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Robust H∞ switching control techniques for switched nonlinear
systems with application to urban traffic control

Mohammad Hajiahmadi*, Bart De Schutter, Hans Hellendoorn

Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands.

SUMMARY

This paper presents robust switching control strategies for switched nonlinear systems with constraints on
the control inputs. A quantization technique is used to relax the constraint on continuous control inputs and
the L2-gain analysis and H∞ control design problem for switched nonlinear systems are presented. Next, as
an alternative method, the switched nonlinear system is approximated by a switched affine system that has
autonomous and controlled switching behavior. A robust switching control law is proposed to stabilize the
switched affine system. The design procedure involves solving an optimization problem that is nonconvex
in a single scalar variable only. Furthermore, we provide the sufficient conditions under which the proposed
switching law is able to stabilize the original switched nonlinear system. Finally, the proposed methods
are utilized for control of urban traffic networks modeled on a high level. The traffic control objective
is translated into a stability and disturbance attenuation problem for the urban network represented by a
switched nonlinear system. The switching control approaches are able to reduce congestion in the network
and to attenuate the effects of uncertain trip demands. Since the design of the switching laws is performed
offline, real-time traffic control is possible with the proposed methods.

KEY WORDS: Switched systems, robust control, linear matrix inequalities, urban traffic control

1. INTRODUCTION

Switched systems are a class of hybrid systems that consist of a set of subsystems and a switching

signal selecting the active subsystems. The switching behavior in these systems can be state

and/or time dependent and can be autonomous or controlled or a combination of both [1]. In the

controlled switching case, the switching laws can be designed in a way that the controlled system

achieves a better performance [2, 3]. Stabilization and control synthesis for switched systems and

in particular for switched linear systems have been widely studied using common and/or multiple

Lyapunov function methods and for time and/or state dependent switching [2, 4, 5, 6, 7]. However,

stability analysis of switched nonlinear systems has been investigated for particular classes only

[8, 9, 10, 11].

Moreover, the disturbance attenuation problem for switched systems has attracted attention of

researchers in recent years. The L2-gain analysis and H∞ control have been developed for switched

linear systems based on the extension of algebraic Riccati inequalities [12]. For the particular cases

of switched nonlinear systems, the H∞ control problem is solved based on the Hamilton-Jacobi

inequalities for nonlinear systems [13, 14, 15]. As an example, in [15] a nonlinear switched system

is considered that is affine both in the control input and the disturbance input. The model contains a

set of nonlinear subsystems each controlled with an unconstrained continuous control input. Further,

a switching signal determines the active subsystem. However, the design procedure for the switching

rule and the continuous feedback control is based on the fact that the control input is not constrained.

In this paper, we study the stabilization problem for switched nonlinear systems that are affine in

∗Correspondence to: m.hajiahmadi@tudelft.nl.
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the control and disturbance inputs. The aim is to extend the current results on stabilization and

H∞ control for the constrained control case and moreover, to propose design procedures that are

efficiently implementable.

The motivation for this research is based on a practical hybrid model developed for large-scale

urban traffic network control [16]. In this model two types of controllers are defined: perimeter

control for limiting the flow of vehicles traveling between urban regions and discrete control

for switching between the signal timing plans of urban areas. The model is developed based on

the existence of macroscopic fundamental diagrams (MFD) for the urban areas [17]. The MFD

provides a relationship between the accumulation of vehicles in the network and the network trip

completion rate. In fact, the MFD representation makes it possible to efficiently model a large-scale

urban network at an aggregate high level and to subsequently develop control strategies that are

less computationally complex compared to detailed modeling and control approaches previously

proposed by considering individual intersections.

In [16] a mixed integer nonlinear optimization problem is formulated and is solved in the model

predictive control (MPC) framework [18] in order to minimize the total delay in the network.

Solving nonlinear and nonconvex optimization problems can be time-consuming and finding a

global optimum solution is not guaranteed. In the MPC framework, having a prediction of the

demand profile is crucial. However, an urban traffic network involves unpredictable human activities

and consequently the uncertainties in traffic demands might influence the performance of control

schemes. Some approaches are proposed in the literature to consider uncertain traffic demands

[19, 20]. In this paper, we represent the network as a switched nonlinear system and we design

a robust switching scheme to attenuate the effects of uncertain demands in the network.

More specifically, we aim at designing a new control scheme for urban networks represented

by the hybrid model developed in [16] but without having exact knowledge about the traffic

demands and at the same time requiring less online computational efforts. Basically, we consider

the model in [16] as a switched nonlinear system. We consider the minimization of the total delay

as a stabilization and disturbance attenuation problem. Since there are constraints on the feedback

control inputs, we propose a model transformation (quantizing the control input) to relax them. The

trip demands in the network are considered as exogenous disturbance signals. The main requirement

of the proposed approach is that the disturbance is bounded in norm and belongs to the class of

square integrable functions. This assumption is valid for finite time intervals (e.g. the peak hours)

and since the trip demands inside the urban network are bounded and have a finite average. We

propose two robust control design procedures that can be implemented offline and their online

computation is limited to simple algebraic operations. This is a major advantage over e.g. the MPC

approaches in [16, 21] which require considerable on-line computation.

The two proposed methods are:

1. we directly formulate the robust stabilizing conditions based on the nonlinear dynamics of the

switched system. The design conditions are then constructed based on a multiple Lyapunov

functions approach [8]. We previously presented a concise version of this method in [22].

2. we first approximate the switched nonlinear system with a switched affine system and next,

we formulate the stability conditions based on the affine dynamics. The sufficient conditions

for stabilizing the original switched nonlinear system using the designed switching law are

presented.

In the first approach, we need to search for Lyapunov functions, which is a difficult task in general.

However, for our traffic case study, the choice of quadratic functions of states is sufficient.

As for the second approach, the switched affine system is constructed by approximating each

nonlinear subsystem using piecewise affine (PWA) functions. A controllable switching signal

orchestrates the switching between piecewise affine subsystems. Note that there also exists an

autonomous type of switching between affine functions of each PWA subsystem. This autonomous

switching makes the stability analysis and control of such system challenging.

Stabilization of the switched affine system is performed using multiple quadratic Lyapunov

functions and a min switching strategy. By fixing one scalar variable, the design conditions will

be in the form of linear matrix inequalities. Compared to the existing min switching techniques
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[5, 7] which are based on Metzler matrices, the proposed approach is less conservative. The key

feature is to replace the elements of a Metzler matrix with matrix variables. This however comes at

the price of introducing more variables in the stability conditions. Furthermore, it should be noted

that smoothness of the nonlinear functions of the subsystems is a necessary condition for this design

method.

Overall, the main contributions of the paper are 1) extending the results of [8, 23] to the

robust control design for disturbance attenuation, 2) designing a robust switching law based on

an approximate switched affine system with mixed switching and providing sufficient conditions

to guarantee the stability of the original switching nonlinear system, 3) formulating the urban

congestion control problem under uncertain trip profiles as a robust stabilization problem and

proposing an efficient design procedure that is mostly performed offline.

It is worthwhile to mention that as a third approach to tackle the stabilization problem for switched

nonlinear systems, one can assume that the nonlinear dynamics are bounded in sector-sets and then

uses the sector conditions to obtain efficient control design conditions [11]. Although this method

is more computationally efficient than the two proposed methods in this paper, it is in general more

conservative due to the use of sector conditions.

The paper is organized as follows. The problem formulation along with a model transformation

is presented in Section 2. A general procedure for the design of robust stabilizing switching laws

is presented in Section 3. In Section 4, first the switched nonlinear system is approximated by

a switched affine system and next, the robust H∞ control design procedure is presented. The

sufficient conditions for stabilizing the switched nonlinear system using the proposed switching

law are discussed. Finally, in the case study section, the macroscopic modeling of urban traffic

networks is reviewed and the related traffic variables and objectives are defined. Next, two robust

stabilizing controllers are designed for a two-region urban network case. The performance of the

proposed control schemes are compared with other static state feedback strategies and also with the

model predictive control approach.

2. PROBLEM STATEMENT

Consider the following switched nonlinear system:

ẋ(t) = fσ(t)
(
x(t)

)
+ gσ(t)

(
x(t)

)
· u(t) +Hσ(t)ω(t), x(0) = x0, (1)

where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the control input, and ω(t) ∈ R
nω is the disturbance

input at time t. The superscripts nx, nu and nω denote the number states, the number of control

inputs and the number of disturbance inputs, respectively. The switching signal is denoted by σ
and is assumed to be piecewise constant and it is considered as a control input for the system. The

variable σ takes values from a pre-defined index set {1, . . . , N}, and for each value that σ assumes,

the state space model (1) is governed by a different set of vector functions fi(·) and gi(·) from the

following sets:

fσ(t) ∈ {f1, . . . , fN} (2)

gσ(t) ∈ {g1, . . . , gN} (3)

The vector functions fi and gi are continuous functions of states such that fi(0) = 0, gi(0) = 0.

Moreover, the control input u is constrained as follows:

u(t) ∈ [0, 1] (4)

The aim is to design a state feedback control law together with a switching rule in order to stabilize

the system and to reduce the effects of disturbances. However, the constraint (4) on the control input

limits the design freedom.

The problem at hand cannot be easily tackled based on the current literature about stabilization

of switched nonlinear systems. For instance, the approach presented in [10] provides a systematic
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way for designing stabilizing control inputs for switched nonlinear systems that are input/output-

linearizable. The method is based on the existence of the control Lyapunov functions, which

however are not easy to find for the general system (1). Moreover, the design procedures proposed

in [24, 25] do not handle any constraint on the control input. Furthermore, in [10] an involved

approach is proposed for the stabilization of switched nonlinear systems with the assumption that

for each subsystem there exists a control Lyapunov function [26]. The proposed conditions would

be simplified in case the system is input-output linearizable and the relative degree of the system is

n.

As mentioned before, we assume that the control input u(t) is constrained in [0, 1]. In some

physical systems, the sensitivity to the variations of the control input is relatively low. In this case,

we can limit the control input to take a finite number values from its defined domain. In other words,

we can quantize our control input u ∈ [0, 1] in the following form:

u(t) =

r∑

l=0

Ul · δl(t), (5)

with Ul ∈ R constant coefficients and δl(t) ∈ {0, 1}. The set of possible input values is then finite

and its cardinality is 2r+1, while the difference between two consecutive values is determined by the

parameters Ul. By quantizing the control input u as in (5) new modes are introduced and therefore

we denote the total number of modes by N ′ with a new set of vector functions {f ′
1, . . . , f

′
N ′} that

are determined using the functions fi and gi and the values that the quantized input u can take.

As a result, the system in (1) can be reformulated as:

ẋ(t) = fσ(t)
(
x(t)

)
+ gσ(t)

(
x(t)

)
·
[ r∑

l=0

U1,l · δ1,l(t), . . . ,
r∑

l=0

Unu,l · δnu,l(t)

]T

+Hσ(t)ω(t)

= f ′
σ′(t)

(
x(t)

)
+Hσ′(t)ω(t), (6)

where f ′
σ′(t) ∈ {f ′

1, . . . , f
′
N ′}.

The current formulation helps to have a concise design procedure as we reflect the effects of the

continuous control input u in the switching signal σ′ and hence, we have to deal only with one type

of control input (switching). In the following sections, we present stabilizing switching control laws

for the transformed system (6).

3. ROBUST H∞ CONTROL OF SWITCHED NONLINEAR SYSTEM

In this section, we design a robust stabilizing switching law for system (6). We assume that the state

vector x(t) is available for feedback for all t ≥ 0. First, we consider the case ω ≡ 0 and we aim to

determine a piecewise constant function r(·) : Rnx → {1, . . . , N ′}, such that the switching law:

σ′(t) = r(x(t)) (7)

makes the equilibrium x = 0 globally asymptotically stable for (6), with ω ≡ 0. It should be noted

that we do not assume that any of the subsystems is locally or globally asymptotically stable. This

means that our switching controller would be able to stabilize the switched system even when all

subsystems are unstable.

The Lyapunov function ϑ(·) is constructed as follows:

ϑ(x) := min
i=1,...,N ′

Vi(x), (8)

where V1, . . . , VN ′ are differentiable, positive definite, and radially unbounded functions of x.

Furthermore, we use the notion of Metzler matrices [27, 5, 8]. A Metzler matrix is a matrix in which

all the off-diagonal components are nonnegative. For our goal, we limit the attention to a subclass of

Metzler matrices denoted by M and containing all matrices M ∈ R
N ′×N ′

with elements µij , such
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that:

µij ≥ 0 ∀i 6= j,

N ′

∑

i=1

µij = 0, ∀j (9)

The following theorem, adopted from [8, 23], provides the design procedure for a stabilizing

switching rule that makes the switched system asymptotically stable in case ω ≡ 0.

Theorem 1

[8] Assume there exist functions V1, . . . , VN ′ , which are all differentiable, positive definite, radially

unbounded, and zero at zero. Furthermore, assume there exists matrix M ∈ M with elements µij

that satisfies the Lyapunov-Metzler inequalities:

∂Vi(x)

∂x
f ′
i(x) +

N ′

∑

j=1

µjiVj(x) < 0, i ∈ {1, . . . , N ′}, (10)

for all x 6= 0. Then the switching rule (7) with†:

r(x(t)) = arg min
i=1,...,N ′

Vi(x(t)), (11)

makes the equilibrium point x = 0 of (6) globally asymptotically stable when ω ≡ 0.

Proof

We present the proof from [8]. Later we will use a similar approach to prove the next theorem. The

Lyapunov function (8) is piecewise differentiable, which means that it is not differentiable for all

x ∈ R
nx . Therefore, we need to define the following derivative (see [8, 28]):

D(ϑ(x(t))) = lim
∆t→0+

sup
ϑ(x(t+∆t))− ϑ(x(t))

∆t
(12)

Assume that at an arbitrary t ≥ 0, the state switching control is given by σ(t) = r(x(t)) = i for some

i ∈ I(x(t)) = {i : ϑ(x) = Vi(x)}. Hence, from (12) and (6) with ω ≡ 0, we have (using Theorem 1

on page 420 of [29]):

D(ϑ(x(t))) = min
l∈I(x(t))

∂Vl

∂x
f ′
i ≤

∂Vi

∂x
f ′
i , (13)

Since (10) is valid for any M ∈ M and Vj ≥ Vi for all j ∈ {1, . . . , N ′} \ {i}, using the fact that

i ∈ I(x(t)) and by rewriting the Lyapunov-Metzler inequality (10) as follows:

∂Vi

∂x
f ′
i < −

N ′

∑

j=1

µjiVj , i ∈ {1, . . . , N ′}, (14)

one can obtain:

D(ϑ(x(t))) ≤ ∂Vi

∂x
f ′
i < −

N ′

∑

j=1

µjiVj ≤ −
( N ′

∑

j=1

µji

)

Vi = 0, for all x 6= 0 (15)

Thus, the switching law (11) makes the equilibrium point x = 0 of the switched nonlinear system

(6), with ω ≡ 0, globally asymptotically stable.

†Note that in (11), we take the minimum argument, in case of having multiple minima Vi,ℓ (this can happen as a result
of sliding motion).
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Remark 1

In order to design the switching law (11), one would need to find appropriate positive definite

functions Vi and a Metzler matrix that satisfy the Lyapunov-Metzler inequalities (10) for all x 6= 0.

Unfortunately, this is a difficult task in general since it includes determination of positive definite

functions. Fortunately, the choice of quadratic functions works for many cases (e.g. for our case

study). Nevertheless, finding the coefficients of the quadratic functions Vi along with the elements

of the Metzler matrix constitutes a nonlinear feasibility optimization problem. In some cases, we

can recast this problem as a Bilinear Matrix Inequality (BMI) problem [30] and thus, take advantage

of the existing solvers for BMIs. But the general case would be a multi-parametric optimization

problem. Nonetheless, one can use another approach to tackle the problem of finding the parameters

of Vi along with the elements of the Metzler matrix M . By gridding the domain of the state x,

one can formulate the Lyapunov-Metzler inequalities for each vertex of the grid. Depending on the

characteristics of the system under study and the objectives, one can make grids with different levels

of accuracy in a uniform or non-uniform way. Next, the remaining task is to find solutions for the

parameters of Vi and the Metzler matrix in order to satisfy all Lyapunov-Metzler inequalities for

all grid points. This is a nonlinear optimization problem in which the feasibility of all nonlinear

inequality constraints has to be checked. Of course, there might exist multiple solutions for this

problem but any feasible solution would work for finding the stabilizing switching law.

Now suppose that the switched nonlinear system is affected by norm bounded disturbances. The

model of the system is as follows:

ẋ(t) = f ′
σ′(t)

(
x(t)

)
+Hσ′(t)ω(t), x(0) = x0, (16)

y(t) = Cσ′(t)x(t), (17)

with y(t) ∈ R
ny the output vector. Moreover, we assume that the disturbance vector ω belongs to

the space of square integrable functions on [0, T ], ∀T ≥ 0, as follows:

‖ω‖L2[0,T ] =

(
∫ T

0

ωT (t)ω(t)dt

)1/2

< ∞ (18)

System (16) has an L2-gain γ > 0 under some switching law σ′ if ‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] for

all nonzero ω ∈ L2[0, T ] (0 ≤ T < ∞) and for initial condition x(0) = 0. It follows that:

‖y‖L2[0,T ] ≤ γ‖ω‖L2[0,T ] ⇐⇒
∫ T

0

(

‖y(t)‖2 − γ2‖ω(t)‖2
)

dt ≤ 0 (19)

for any T > 0 when x(0) = 0. The aim is to design a switching strategy σ′ such that system (16)

has L2-gain γ or equivalently, to have an H∞ disturbance attenuation level γ.

The approach for H∞ control of switched nonlinear systems proposed in [15] is not applicable

for control of (1), as the input u is constrained in the box [0, 1]nu . Nevertheless, we transformed

the model using quantization of the input variable and obtained the model in (6). For this model,

the following problem is defined. Assume that a constant γ > 0 is given, the goal is to design a

switching law σ′, such that the origin of the closed-loop system is globally asymptotically stable

when ω(t) = 0, ∀t ≥ 0, and the overall L2-gain from ω to y on any finite time interval [0, T ] is

less than or equal to γ. The following theorem provides the design procedure for the switching law

(inspired by the linear case in [12]).

Theorem 2

Consider the switched system (6). Assume that there exist positive definite, differentiable, and

radially unbounded functions Vi, i ∈ {1, . . . , N ′}, a positive scalar γ, and a Metzler matrix M with

elements µij , such that the following Lyapunov-Metzler inequalities are satisfied:

∂Vi

∂x
f ′
i +

1

2γ2

∂Vi

∂x
HiH

T
i

∂TVi

∂x
+

1

2
CT

i Ci +

N ′

∑

j=1

µjiVj < 0 (20)
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for i = 1, . . . , N ′. Then, the system (16) under the switching law

σ′(t) = r(x(t)) = arg min
i=1,...,N ′

Vi(x(t)) (21)

has L2-gain upper bounded by γ. Subsequently, in case ω ≡ 0, the system is asymptotically stable.

Before proceeding with the proof, we emphasize again that the switching signal is assumed to

be piecewise constant. In other words, one can define a switching sequence as
{(

tk, r
(
x(tk)

))}∞

k=1

with r
(
x(tk)

)
∈ {1, . . . , N ′}, while the switching rule remains unchanged in the interval [tk, tk+1).

Proof

Assume that the switching sequence in the interval [0, T ] is defined as:
{(

tk, r
(
x(tk)

)
)∣
∣
∣
∣
r
(
x(tk)

)
∈ {1, . . . , N ′}, k = 1, 2, . . . , l

}

(22)

with t1 = 0 and tl ≤ T . Under the switching law (11) in each time interval [tk, tk+1) we have:

∂Vi

∂x
f ′
i +

1

2γ2

∂Vi

∂x
HiH

T
i

∂TVi

∂x
+

1

2
CT

i Ci < −
N ′

∑

j=1

µjiVj ≤
(

−
N ′

∑

j=1

µji

)

Vi = 0 (23)

Now following a similar procedure as in [13, 12], we define

J =

∫ T

0

(1

2
‖Cσ′(t)x(t)‖2 −

γ2

2
‖ω(t)‖2 +D

(
ϑ(x(t))

))

dt (24)

According to the definition of D
(
ϑ(x)

)
in (13) and taking into account the switching sequence (22),

we obtain:

J ≤
l−1∑

k=1

∫ tk+1

tk

(1

2
‖Cr(x(tk))x‖2 −

γ2

2
‖ω‖2 + V̇r(x(tk))(x)

)
dt

+

∫ T

tl

(1

2
‖Cr(x(tl))x‖2 −

γ2

2
‖ω‖2 + V̇r(x(tl))(x)

)

dt (25)

The derivative V̇r(x(tk)) is:

V̇r(x(tk))

(
x(t)

)
=

∂Vr(x(tk))

(
x(t)

)

∂x
·
[

f ′
r(x(tk))

(
x(t)

)
+Hr(x(tk))ω(t)

]

(26)

Substitution of (26) in (25) along with adding and subtracting the term:

1

2γ2

∂Vr(x(tk))

∂x
Hr(x(tk))H

T
r(x(tk))

∂TVr(x(tk))

∂x
, (27)

and completing the squares yields (the arguments of the functions are dropped for reducing the

complexity):

l−1∑

k=1

∫ tk+1

tk

(
∂Vr(x(tk))

∂x
f ′
r(x(tk))

+
1

2
‖Cr(x(tk))x(tk)‖2

+
1

2γ2

∂Vr(x(tk))

∂x
Hr(x(tk))H

T
r(x(tk))

∂TVr(x(tk))

∂x
−
∥
∥
∥

γ√
2
ω − 1√

2γ

∂Vr(x(tk))

∂x
Hr(x(tk))

∥
∥
∥

2
)

dt

+

∫ T

tl

(
∂Vr(x(tl))

∂x
f ′
r(x(tl))

+
1

2
‖Cr(x(tl))x(tl)‖2

+
1

2γ2

∂Vr(x(tl))

∂x
Hr(x(tl))H

T
r(x(tl))

∂TVr(x(tl))

∂x
−
∥
∥
∥

γ√
2
ω − 1√

2γ

∂Vr(x(tl))

∂x
Hr(x(tl))

∥
∥
∥

2
)

dt

(28)



8 HAJIAHMADI ET AL.

Referring to (23), we can conclude that (28) is smaller or equal to zero. Hence,

J =

∫ T

0

(1

2
‖Cσ′(t)x‖2 −

γ2

2
‖ω‖2 +D

(
ϑ
))

dt ≤ 0 (29)

Note that Vi are positive definite functions with zero value at zero. Thus,

∫ T

0

(

‖Cσ′(t)x‖2 − γ2‖ω‖2
)

dt ≤ −2Vi(x(T )) ≤ 0, ∀i (30)

Hence, the system has L2-gain less than or equal to γ. Moreover, it is easy to show (by utilizing

Lemma 3.2.6 of [13]) that the system is asymptotically stable when ω ≡ 0.

Similar to the procedure explained in Remark 1, a feasibility problem has to be solved in order to

find the parameters of the functions Vi along with µij . Moreover, the L2-gain γ can be set either as

an unknown parameter to be determined or as a given constant. Basically, one can set a preliminary

value for γ and solve the feasibility problem for the given γ. The procedure can be repeated with

decreasing values of γ until the problem becomes infeasible and no solution can be obtained for the

parameters. By doing this a lower bound for the L2-gain can be achieved.

4. ROBUST CONTROL DESIGN USING APPROXIMATE SWITCHED AFFINE SYSTEMS

In this section, we propose a robust control design procedure based on the approximation of

the switched nonlinear system by a switched affine system. A function φ : Ω → R
m is PWA

if there exists a polyhedral partition {Ωi}i∈I (∪i∈IΩi = Ω, int(Ωi) ∩ int(Ωj) = ∅, ∀i 6= j) of

Ω ⊆ R
n such that φ is affine on each polyhedron Ωi. By considering a sufficiently large number of

regions, one can approximate nonlinear functions fi by PWA functions with arbitrary accuracy. The

piecewise affine (PWA) approximation of fi will have the following form:

fi(x) ∼=
(
Ai,ℓ · x+ bi,ℓ

)
, if x ∈ Xi,ℓ, (31)

with Ai,ℓ(n× n) and bi,ℓ(n× 1) the PWA matrices, Xi,ℓ the corresponding polyhedron, and ℓ ∈
Mi = {1, . . . ,Mi}, with Mi the number of polyhedral partitions for function fi.

Now the switched system (6) can be approximated by the following switched affine system:

ẋ(t) = Aσ(t),ℓx(t) + bσ(t),ℓ +Hσ(t)ω(t), (32)

y(t) = Cσ(t)x(t), if x ∈ Xσ(t),ℓ, (33)

where the controlled switching signal σ takes values from the set N = {1, . . . , N}, with N the total

number of subsystems.

Note that two types of switching are integrated in (32), one associated with switching between

affine functions describing the dynamics of each subsystem i; this type of switching is therefore

uncontrolled, and the other one is the controlled switching between subsystems driven by σ. In the

following sections, the focus is first on the stabilization and robust control of (32) and next, on

connecting the obtained results to the stability problem for the original switched nonlinear system

(16).

Before presenting the main results, we draw the attention to the fact that functions fi in (16)

may not all be approximated using the same number of affine functions and also, not with the

same polyhedral regions. Therefore, even if the number of affine pieces is not the same for all

nonlinear functions, we can split the affine functions in such a way that overall, the number of affine

functions will be identical for all nonlinear functions fi and moreover, the polyhedral regions will

be common for all piecewise affine subsystems. Taking this into account, each polyhedral region Xℓ

is characterized by [31]:

Fℓx+ fℓ � 0, iff x ∈ Xℓ, (34)
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where the inequality is element-wise. Further, (34) can be reformulated as follows:

F̄ℓ

[
x
1

]

� 0, F̄ℓ =
[
Fℓ fℓ

]
(35)

Furthermore, the boundary hyperplane for each pair of neighboring regions Xℓ and Xℓ′ is represented

by:

hT
ℓℓ′x+ gℓℓ′ = 0 ⇔

[
hT
ℓℓ′ gℓℓ′

]

︸ ︷︷ ︸

h̄T

ℓℓ′

[
x
1

]

= 0 (36)

Moreover, for each polyhedral region Xℓ, ℓ ∈ M = {1, . . . ,M}, with M the total number of

polyhedral regions (number of affine functions associated to each subsystem), the following

auxiliary functions are defined:

Vi,ℓ(x) =

[
x
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

]

︸ ︷︷ ︸

P̄i,ℓ

[
x
1

]

︸︷︷︸

x̄

, ∀i ∈ N , ∀ℓ ∈ M. (37)

with Pi,ℓ ∈ R
n×n symmetric, si,ℓ ∈ R

n, and ri,ℓ ∈ R. For each Xℓ, a Lyapunov function is proposed

as follows:

Vℓ(x) = min
i∈N

Vi,ℓ(x), (38)

The following theorem presents the design procedure for a stabilizing switching rule that brings the

state of the approximate system (16) to the origin, in the absence of disturbances and moreover,

ensures the L2-gain γ for the system exposed to disturbances ω that belong to the L2 space.

Note that in the following theorems we use the augmented system matrices and vectors defined

as follows [32]:

Āi,ℓ =

[
Ai,ℓ bi,ℓ
01×n 0

]

, Ḡi =

[
Gi

01×nu

]

,

H̄i =

[
Hi

01×nω

]

, C̄i =
[
Ci 0ny×1

]
(39)

Theorem 3

Assume there exist symmetric matrices P̄i,ℓ, Ti,j,ℓ, symmetric matrices Uℓ, Zℓ with nonnegative

elements, and vectors ζℓℓ′ such that the following optimization problem:

min γ (40)

s.t.





P̄i,ℓĀi,ℓ + ĀT
i,ℓP̄i,ℓ −

∑

j∈N ,j 6=i

Ti,j,ℓ + F̄T
ℓ UℓF̄ℓ ⋆ ⋆

H̄T
i P̄i,ℓ −γI ⋆
C̄i 0 −I




 < 0,

∀i, j ∈ N , i 6= j, ∀ℓ ∈ M, (41)

Ti,j,ℓ < µmin ·
(
P̄i,ℓ − P̄j,ℓ

)
, ∀i, j ∈ N , i 6= j, ∀ℓ ∈ M, (42)

P̄i,ℓ − F̄T
ℓ ZℓF̄ℓ > 0, ∀i ∈ N , ℓ ∈ M, (43)

P̄i,ℓ = P̄i,ℓ′ + h̄ℓℓ′ζ
T
ℓℓ′ + ζℓℓ′ h̄

T
ℓℓ′ , ∀ℓ, ℓ′ : Xℓ ∩ Xℓ′ 6= ∅, ∀i ∈ N , (44)

has an optimal solution γ∗ > 0 for a given positive scalar µmin > 0, then the switching rule:

σ(t) = arg min
i∈N

Vi,ℓ(x(t)), if x(t) ∈ Xℓ (45)
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with Vi,ℓ defined as in (37), will asymptotically stabilize system (32)–(33) in case ω ≡ 0, and

moreover ensures an upper bound
√
γ∗ for the L2-gain of the system from the disturbance input

ω to the output y.

Proof

Suppose that at an arbitrary time instant t ≥ 0 and based on the polyhedral region ℓ in which the

state of the system resides, the switching law is given by σ(t) = r(x(t)) = i for some i ∈ Iℓ(x(t)) =
{i : Vℓ(x) = Vi,ℓ(x)}. Hence, following the definition of the Dini derivative [28, 8], for our system

(32), we have:

D
(
Vℓ(x(t))

)
= min

j∈Iℓ(x(t))

[∂Vj,ℓ

∂x

(

Aj,ℓx+ bj,ℓ +Hjω
)]

≤ ∂Vi,ℓ

∂x

(

Ai,ℓx+ bi,ℓ +Hiω
)

(46)

where i denotes the index of the active subsystem in region ℓ determined from (45). Pre-multiplying

(41) by [xT, 1] and post-multiplying by its transpose, using (42) and also the fact that for the

polyhedral region ℓ, (35) holds, and Uℓ has nonnegative entries, we obtain

[
x̄
ω

]T [
P̄i,ℓĀi,ℓ+ĀT

i,ℓP̄i,ℓ ⋆
H̄T

i P̄i,ℓ 0

] [
x̄
ω

]

︸ ︷︷ ︸
∂Vi,ℓ
∂x

(
Ai,ℓx+bi,ℓ+Hiω

)

<
∑

j∈N ,j 6=i

x̄TTi,j,ℓx̄− x̄TF̄T
ℓ UℓF̄ℓx̄− yTy + γωTω

< x̄T
∑

j∈N ,j 6=i

µmin

(
P̄i,ℓ − P̄j,ℓ

)
x̄− yTy + γωTω (47)

Since for the active subsystem i in region ℓ, Vi,ℓ ≤ Vj,ℓ, ∀j ∈ N , we finally have:

D
+
(
Vℓ(x(t))

)
< −yTy + γωTω (48)

On the other hand, we should connect the Lyapunov functions in neighboring polyhedral regions

in such a way that the decrease in the overall Lyapunov function is ensured. One way to tackle

this problem is to equalize the values of the Lyapunov functions Vi,ℓ and Vi,ℓ′ for the boundary

hyperplane of neighboring regions Eℓ and E ′
ℓ. Note that at the boundary between polyhedral regions

an uncontrolled switching between affine functions of the same subsystem i occurs. Therefore, we

only need to connect the Lyapunov functions associated with each subsystem i at the boundary

between neighboring regions ℓ and ℓ′. Hence, we have:

x̄TP̄i,ℓx̄ = x̄TP̄i,ℓ′ x̄, ∀x : h̄T
ℓℓ′ x̄ = 0 (49)

In order to recast (49) as an LMI, we define auxiliary vectors ζℓℓ′ and combine the two equalities in

(49) in the following way:

x̄TP̄i,ℓx̄ = x̄TP̄i,ℓ′ x̄+ x̄Th̄ℓℓ′ζ
T
ℓℓ′ x̄+ x̄Tζℓℓ′ h̄

T
ℓℓ′ x̄. (50)

Since (50) should hold for all x, we can instead check the feasibility of the equality (44). The idea

is inspired by the so-called Finsler Lemma [33].

Now since the overall Lyapunov function is continuous over the boundaries between the

polyhedral regions, and since asymptotic stability implies V (x(∞)) = 0, using (48), from (48) we

obtain (it is assumed that the initial state is zero and V (x(0)) = 0. The reason for this assumption is

to eliminate the transient response of the system due to nonzero initial conditions) ‖y‖2 ≤ γ‖ω‖2.

Finally, the Lyapunov functions (37) are not required to be positive definite in the entire space

but only in the active polyhedral region. This is ensured using constraint (43) and it can be easily

proved using (35) and the S-procedure [34].

Remark 2

In order to solve the optimization problem (40)–(44), one should set a value for µmin. In fact, µmin is
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acting like a bound on the elements of a Metzler matrix. Instead of limiting the diagonal elements of

a Metzler matrix to be identical (as it is suggested by [5, 8], in order to facilitate with linearizing the

stability conditions), we fix a lower bound for all the elements and moreover, we introduce auxiliary

matrix variables Ti,j,ℓ. These two will make the approach less conservative. Hence, the optimization

problem (40)–(44) can be recast as a bi-level optimization problem in which on the higher level

a bisection search on µmin is performed, while on the lower level a convex optimization problem

subject to LMI constraints (with fixed µmin) is solved.

Next, we discuss the stability of the switched nonlinear system (6) using the switching law

designed based on the approximated switched affine system (32). For simplicity and without loss of

generality we assume that ω ≡ 0. The approximation error can be defined as follows:

ǫi(x) = fi(x)−
(
Ai,ℓx+ bi,ℓ

)
∀i ∈ N, for x ∈ Xℓ. (51)

Suppose that the original switched nonlinear system (6) is controlled by the switching law (45).

Therefore when σ(t) = i, the dynamics of (6) is governed by fi. Hence, the derivative of the

Lyapunov function (38) along the trajectories of (6) is:

V̇ℓ =

[
fi(x)
0

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
x
1

]

+

[
x
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
fi(x)
0

]

(52)

for x ∈ Xℓ (note that since the continuity of Vℓ on the boundaries of the polyhedral regions is

preserved under conditions of Theorem 3, we therefore only consider the behavior of Vℓ and V̇ℓ

inside the polyhedral regions). Replacing fi(x) by ǫi(x) +Ai,ℓx+ bi,ℓ yields:

V̇ℓ =

[
x
1

]T [
AT

i,ℓPi,ℓ + Pi,ℓAi,ℓ ⋆

bi,ℓPi,ℓ + sTi,ℓAi,ℓ 2bTi,ℓsi,ℓ

] [
x
1

]

+ 2

[
x
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
ǫi(x)
0

]

. (53)

Now since the inequalities in (41) of Theorem 3 are strict, it implies that if (41) holds, there should

exist a positive scalar variable denoted by α such that:

[
Pi,ℓAi,ℓ +AT

i,ℓPi,ℓ ⋆

bTi,ℓPi,ℓ + sTi,ℓAi,ℓ 2bTi,ℓsi,ℓ

]

−
∑

j∈N ,j 6=i

Ti,j,ℓ + F̄T
ℓ UℓF̄ℓ < −αI,

∀i, j ∈ N , i 6= j, ∀ℓ ∈ M (54)

Now if (54) holds, we obtain:

[
x
1

]T [
Pi,ℓAi,ℓ +AT

i,ℓPi,ℓ ⋆

bTi,ℓPi,ℓ + sTi,ℓAi,ℓ 2bTi,ℓsi,ℓ

] [
x
1

]

< −α‖x̄‖22, (55)

for the active subsystem i in (32). Therefore, for (53) we have:

V̇ℓ < −α‖x̄‖22 + 2

[
x
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
ǫi(x)
0

]

, (56)

for x ∈ Xℓ. Therefore, in order to have V̇ℓ < 0 for the switched nonlinear system, we need to have:

2

[
x
1

]T [
Pi,ℓ ⋆
sTi,ℓ ri,ℓ

] [
ǫi(x)
0

]

< α‖x̄‖22 (57)

The following proposition provides the sufficient condition for stabilization of the switched

nonlinear system (6) using switching law (45).

Proposition 1

Assume there exist matrices Pi,ℓ and Ti,j,ℓ, vectors si,ℓ, ζℓℓ′ , scalars ri,ℓ, α > 0 and symmetric

matrices Uℓ, Zℓ with nonnegative elements that satisfy (41)–(44) and (54) for a given positive scalar
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Figure 1. Schematic two-region urban network.

µmin > 0. Then the switching rule (45) asymptotically stabilizes (6) provided that the norm of the

PWA approximation error is bounded by:

‖ǫi(x)‖2 <
α‖x̄‖2

2amax(P̄i,ℓ)
, ∀i ∈ N, for x ∈ Xℓ, (58)

where amax(P̄i,ℓ) denotes the largest singular value of P̄i,ℓ.

Proof

First, it can be easily proved that:

x̄TP̄i,ℓ

[
ǫi(x)
0

]

≤ ‖x̄‖2amax(P̄i,ℓ)‖ǫi(x)‖2 (59)

Therefore, using (58) we obtain:

2x̄TP̄i,ℓ

[
ǫi(x)
0

]

≤ 2‖x̄‖2amax(P̄i,ℓ)‖ǫi(x)‖2 ≤ α‖x̄‖22 (60)

which yields V̇ℓ < 0 as in (56) and hence, asymptotic stability of the switched nonlinear system (6)

is ensured.

Remark 3

As can be inferred from (58), the upper bound on the approximation error ǫi(x) depends on the

maximum singular values of the P̄i,ℓ matrices. Therefore, the upper bound on the approximation

error can be further relaxed if a search for P̄i,ℓ matrices that satisfy (42)–(44) and (54), and with

minimized maximum singular values is performed.

In the next section, the obtained control design rules are implemented and evaluated for an urban

network case study.

5. CASE STUDY

The dynamics of a heterogeneous large-scale urban network can be modeled as multiple

homogeneous regions with the macroscopic fundamental diagram (MFD) representation [35], as

illustrated in Figure 1. For network regions with homogeneously distributed congestion, the MFD

(as depicted in Figure 2) provides a unimodal, low-scatter relationship between network vehicle

accumulation and network space-mean flow.

Using the proposed robust switching control strategies presented in Sections 3 and 4, we aim

at stabilizing this system. In the context of urban network control, resolving the congestion and
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Figure 2. A well-defined macroscopic fundamental diagram.

reducing the effects of uncertain trip demands in the network can be recast as an asymptotic

stabilization and robust disturbance rejection problem [22]. In the following, two benchmark case

studies are presented. In the first one, the performance of the approach presented in Section 3 is

evaluated for the hybrid macroscopic control of an urban network, while in the second case, the

method proposed in Section 4 is implemented. Different traffic scenarios are discussed in the two

examples, and the performance of the proposed approaches are compared with other strategies such

as greedy feedback control and model predictive control.

5.1. Example 1

For an urban network divided into two regions: the city center (region 2) and the periphery (region

1), the following macroscopic model is proposed (based on the two-region model in [36]):

ṅ1(t) = −G1,j(n1(t)) · u(t) + ω12(t), (61)

ṅ2(t) = −G2,j(n2(t)) +G1,j(n1(t)) · u(t) + ω22(t), (62)

where ni(t), i = 1, 2, is the total number vehicles in region i at time t. The trip completion flow

Gi,j(ni(t)) (veh/s) is defined as the rate of vehicles reaching their destinations and it is a function

of total number of vehicles in the region. In fact, Gi,j(ni(t)) constitutes the MFD representation

of the region corresponding to a signal timing plan for intersections. The index j denotes a

particular MFD for region i. The signal timing plans for intersections inside each region can be

altered. Consequently, instead of one MFD, a set of MFDs (each corresponds to a different timing

plan) can be defined. The total number of MFDs defined for each region i is denoted by Ni and

j ∈ {1, . . . , Ni}.

Further, the perimeter control u ∈ [0, 1] may restrict vehicles to transfer between regions (in our

case, the flow of vehicles is restricted from the periphery to the city center). The perimeter control

can be realized by e.g. coordinating green and red durations of signalized intersections placed on

the border between two regions.

In this example, we assume that the city center has two pre-defined timing plans and

therefore two MFDs (N1 = 2). Each MFD is modeled by a 3rd-order polynomial G2,j(n2) =
1/3600 · (a2,jn3

2 + b2,jn
2
2 + c2,jn2) with coefficients a2,1 = 1.4877 · 10−7 (1/(veh2 · h)), b2,1 =

−2.98 · 10−3 (1/(veh · h)), c2,1 = 15.091 (1/h), a2,2 = 2.57 · 10−7 (1/(veh2 · h)), b2,2 = −4.47 ·
10−3 (1/(veh · h)), c2,2 = 18.98 (1/h). For the periphery, we assume that there exists only one

timing plan and thus one MFD (N2 = 1). The MFD of periphery is denoted by G1 = G1,1 and has

a1,1 = a2,1, b1,1 = b2,1, c1,1 = c2,1 as its parameters. The values for the parameters are inspired by

the observed MFDs in [21, 36, 16].

Furthermore, the perimeter control input u can be limited to take values from a finite set. This is

not a conservative assumption as in reality perimeter control is realized by manipulating the green

to red duration of traffic signals and investigations have shown that the evolution of flows is not very

sensitive to small changes in the perimeter signal [16]. Therefore, we use the quantization technique
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Figure 3. Demand profiles in Example 1.

presented in Section 2 in order to achieve a complete switching system as follows:

ṅ1(t) = −G′
1,j′(n1(t)) + ω12(t), (63)

ṅ2(t) = −G′
2,j′(n2(t)) +G′

1,j′(n1(t)) + ω22(t), (64)

where the perimeter control input can take values from the set {0.1, 0.35, 0.65, 0.9}. The number of

modes introduced by performing the quantization is 2 · 4 = 8 and therefore j′ ∈ {1, . . . , 8}.

Here, we assume that the scenario simulates a morning peak in which a high trip demand ω12

from the periphery (region 1) to the city center (region 2) exists while there is also a demand ω22

for trips inside the center. To take into account the uncertainty around the demands, we add a zero

mean white Gaussian noise with variance 0.1 (veh/s) to the base profiles as shown in Figure 3.

In order to determine the switching law σ, we use quadratic functions Vi(ni) = 1/2(αin
2
1 +

βin
2
2). Thus the switching rule is defined as

σ(t) = r(ni(t)) = arg min
i∈{1,...,8}

1/2(αin
2
1 + βin

2
2) (65)

The parameters αi and βi along with a feasible attenuation level γ are determined using (20) and

the gridding technique described in Remark 1 (the nonlinear feasibility problem is solved using the

fmincon function inside the Tomlab toolbox of MATLAB). The obtained parameters are as follows:

(αi, βi) ∈
{
(3.8014, 2.9193), (6.5982, 4.3430),

(9.9993, 5.7571), (5.4335, 6.2613), (7.2388, 3.2234),

(4.5741, 0.2113), (8.4626, 0.2899), (4.8048, 1.0877)
}

with γ = 0.8 · 3600. The initial accumulations are n1(0) = 6200 (veh), n2(0) = 5200 (veh). The

states are measured and plugged into the switching law (65) in order to find the active subsystem

(corresponding to a specific MFD and perimeter value). The closed-looped system is simulated for

one hour. In order to show the effectiveness of the proposed control strategy, results of the some

simple control strategies along with a model predictive controller are presented in Figure 4. It can

be observed that the switching H∞ control is able to stabilize the system and also significantly

reduce the effects of the trip demands (disturbances), while in almost all the simple control strategies

either one or both regions end up in the gridlock situation (as the states grow unboundedly in

the figures). Only in one state feedback case, when timing plan 2 is chosen for the center, the

accumulations eventually decrease by the end of simulation time (Figure 4-(g)). Moreover, the

results are compared also with a hybrid MPC scheme constructed based on the approaches in [16].

In the MPC framework, the optimal perimeter and timing plans are determined by solving a mixed

integer nonlinear optimization problem in the receding horizon manner. The MPC controller has

the knowledge about the average demand profile (noiseless) throughout the simulation period. As

can be observed from Figure 4(h), the performance of the MPC controller is better than the all

other cases, including the robust H∞ controller. This is due to the fact that the MPC controller is
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Figure 4. Example 1: comparing the accumulations, (a) robust H∞ switching scheme, (b) u = 1 and timing
plan 1 (G2,1), (c) u = 1 and timing plan 2 (G2,2), (d) u = 0.1 and timing plan 1 (G2,1), (e) u = 0.1 and
timing plan 2 (G2,2), (f) u = 0.1 when n2 > ncr, otherwise u = 1, along with G2,1, and (g) u = 0.1 when

n2 > ncr, otherwise u = 1, along with G2,2, (h) Hybrid model predictive control [16].

supplied with the information about the trip demands, although the average profiles. However, the

computation time required by the nonlinear mixed integer optimization algorithm is considerable

(see [16] for detailed CPU times for different scenarios and optimization parameters). This may

become problematic for more complex traffic cases studies which would need more computational

effort. On the other hand, the proposed robust control strategy is computationally efficient and can

be implemented in real-time since the switching law (65) is computed in a very short time (with

16 multiplications, 8 additions, and a minimum operation). This is a great advantage over the MPC

method [21, 16]. Furthermore, in the robust switching control approach having a knowledge of the

demand profile is not necessary.
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Figure 5. Piecewise affine approximation of the trip completion flow function Gi,j(ni)).

Moreover, the L2-gain of the controlled system can be determined by setting the initial conditions

to zero and by using (18) (the output of the system is defined as y = (n1 n2)
T. The achieved gain

‖y‖L2
/‖ω‖L2

for the assumed demand profile is 0.1691 · 3600.

Note that in order to calculate (65), the number of vehicles in both regions must be estimated

online. For this purpose, there are different approaches, e.g. using data from several loop detectors

in the network and averaging techniques [37], and using the data from GPS and in-car navigation

systems [37, 38].

5.2. Example 2

In this example, we follow the robust control design method presented in Section 4. The model is

the same as in (61)–(62). The trip completion flow functions Gi,j can be approximated by piecewise

affine functions, as illustrated in Figure 5. Moreover, in this example, we assume that both regions

have only one MFD associated to them, but the size of the MFDs are different (with different

maximum flow and critical accumulation). Moreover, the demand profiles are selected different

from the ones in Example 1, to show that the proposed methodologies do not depend on the demand

scenario.

Moreover, we assume that u can take values from the set {0.1, 0.35, 0.65, 0.9}. Doing this along

with approximating the trip flow functions will result in a switched affine system with mixed

controlled and uncontrolled switching behavior and with the following system matrices:

F1 =

[
1 0
0 1

]

, F2 =






1 0 −n1,cr

0 −1 n2,cr

0 1 0
−1 0 n1,jam




,

F3 =






−1 0 n1,cr

0 1 −n2,cr

1 0 0
0 −1 n2,jam




, F4 =






1 0 −n1,cr

0 1 −n2,cr

−1 0 n1,jam

0 −1 n2,jam




,



ROBUST H∞ CONTROL FOR MACROSCOPIC URBAN TRAFFIC CONTROL 17

h̄12 = h̄34 =
[
1 0 −n1,cr

]T
,

h̄13 = h̄24 =
[
0 1 −n2,cr

]T
,

Ai,1 =
1

3600
·
[
−ui · 10.28 0
ui · 10.28 −8.4

]

, bi,1 =

[
0
0

]

,

Ai,2 =
1

3600
·
[
ui · 6.4 0
−ui · 6.4 −8.4

]

, bi,2 =

[
−ui · 16.22
ui · 16.22

]

,

Ai,3 =
1

3600
·
[
−ui · 10.28 0
ui · 10.28 4.5

]

, bi,3 =

[
0

−10.75

]

,

Ai,4 =
1

3600
·
[
ui · 6.4 0
−ui · 6.4 4.5

]

, bi,4 =

[
−ui · 16.22

ui · 16.22− 10.75

]

with n1,cr = 3500 (veh), n2,cr = 3000 (veh), n1,jam = 10000 (veh), n2,jam = 9000 (veh) and ui ∈
{0.1, 0.35, 0.65, 0.9}.

The demand scenario is depicted in Figure 6. The matrices of the Lyapunov functions along with

the minimum L2-gain are determined using Theorem 3. Note that we use the LMI solver SeDuMi

and the Yalmip toolbox along with bisection search on µmin and gridding βmin. The Lyapunov

matrices are presented in Box I.

The measured accumulations are supplied to (45) to determine the active subsystem (to obtain

the proper perimeter input). The results are depicted in Figure 7. As inferred from Figure 7(a),

the switching control resolves the initial congestion in the network and also significantly reduces

the effects of the high-level trip demands, while in the no control case and also by using a greedy

feedback strategy (u = umin when n2 > n2,cr, otherwise u = umax), one or both accumulations

grow unboundedly, as shown in Figure 7(b)-(c). Moreover, the results are compared with the

perimeter control using MPC scheme implemented based on [21]. In this example, one can see

that the performance of the MPC scheme is worse than the robust H∞ control. We can increase the

prediction and control horizons for the MPC controller to achieve slightly better results. However,

the computation time would increase significantly and real time implementation would not be

possible. Moreover, the online computation of the switching H∞ control law is performed in real

time, as it basically needs simple adding, multiplication and minimum operations. Nevertheless, it

should be noted that in the H∞ control case, the perimeter signal has fast switching behavior which

may not be desirable in real traffic application. This can be avoided by modifying the stabilization

conditions in Section 4, and by imposing a minimum dwell time between switching instants as is

done in [39, 40] for other switched systems cases.

Furthermore, setting the initial accumulations to zero, the actual L2-gain is 0.0881 · 3600 which

is lower than the theoretical value 0.1332 · 3600 obtained by solving the optimization problem.

As a final remark, note that the proposed robust switching control scheme is suitable for high-level

congestion control in urban networks. To be more precise, the proposed schemes can be used in a

hierarchical traffic control scheme and at the top level, while in the lower levels local controllers are

used to realize the reference signals obtained from the robust high-level control scheme. Moreover,

at the lower level, each urban region can be further partitioned into subregions and the flows in

subregions can be controlled such that the traffic congestion is homogeneously distributed over

the entire region. Overall, the number of regions and the number of timing plans at the high-level

is maintained at a small number. Therefore, the (mainly offline) computational complexity of the

proposed robust switching strategies for a real traffic control scenario will not be significantly higher

than in the scenarios presented here. Nevertheless, decomposition and coordination techniques can

be used to efficiently solve a larger-scale version of the proposed optimization problems.

6. CONCLUSION AND FUTURE WORK

The L2-gain analysis and the H∞ control design procedure for switched nonlinear systems has been

presented. We have used a model transformation in order to overcome the bound constraint on the
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P1,1 =

[

15.8293 2.1235

2.1235 4.5335

]

, P1,3 =





9.8171 · 10−7
5.7418 · 10−7 −5.4657 · 10−4

5.7418 · 10−7
2.7229 · 10−7

1.7718 · 10−3

−5.4657 · 10−4
1.7718 · 10−3

3.8305



,

P2,1 =

[

15.8000 2.1260

2.1260 4.5335

]

, P2,3 =





9.8085 · 10−7
5.7385 · 10−7 −5.4408 · 10−4

5.7385 · 10−7
2.7229 · 10−7

1.7718 · 10−3

−5.4408 · 10−4
1.7718 · 10−3

3.8306



,

P3,1 =

[

15.7649 2.1291

2.1291 4.5335

]

, P3,3 =





9.7980 · 10−7
5.7347 · 10−7 −5.4113 · 10−4

5.7347 · 10−7
2.7229 · 10−7

1.7718 · 10−3

−5.4113 · 10−4
1.7718 · 10−3

3.8306



,

P4,1 =

[

15.7358 2.1317

2.1317 4.5334

]

, P4,3 =





9.7886 · 10−7
5.7316 · 10−7 −5.3873 · 10−4

5.7316 · 10−7
2.7228 · 10−7

1.7718 · 10−3

−5.3873 · 10−4
1.7718 · 10−3

3.8304



,

P1,2 =





3.9867 · 10−5
8.4224 · 10−5

0.7128

8.4224 · 10−5
5.3187 · 10−5 −0.6935

0.7128 −0.6935 32.7528



,

P2,2 =





3.9820 · 10−5
8.4245 · 10−5

0.7139

8.4245 · 10−5
5.3190 · 10−5 −0.6937

0.7139 −0.6937 16.3897



,

P3,2 =





3.9779 · 10−5
8.4272 · 10−5

0.7151

8.4272 · 10−5
5.3190 · 10−5 −0.6939

0.7151 −0.6939 −2.2494



,

P4,2 =





3.9828 · 10−5
8.4306 · 10−5

0.7154

8.4306 · 10−5
5.3190 · 10−5 −0.6942

0.7154 −0.6942 −12.4139



,

P1,4 =





−8.6688 · 10−6
9.2617 · 10−6

1.3909 · 10−2

9.2617 · 10−6 −1.1040 · 10−5
1.2609 · 10−2

1.3909 · 10−2
1.2609 · 10−2

2.1053



,

P2,4 =





−8.6925 · 10−6
9.2750 · 10−6

1.4019 · 10−2

9.2750 · 10−6 −1.1039 · 10−5
1.2486 · 10−2

1.4019 · 10−2
1.2486 · 10−2

2.0895





P3,4 =





−8.7211 · 10−6
9.2911 · 10−6

1.4151 · 10−2

9.2911 · 10−6 −1.1039 · 10−5
1.2338 · 10−2

1.4151 · 10−2
1.2338 · 10−2

2.0632



,

P4,4 =





−8.7452 · 10−6
9.3046 · 10−6

1.4263 · 10−2

9.3046 · 10−6 −1.1039 · 10−5
1.2214 · 10−2

1.4263 · 10−2
1.2214 · 10−2

2.0362



.

Box I

control inputs. As an alternative approach, we have proposed a robust control design approach based

on the approximation of the system with piecewise affine subsystems and composing a switched

affine system with mixed autonomous and controlled switching behavior. The design conditions for

stabilization and disturbance attenuation have been formulated as a bi-level optimization problem

that can be efficiently solved using bisection search along with a convex optimization algorithm.

The proposed robust control schemes have been implemented for high-level control of a two-

region urban network case and the obtained results have shown good performance of our approaches

in case of uncertain demand profiles. Moreover, as the Lyapunov functions required for the feedback

switching law are determined off-line, the proposed methods have major advantages over the

existing MPC schemes for real-time implementation and for treating uncertain demand profiles.

Possible extensions of the current work are: 1) directly incorporating the constraints on the

control inputs into the design conditions (rather than quantizing the control inputs), 2) reducing
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Figure 6. Trip demands in Example 2, region 1 to 2 (ω12), and inside region 2 (ω22).
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Figure 7. Accumulations in Example 2: (a) robust H∞ switching control, (b) uncontrolled case (always
u = 1), (c) greedy feedback control, (d) Model predictive perimeter control.

the conservatism of the second approach (namely approximation by a switched affine system)

by relaxing the continuity of the Lyapunov functions over the boundaries of polyhedral regions

and/or by using a joint time- and state-based switching strategy and the concept of average dwell-

time [4, 39, 40], 3) design of robust stabilizing switching controllers based on the dual stability

approaches [41], 4) investigate the controllability ([42, 43]) of the switched affine system with mixed

switching types.
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