are defined according to [2]

as follows:

t̄ij = [tij−N , tij−N+1, . . . , t
i
j−M−1, t

i
j−M , ti−1

j−M+1, . . . ,

ti−M+1
j−1 ]T , i ∈ {1, 2, . . . ,M}, (6)

ūi
j = [ui

j−M , ui−1
j−M+1, . . . , u

i−M+1
j−1 ]T , (7)

where the subscripts j − N, j − N + 1, . . . , j − 1 represent

the station numbers. The state vector t̄ij is composed of N

components, which includes all the departure times at the N

stations (not only referred to the (N−M) successive stations),

in which the first (N−M) components are the departure time

of train i at (N − M) successive stations (index j − N to

j − M − 1), and the last M components are the departure

time relative to the M trains at other M successive stations. It

should be pointed out that the considered state vector t̄ij has an

interesting property that the components of the state vector are

known nearly simultaneously. This property makes possible

real time practical implementation of a state feedback control

policy, which has been also adopted in the existing literature

[2]. According to (6), the superscript of the components of t̄ij
is changing from 2−M to M . Thus, we adopt the virtual train

number {2−M, 3−M, . . . ,−1, 0, 1, 2, . . . ,M} to denote the

physical train index,

Let c̃1,k = 1
1−aλ̃k

and c̃2,k = −aλ̃k

1−aλ̃k

. Note that by

the practical data in reality [2], [9], it always holds that

0 < aλ̃k < 1. According to λ̃k = λ + αkd, −1 ≤ αk ≤
1, c̃1,k can be rewritten as c̃1,k = c1 + β1,kd1, −1 ≤
β1,k ≤ 1, where c1 = 1

2 (
1

1−a(λ−d) + 1
1−a(λ+d) ) and

d1 = 1
2 (

1
1−a(λ+d) − 1

1−a(λ−d) ). Similarly, c̃2,k = c2 +

β2,kd2, −1 ≤ β2,k ≤ 1, where c2 = 1
2 (

−a(λ+d)
1−a(λ+d) +

−a(λ−d)
1−a(λ−d) )

and d2 = 1
2 (

−a(λ−d)
1−a(λ−d) − −a(λ+d)

1−a(λ+d) ). To formulate a conve-

nient alternative model, we introduce the following matri-

ces: A11 = [aij ](N−M)×(N−M), aij =

{

1, i = j − 1,
0, otherwise

,

A12 = [bij ](N−M)×M , bij =

{

1, i = N −M, j = M,

0, otherwise
,

A21 = [cij ]M×(N−M), cij =

{

c2, i = M, j = N −M,

0, otherwise
,

and A22 = [dij ]M×M , dij =







c1, i = j,

c2, i = j − 1
0, otherwise

.

Then let w̄i
j = [

c̃1,j−M

c1
wi

j−M ,
c̃1,j−M+1

c1
wi−1

j−M+1, . . . ,
c̃1,j−1

c1
wi−M+1

j−1 ]T , R̄ = [Rj−M , Rj−M+1, . . . , Rj−1]
T , and

S̄ = [Sj−M , Sj−M+1, . . . , Sj−1]
T . The matrix form of the

train traffic model from the basic model (5) can be expressed

as

t̄ij+1 =

[

A11 A12

A21 A22

]

t̄ij + I1E1,j

[

0 0
0 D11

]

t̄ij

+I1E2,j

[

0 0
D21 D22

]

t̄ij +

[

0
B1

]

ūi
j

+

[

0
I2

]

E3,jD11ū
i
j +

[

0
B1

]

w̄i
j

+

[

0
I2

]

R̄+

[

0
I2

]

S̄, (8)

where E1,j = diag{β1,j−N , β1,j−N+1, . . . , β1,j−1}N×N ,

E2,j = diag{β2,j−N , β2,j−N+1, . . . , β2,j−1}N×N , E3,j =
diag{β1,j−M , β1,j−M+1, . . . , β1,j−1)}M×M , I1 = IN×N ,

I2 = IM×M , B1 = diag{c1, c1, . . . , c1}M×M , D11 =
diag{d1, d1, . . . , d1}M×M , D21 = [fij ]M×(N−M), fij =
{

d2, i = M, j = N −M,

0, otherwise
, D22 = [gij ]M×(N−M), gij =

{

d2, i = j − 1,
0, otherwise

.

In addition, we define the nominal time schedule represent-

ing the operation of the system with ui
k = 0 and wi

k = 0,

which is presented as

T i
k+1 = T i

k +Rk + aλ̃k+1(T
i
k+1 − T i−1

k+1) + Sk+1, (9)

where the nominal time schedule is characterized by a constant

time interval H between two successive trains, i.e.,

H = T i+1
k − T i

k. (10)

Due to the periodic circulation of the trains on the metro

loop line, the following equation should be satisfied

MH =

N
∑

k=1

(Rk + aλ̃kH + Sk). (11)

To guarantee that the trains on the metro loop line are

operating according to the nominal time schedule, let eik be

the deviation of the actual departure time tik from the nominal

value T i
k, i.e., eik = tik − T i

k. According to (8) and (9), the

error state-space model is obtained as

eij+1 = Aeij + I1E1,jD1e
i
j + I1E2,jD2e

i
j +Būi

j

+LE3,jD11ū
i
j +Bw̄i

j , i ∈ {1, 2, . . . ,M}, (12)

where eij = [eij−N , eij−N+1, . . . , e
i
j−M−1, e

i
j−M , ei−1

j−M+1,

. . . , ei−M+1
j−1 ]T , A =

[

A11 A12

A21 A22

]

, D1 =

[

0 0
0 D11

]

,

D2 =

[

0 0
D21 D22

]

, B =

[

0
B1

]

, L =

[

0
I1

]

.

According to the definition of the state vector (6), it is

obvious that the form of the error state-space model (12) for

any train i, i ∈ {1, 2, . . . ,M} is equivalent. Therefore, we only

need to study one of the error state-space model (12) for any

train i. Without loss of generality, we choose the error state-

space model (12) of the M -th train, i.e., i = M , and design

the robust train regulation. For simplicity, we rewrite the error

state-space model (12) of the M -th train as the following

matrix form

e(j + 1) = Ae(j) + I1E1,jD1e(j) + I1E2,jD2e(j) +Bū(j)

+LE3,jD11ū(j) +Bw̄(j), (13)

where e(j) = [eMj−N , eMj−N+1, . . . , e
M
j−M−1, e

M
j−M , eM−1

j−M+1,

. . . , e1j−1]
T , ū(j) = [uM

j−M , uM−1
j−M+1, . . . , u

1
j−1]

T , w̄(j) =

[
c̃1,j−M

c1
wM

j−M ,
c̃1,j−M+1

c1
wM−1

j−M+1, . . . ,
c̃1,j−1

c1
w1

j−1]
T , the index

j represents each decision step j, and the system parameters

are the same to that in (12).

We choose the state feedback control for the train regulation

as

ū(j) = K(j)e(j), (14)

where K(j)M×N is the control parameter to be determined.
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C. The robust model predictive control problem

For the train regulation, one should guarantee an adequate

level of train operating performance. Then associated with the

train regulation objective is the following cost function

G =

jf
∑

j=j0

{

eT (j)Qe(j) + ūT (j)Rū(j)
}

, (15)

where Q and R are given positive definite weighted matrices,

j0 and jf are the initial state number and the terminal state

number, respectively. The first part of (15) represents the

deviations from the nominal time schedule and the second

part is the amplitude of the control force.

For the train operation problem, the robust MPC approach

uses the current train dynamic state, train model, and opera-

tional limits to calculate future changes in the control variable

so that the train operating performance (15) is optimized for

all admissible uncertainties. Assume that exact measurement

of the state of the system e(j) is available at each sampling

decision step j. Then associated with (15) is the following

optimization problem to compute the control input at each

prediction step j.

min
ū(j+i|j)=K(j)e(j+i|j),i=0,1,2,...,jf−j

G(j)

=

jf−j
∑

i=0

{

e(j + i|j)TQe(j + i|j)

+ ūT (j + i|j)Rū(j + i|j)
}

, (16)

where e(j+ i|j) is the error state at step j+ i predicted based

on the measurements at step j, ū(j + i|j) is the control move

at step j + i computed by the optimization problem (16) at

step j.

Associated with the optimization problem (16) is the fol-

lowing constraints for the control input ū(j).

−ǔ ≤ ū(j + i|j) ≤ û, (17)

where ǔ and û are two known positive vectors.

In all practical applications, some disturbances invariably

enter the system and hence it is meaningful to study their effect

on the closed-loop response. The H∞ control method can be

used to study the disturbance rejection of the system to the

uncertain disturbance [20], [21]. By combining the H∞ control

method, the robust model predictive control for train regulation

problem in metro line with disturbances considered in this

paper can be formulated as follows: for the error state-space

model (13), given a prescribed H∞ disturbance attenuation

level γ > 0, obtain the control gains K(j) such that the

following conditions hold.

1) In the case when w̄j = 0, the cost function (16) with the

constraints (17) is minimized for all admissible uncertainties.

2) under the zero initial condition e(j) = 0, the error states

satisfy

jf−j
∑

i=0

(e(j + i|j)T e(j + i|j))1/2

≤ γ

jf−j
∑

i=0

(w̄(j + i|j)T w̄(j + i|j))1/2. (18)

The goal of robust model predictive control approach formu-

lated in this paper is to develop the state feedback control law

that satisfies all the constraints to track the nominal schedule

with a minimized cost function by rejecting the effect of the

uncertainties and disturbances.

III. ROBUST MODEL PREDICTIVE CONTROL FOR TRAIN

REGULATION

In this section, we will study the robust model predictive

control for train regulation in underground railway trans-

portation with uncertain passenger arrival rates. At first, to

reformulate the optimization problem (16) into an efficiently

solvable form, we will present the optimized condition for

the optimization problem (16) when the uncertain disturbance

w̄k = 0 as the following theorem.

Theorem 3.1: Consider the error state-space model (13)

for the metro loop line with N stations and wk = 0. Let

the passengers average arrival rate in the stations of metro

line satisfy the condition (4). At each sampling step j, the

state feedback matrix K(j) in the control law ū(j + i|j) =
K(j)e(j+ i|j), i ≥ 0 which minimizes an upper bound α(j)
on the worst case of the objective function G(j), is given by

K(j) = Y (j)X−1(j), where Y (j) and X(j) are obtained

from the solution of the following LMIs:

min
(ε̃1(j)>0, ε̃2(j)>0, ε̃3(j)>0, α(j)>0, X(j)>0, Y (j), Z(j)>0)

α(j) (19)

subject to












−X(j) Φ1(j) X(j)DT
1 X(j)DT

2 Y T (j)DT
11 X(j) Y T (j)

ΦT
1 (j) Φ2(j) 0 0 0 0 0

D1X(j) 0 −ε̃1(j)I 0 0 0 0
D2X(j) 0 0 −ε̃2(j)I 0 0 0
D11Y (j) 0 0 0 −ε̃3(j)I 0 0

X(j) 0 0 0 0 −α(j)Q−1 0

Y (j) 0 0 0 0 0 −α(j)R−1













< 0, (20)
[

1 eT (j|j)
e(j|j) X(j)

]

≥ 0, (21)

[

Z(j) Y (j)
Y T (j) X(j)

]

≥ 0, (22)

Zll(j) ≤ ū2
l , (23)

where Φ1(j) = X(j)AT + Y T (j)BT , Φ2(j) = −X(j) +
ε̃1(j)I1I

T
1 + ε̃2(j)I1I

T
1 + ε̃3(j)LL

T , ūl =
ûl+ǔl

2 − | ûl−ǔl

2 |,
Zll(j) denotes the l-th diagonal element of the matrix Z(j).

Proof: For the error state-space model (13) with wk =
0, at the sampling step j, construct the following Lyapunov

function candidate

V (e(j)) = eT (j)P (j)e(j). (24)

Suppose the following robust stability constraint is satisfied:

V (e(j + i+ 1|j))− V (e(j + i|j))

≤−[eT (j + i|j)Qe(j + i|j) + uT (j + i|j)Ru(j + i|j)],(25)

where i = 0, 1, . . . , jf − j.
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Summing (25) from i = 0 to i = jf − j, it follows that

G(j)=

jf−j
∑

i=0

{

eT (j + i|j)Qe(j + i|j) + uT (j + i|j)Ru(j + i|j)
}

≤ V (e(j|j))− V (e(jf + 1|j))

≤ V (e(j|j)). (26)

Let V (e(j|j)) ≤ α(j), which gives an upper bound α(j)
on G(j). Then the optimization problem (16) is relaxed by a

convex optimization problem to minimize α(j).
The condition V (e(j|j)) ≤ α(j) can be expressed equiv-

alently as the LMI (21), where X(j) = α(j)P−1(j). Next,

we will give the sufficient conditions for (25) and the control

constraints (17).

At sampling step j, one can further obtain that

V (e(j + i+ 1|j))− V (e(j + i|j))

= eT (j + i|j)[(A+ I1E1,j+iD1 + I1E2,j+iD2 +BK(j)

+LE3,j+iD11K(j))TP (j)(A+ I1E1,j+iD1

+I1E2,j+iD2 +BK(j) + LE3,j+iD11K(j))]e(j + i|j)

−eT (j + i|j)P (j)e(j + i|j) (27)

Then the robust stability constraint (25) holds if and only if

(A+ I1E1,j+iD1 + I1E2,j+iD2 +BK(j)

+LE3,j+iD11K(j))TP (j)(A+ I1E1,j+iD1

+I1E2,j+iD2 +BK(j) + LE3,j+iD11K(j))

−P (j) +Q+KT (j)RK(j) < 0. (28)

According to the Schur complement [22], condition (28) is

equivalent to
[

−P (j) +Q+KT (j)RK(j) (A+BK(j))T

A+BK(j) −P−1(j)

]

+2

[

DT
1

0

]

E1,j+i

[

0 IT1
]

+ 2

[

DT
2

0

]

E2,j+i

[

0 IT1
]

+2

[

KT (j)DT
11

0

]

E3,j+i

[

0 LT
]

< 0. (29)

By the Cauchy inequality that ATB +BTA ≤ ε−1ATA+
εBTB, ∀ ε > 0, and matrices A and B with appropriate

dimensions, together with the condition (4), it holds that

2

[

DT
1

0

]

E1,j+i

[

0 IT1
]

≤ ε1

[

0
I1

]

[

0 IT1
]

+ ε−1
1

[

DT
1

0

]

[

D1 0
]

, (30)

2

[

DT
2

0

]

E2,j+i

[

0 IT1
]

≤ ε2

[

0
I1

]

[

0 IT1
]

+ ε−1
2

[

DT
2

0

]

[

D2 0
]

, (31)

2

[

KT (j)DT
11

0

]

E3,j+i

[

0 LT
]

≤ ε3

[

0
L

]

[

0 LT
]

+ε−1
3

[

KT (j)DT
11

0

]

[

D11K(j) 0
]

. (32)

Thus, by combining (29)–(32), we can obtain that the

following matrix inequality






−P (j)+Q+KT (j)RK(j) (A+BK(j))T DT
1 DT

2 KT (j)DT
11

A+BK(j) Ω(j) 0 0 0
D1 0 −ε1I 0 0
D2 0 0 −ε2I 0

D11K(j) 0 0 0 −ε3I







< 0 (33)

implies that (28) holds, where Ω(j) = −P−1(j) + ε1I1I
T
1 +

ε2I1I
T
1 + ε3LL

T .

In addition, by variable substitution, let

X(j) = α(j)P−1(j), Y (j) = K(j)X(j),
ε̃1(j) = α(j)ε1, ε̃2(j) = α(j)ε2, ε̃3(j) = α(j)ε3,

where α(j) > 0. According to the Schur complement

[22], pre and post-multiplying both sides of (20) by

diag{α1/2(j)X−1(j), α−1/2(j)I, α−1/2(j)I, . . . , α−1/2(j)I},

one can obtain that the inequality (20) is equivalent to the

inequality (33). Thus the condition (20) ensures the robust

stability constraint (25).

Moreover, the control constraints (17) can be expressed as

− ûl+ǔl

2 ≤ ū(j + i|j)l −
ûl−ǔl

2 ≤ ûl+ǔl

2 , i.e., |ū(j + i|j)l −
ûl−ǔl

2 | ≤ ûl+ǔl

2 , where ū(j + i|j)l is the l-th element in the

control input ū(j + i|j), and ûl and ǔl are the l-th element

of û and ǔ respectively. According to |ū(j + i|j)l −
ûl−ǔl

2 | ≤
|ū(j+ i|j)l|+ | ûl−ǔl

2 |, thus the control constraints (17) can be

guaranteed by the inequality |ū(j + i|j)l| ≤
ûl+ǔl

2 − | ûl−ǔl

2 |.
Then according to the Cauchy-Schwarz inequality, we have

|ū(j + i|j)l|
2 = |Kl(j)P

− 1
2 (j)P

1
2 (j)e(j + i|j)|2

≤ Kl(j)P
−1(j)KT

l (j)e
T (j + i|j)P (j)e(j + i|j)

≤ Kl(j)P
−1(j)KT

l (j)α(j), (34)

where Kl(j) represents the l−th row of the matrix K(j).
Pre and post-multiplying both sides of (22) by

diag{I,X−1(j)}, one can get that (22) is equivalent

to
[

Z(j) K(j)
KT (j) α−1(j)P (j)

]

≥ 0. (35)

It is shown from (23) and (35) that

Kl(j)P
−1(j)KT

l (j)α(j) ≤ Z(j), Zll(j) ≤ ū2
l , (36)

where ūl = ûl+ǔl

2 − | ûl−ǔl

2 |, which implies from (34) that

|ū(j + i|j)l| ≤
ûl+ǔl

2 − | ûl−ǔl

2 |, i.e., the control constraints

(17) are satisfied.

Therefore, the minimized condition for the optimization

problem (16) when the uncertain disturbance wk = 0 is relaxed

to the convex optimization problem (19) with the constraints

(20)–(23).

Remark 3.1: It should be pointed out that the convex opti-

mization problem (19) in Theorem 3.1 takes the form of linear

matrix inequalities, which can be easily solved by using the

Matlab LMI toolbox. Consequently, the proposed robust model

predictive control scheme has a low computational complexity

since the LMI-based optimization problems can be solved in

polynomial time [18].

Next, based on Theorem 3.1, we will design the robust train

regulation law for a metro line with uncertain passenger arrival

rates and uncertain disturbances by using robust MPC method.
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The following theorem will give a sufficient condition for the

existence of a robust MPC law for a metro loop line with

uncertain disturbances.

Theorem 3.2: For a given constant γ > 0 at each sampling

step j, if the following LMI-based minimization problem:

min
(ε̃1(j)>0, ε̃2(j)>0, ε̃3(j)>0, α(j)>0, X(j)>0, Y (j), Z(j)>0)

α(j) (37)

subject to (21)− (23),
[

Ξ1(j) ΞT
2 (j)

Ξ2(j) Ξ3(j)

]

< 0, (38)

where

Ξ1(j) =











−X(j) 0 Φ1(j) X(j)DT
1 X(j)DT

2 Y T (j)DT
11

0 −α(j)γ2I α(j)BT 0 0 0

ΦT
1 (j) α(j)B Φ2(j) 0 0 0

D1X(j) 0 0 −ε̃1I 0 0
D2X(j) 0 0 0 −ε̃2I 0
D11Y (j) 0 0 0 0 −ε̃3I











,

Ξ2(j) =

[

X(j) 0 0 0 0 0
X(j) 0 0 0 0 0
Y (j) 0 0 0 0 0

]

,

Ξ3(j) =

[

−α(j)I 0 0

0 −α(j)Q−1 0

0 0 −α(j)R−1

]

,

admits a set of solutions

(ε̃1(j), ε̃2(j), ε̃3(j), α(j), X(j), Y (j), Z(j)),
then the robust model predictive control law

ū(j + i|j) = Y (j)X−1(j)e(j + i|j) can be obtained to

ensure the minimization of the upper bound on the train

operating performance G(j), and meanwhile guarantee a

disturbance attenuation level γ with respect to the uncertain

disturbances.

Proof: At first, according to the Schur complement [22],

it can be derived that the inequality (38) implies that condition

(20) holds. So according to Theorem 3.1, under the conditions

(21)-(23), the cost function (16) with the constraints (17) is

minimized for all admissible uncertainties.

Next for any nonzero disturbance w̄(j) with finite energy,

one can get

V (e(j + i+ 1|j))− V (e(j + i|j)) (39)

=
[

e(j+i|j)
w̄(j+i|j)

]T [

−P (j)+ΘT (j)P (j)Θ(j) ΘT (j)P (j)B

BTPΘ(j) BTP (j)B

] [

e(j+i|j)
w̄(j+i|j)

]

,

where Θ(j) = A + I1E1jD1 + I1E2jD2 + BK(j) +
LE3jD11K(j).

Additionally, let X(j) = α(j)P−1(j), Y (j) = K(j)X(j).
Pre and post-multiplying both sides of (38) by

diag{α1/2(j)X−1(j), α−1/2(j)I, α−1/2(j)I, . . . , α−1/2(j)I}
and combining the results with conditions (30)–(32), we can

get that the condition (38) implies that

[

−P (j)+ΘT (j)P (j)Θ(j)+I+Q+KT (j)RK(j) ΘT (j)P (j)B

BTPΘ(j) BTP (j)B−γ2I

]

< 0, (40)

which shows that
[

−P (j)+ΘT (j)P (j)Θ(j)+I ΘT (j)P (j)B

BTPΘ(j) BTP (j)B−γ2I

]

<
[

−Q−KT (j)RK(j) 0
0 0

]

≤ 0. (41)

It is obviously follows from (39)–(41) that

V (e(j + i+ 1|j))− V (e(j + i|j)) + [e(j + i|j)T e(j + i|j)]

−γ2w̄(j + i|j)T w̄(j + i|j) < 0. (42)

Thus, under the zero initial condition e(j) = 0, summing (42)

from i = 1 to i = jf − j gives that

jf−j
∑

i=1

(e(j + i|j)T e(j + i|j)− γ2w̄(j + i|j)T w̄(j + i|j))

< 0, (43)

which shows that

jf−j
∑

i=1

(eT (j + i|j)e(j + i|j))1/2

≤ γ

jf−j
∑

i=1

(wT (j + i|j)w(j + i|j))1/2 (44)

Therefore, according to Definition 2.1, the robust MPC law

ū(j+i|j) = Y (j)X−1(j)e(j+i|j) is obtained, which ensures

the minimization of the upper bound on the train operating

performance G(j), and meanwhile guarantees a disturbance

attenuation level γ with respect to the uncertain disturbances.

According to Theorem 3.2, the main algorithm of the robust

model predictive control for the train regulation in metro loop

line is summarized as follows.

Algorithm 3.1:

• Step 1. At sampling step j, obtain the measure state

e(j) = e(j|j) for the error state-space model (13) of

the train regulation in the metro loop line with uncertain

parameters and disturbances.

• Step 2. For a given disturbance attenuation level γ > 0,

according to Theorem 3.2, by solving the optimiza-

tion problem (37), get the robust MPC gain K(j) =
Y (j)X−1(j) and apply it to the train traffic model to

obtain the next value e(j + 1).
• Step 3. Based on the measured value e(j+1), repeat Step

1 and 2 until the step horizon jf .

IV. NUMERICAL EXAMPLES

In this section, we will give an example to illustrate the

effectiveness of the proposed methods for the train regulation

of underground railway transportation. Consider a metro loop

line with 18 stations (i.e., N = 18) where a set of 14 trains

(i.e., M = 14) are operating simultaneously on the loop line.

For the cost function (15), the weight matrices are chosen

as Q = 0.1I18 and R = 0.1I14. We choose the operating

condition of the metro system during the peak hours from

7 : 00am to 10 : 00am.

According to the passenger flow of Yizhuang Line in

Beijing metro system on one day in Figure 2 [23], we choose

that the passenger arrival rates vary within a range of values

that are symmetric around the known nominal value λ = 0.35
with a half-length d = 0.15 at each station during the peak

hours from 7 : 00am to 10 : 00am. The average boarding time

per passenger during the peak hours is chosen as a = 0.2s.
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Additionally, the uncertain disturbances to the running time

and staying time of trains are assumed to be varying in the

interval [2s, 7s].
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Figure 2. The passenger flow of Yizhuang Line in Beijing

metro system on one day.
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Figure 3. The error state for the metro system with ui
k = 0

for train 1 (a), train 3 (b), train 10 (c) and train 14 (d).

For the error state-apace model of train traffic with ui
k = 0,

we apply the traditional train regulation method by using

of time margins (resetting the time deviations to zero at

selected stations) [2]. For this method, one of these stations

is the terminus where the train staying time is adapted in

order to ensure the periodicity of the nominal time schedule,

which however will require more trains in standby at the

terminus. Consider that the total staying time at the terminus

is 6min constituted by the minimal time 3min and the time

margin 3min that is used for resetting the time deviations to

zero. Under this case, the error state evolutions for the time

deviations of trains 1, 3, 10 and 14 with uncertain passenger

arrival flow and uncertain disturbances are plotted in Figure

3. Figure 3 shows that due to the uncertain passenger arrival

flow and disturbances, the departure times of all the trains

are delayed and the delays of the trains are propagated from

one station to the next one, i.e., the deviation with respect

to the nominal time schedule is amplified with time. At the

terminus, the time margin is allowed to recover the nominal

time schedule for all the trains. However, at each loop for

each train, the maximum delays is exceed 50s. This unstable

behavior is quite uncomfortable for passengers.
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Figure 4. The error state for the metro system with robust

MPC for train 1 (a), train 3 (b), train 10 (c) and train 14 (d).

Next, according to the robust MPC approach for train

regulation in the metro loop line proposed in this paper,

we will design the robust MPC law to suppress the effect

of the uncertain passenger arrival flows and the uncertain

disturbances to the nominal schedule of the metro system.

Suppose that the state feedback control ui
k is subject to the

constraint −20s ≤ ui
k ≤ 25s, i.e., the increase of the adjusting

running time and staying time for each train from one station

to the next station is not allowed to exceed 25s and the

decrease is not exceed 20s. Choose a small H∞ disturbance

attenuation as γ = 2.9, then based on the Theorem 3.2 and

performing Algorithm 3.1 with Matlab LMIs Toolbox, the

corresponding state feedback control gains for each decision

step can be obtained. To keep the paper concise, the controller

gains K ∈ RM×N at each decision step are not presented here

for the dimensions are very large.
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Figure 5. The error state for the operation of train 1.

TABLE I
THE COMPUTATIONAL TIMES FOR THE DIFFERENT NUMBERS OF STATIONS

AND TRAINS

Case 1 Case 2 Case 3 Case 4 Case 5

(N,M) (18,14) (22,16) (26,18) (30,20) (34,22)
Computational time 6.1s 14.2s 24.1s 42.6s 74.2s

Under the robust regulation, the simulation results of the

time deviations of trains 1, 3, 10, and 14 are given in Figure

4. From Figure 4, we find that the maximum delays of each

train are effectively controlled in 8s. By comparing Figure
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3 and Figure 4, it is obvious that the proposed robust train

regulation significantly reduces the delays of all the trains,

and improves the operation efficiency of the metro loop line

system. In particular, for the operation of train 1, and the

corresponding error state evolution for the metro system is

shown in Figure 5, in which the dashed line represents the

result of the metro system without train regulation and the

solid line is the case of the metro system with robust train

regulation. When the train operation is without train regulation,

the delay of the trains is increasing from 0s to 90s at the first

loop and from 0s to 50s at the second loop. By comparison,

the solid line shows that under the robust train regulation,

the delays of the trains are controlled in a reasonable range

of 8s. By calculation, the total delay of train 1 is reduced

83% compared by the case without train regulation. Clearly

the robust train regulation strategy significantly improves the

operation efficiency of metro loop line system. Additionally,

it should be pointed out that the computational time for each

decision step is calculated as 6.1s, which shows that the

computational time is short enough for the real-time control of

underground railway transportation. Since the matrix variable

K ∈ RM×N , the number of the stations and trains will

affect the computational times. By increasing the numbers of

stations and trains, a set of computational time are calculated

in table 1, which shows that the computational time increases

with the number of the stations and trains in a polynomial

time. Therefore the proposed train regulation method can be

implemented on-line for the usual metro lines with dozens of

stations and trains.

V. CONCLUSION

In this paper, the robust MPC for train regulation in under-

ground railway transportation was investigated. By considering

the uncertain disturbances to the train operation, the robust

model predictive control law for train regulation was designed

that ensures the minimization of the upper bound on metro

system cost function, and meanwhile guarantees a given

disturbance attenuation level with respect to the uncertain

disturbances. In addition, it is easy to extend the proposed

robust MPC method to deal with the metro line with merging

and branching. If the number of the stations and trains for this

case is too large, one may resort to the distributed robust MPC

design method, which needs to be investigated in the future.
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