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J. Xu, L. Buşoniu, T. van den Boom, and B. De Schutter, “Receding-horizon con-

trol for max-plus linear systems with discrete actions using optimistic planning,”

Proceedings of the 13th International Workshop on Discrete Event Systems, Xi’an,

China, pp. 398–403, May–June 2016.

Delft Center for Systems and Control

Delft University of Technology

Mekelweg 2, 2628 CD Delft

The Netherlands

phone: +31-15-278.24.73 (secretary)

URL: https://www.dcsc.tudelft.nl

∗This report can also be downloaded via https://pub.deschutter.info/abs/16_001.html

https://www.dcsc.tudelft.nl
https://pub.deschutter.info/abs/16_001.html


Receding-Horizon Control for Max-Plus Linear

Systems with Discrete Actions Using Optimistic

Planning
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Abstract—This paper addresses the infinite-horizon optimal
control problem for max-plus linear systems where the considered
objective function is a sum of discounted stage costs over an
infinite horizon. The minimization problem of the cost function
is equivalently transformed into a maximization problem of a
reward function. The resulting optimal control problem is solved
based on an optimistic planning algorithm. The control variables
are the increments of system inputs and the action space is
discretized as a finite set. Given a finite computational budget, a
control sequence is returned by the optimistic planning algorithm.
The first control action or a subsequence of the returned control
sequence is applied to the system and then a receding-horizon
scheme is adopted. The proposed optimistic planning approach
allows us to limit the computational budget and also yields a
characterization of the level of near-optimality of the resulting
solution. The effectiveness of the approach is illustrated with a
numerical example. The results show that the optimistic planning
approach results in a lower tracking error compared with a finite-
horizon approach when a subsequence of the returned control
sequence is applied.

I. INTRODUCTION

Complex discrete-event systems (DES) such as production

systems, railway networks, logistic systems, consist of a finite

number of resources (e.g., machines, railway tracks) shared

by several users (e.g., workpieces, trains) all of which pursue

some common goal (e.g., the assembly of products, transporta-

tion of people or goods). The state of such systems evolves

in time by the occurrence of asynchronous events (e.g., the

start of a processing step, the departure or arrival of a train).

In general, DES lead to nonlinear descriptions in conventional

algebra. However, there exists a subclass of DES for which we

can get a “linear” model in the max-plus algebra [1], [2] whose

basic operations are maximization and addition. These systems

are called max-plus linear (MPL) systems. Many results have

been achieved for modeling and control of MPL systems, see

[1]–[7] and the references therein. In particular, finite-horizon

control problems for MPL systems are considered in [8]–[10].

In this paper, we consider the optimal control problem

for MPL systems with discrete control actions. Sometimes

discrete control actions are indeed required in practice. For

example, for a manufacturing system it could happen that the

raw materials are required to be fed to the manufacturing

cell at 6 or 8 hours intervals; or for a railway network the

departure times of trains might only be selected as multiples of

15 minutes. These constraints lead to discrete variables. In the

given optimal control problem, the objective function is a sum

of discounted stage costs over an infinite horizon. Our goal

is then to design a control sequence optimizing the infinite-

horizon discounted objective function. The approach in this

paper is based on optimistic planning algorithms introduced

below.

Optimistic planning is a class of planning algorithms orig-

inating in artificial intelligence applying the ideas of opti-

mistic optimization [11]. This class of algorithms works for

discrete-time systems with general nonlinear (deterministic

or stochastic) dynamics and discrete control actions. Based

on the current system state, a control sequence is obtained

by optimizing an infinite-horizon sum of discounted bounded

stage costs (or the expectation of these costs for the stochastic

case). Optimistic planning uses a receding-horizon scheme

and provides a characterization of the relationship between

the computational budget and near-optimality. In [12], three

types of optimistic planning algorithms have been reviewed,

i.e., optimistic planning for deterministic systems (OPD) [13],

open-loop optimistic planning [14], and optimistic planning

for sparsely stochastic systems [15]. Moreover, in [12] the

theoretical guarantees on the performance of these algorithm

are also provided. Recently, optimistic planning has been used

for nonlinear networked control systems [16], and nonlinear

switched systems [17]. In order to limit computations, opti-

mistic planning with a limited number of action switches has

been introduced in [18]. Therefore, optimistic planning can

be used for optimal control of very general nonlinear discrete-

time systems and in addition it is able to deal with uncertainties



because of the infinite search space and a finite computational

budget.

In our previous related paper [19], we use optimistic opti-

mization to solve the finite-horizon optimal control problem

for MPL systems with continuous control inputs. In this

paper, we propose to apply optimistic planning to solve the

infinite-horizon optimal control problem for MPL systems

where the action space is discretized as a finite set. Note

that although the evolution of MPL systems is event-driven in

contrast to time-driven as in a discrete-time system, optimistic

planning can still be applied because of the analogy between

descriptions of MPL systems and conventional linear time-

invariant discrete-time systems. Also note that considering an

infinite-horizon discounted objective function is more flexible

than selecting a fixed finite-horizon objective function since

the prediction horizon does not have to be fixed a priori. The

length of the returned control sequence varies depending on

the computational budget, the complexity of the problem, and

the discount factor. Based on the standard geometric series,

discounting is a simple way to obtain finite values for the

total sum of stage costs over an infinite horizon. This is

very convenient for comparing different infinite-length control

sequences.

This paper is organized as follows. In Section II, some

preliminaries regarding max-plus linear systems and optimistic

planning are given. In Section III, the formulation of the

infinite-horizon discounted optimal control problem for max-

plus linear systems and the optimistic planning based approach

are presented. Next an example is included in Section IV to

illustrate the performance of the proposed approach. Finally,

Section V concludes the paper.

II. PRELIMINARIES AND BACKGROUND

A. Max-plus linear systems

Define ε = −∞ and Rε = R∪{ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as [1]:

x⊕ y = max(x, y), x⊗ y = x+ y

for any x, y ∈ Rε. For matrices A,B ∈ R
m×n
ε and C ∈ R

n×l
ε ,

we define
[

A⊕B
]

ij
= aij ⊕ bij = max(aij , bij)

[

A⊗ C
]

ij
=

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for all i, j. The zero matrix E in max-plus algebra has all its

entries equal to ε. The identity matrix E in max-plus algebra

has the diagonal entries equal to 0 and the other entries equal

to ε.

Consider a max-plus linear (MPL) system [20]

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k) (1)

y(k) = C ⊗ x(k) (2)

with the system matrices A ∈ R
nx×nx
ε , B ∈ R

nx×nu
ε , C ∈

R
ny×nx
ε , where nx is the number of states, nu is the number

of inputs, and ny is the number of outputs. The index

k ∈ {0, 1, . . .} is called the event counter. The components

of u(k), x(k), and y(k) are typically input, state, output event

occurrence times. For example, if the MPL system is a model

of a manufacturing system, u(k), x(k) and y(k) are the k-th

feeding times of raw materials, the k-th starting times of the

production processes, and the k-th completion times for the

end products. Note that the event times can easily be measured;

so we consider the case of full state information. Since the

inputs represent event times, a typical constraint is that the

control sequence should be nondecreasing, i.e.,

u(k + 1)− u(k) ≥ 0 ∀ k ≥ 0. (3)

B. Optimistic planning for deterministic systems

Optimistic planning for deterministic systems (OPD) [11],

[13] is an algorithm that solves an optimal control problem for

discrete-time deterministic systems described by an equation

of the form

xk+1 = f(xk, uk)

with discrete control inputs uk ∈ U , {u1, . . . , uM}. In this

section, k is a time counter1. Given the initial state x0, OPD

designs a control sequence u = (u0, u1, . . .) maximizing the

following infinite-horizon discounted reward function:

J̄(u, x0) =
∞
∑

k=0

γkrk+1 (4)

where rk+1 ∈ [0, 1] is the reward for the transition from xk

to xk+1 as a result of uk and where γ ∈ (0, 1) is the discount

factor that is often used in the fields of dynamic programming

and reinforcement learning and expresses the difference in

importance between future costs and present costs. The value

of γ is usually selected close to 1. The optimal value of (4)

is denoted as J̄∗(x0) = maxu J̄(u, x0).

For a given initial state, OPD explores the space of all

possible control sequences u. Define ud = (u0, . . . , ud−1) as

a length d sequence with d ∈ {1, 2, . . .} and define u|d as

any infinite-length sequence of which the first d components

coincide with ud. For any x0, each ud determines a state

sequence x1, . . . , xd. Define

v(ud) =
d−1
∑

k=0

γkrk+1 (5)

b(ud) = v(ud) +
γd

1− γ
. (6)

The value v(ud) is the sum of discounted rewards along the

trajectory starting from the initial state x0 and applying the

control sequence ud, and provides a lower bound of the value

J̄(u|d, x0) for any u|d. On the other hand, note that rk ∈ [0, 1];

1In order to distinguish between the event counter and time counter, we
use the notation x(k) when k is an event counter and xk when k is a time
counter.
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Fig. 1. The tree representation of OPD with M = 2, i.e., U = {u1, u2}.
The root node at depth d = 0 denotes the initial state x0. Each edge starting
from a node at depth d corresponds to a control action ui

d
, i = 1, . . . ,M .

Each node corresponds to a reachable state xi

d
, i = 1, . . . ,Md. The depth

d corresponds to the time step. Any node at depth d is reached by a unique
sequence ud (e.g., the thick line for node x2

3) starting from x0.

hence,

J̄(u|d, x0) = v(ud) +

∞
∑

k=d

γkrk+1

≤ v(ud) +

∞
∑

k=d

γk · 1

≤ v(ud) +
γd

1− γ
.

So b(ud) provides an upper bound of J̄(u|d, x0) for any u|d.

The search process of OPD over the space of all possible

control sequences u can be represented as a tree exploration

process, as illustrated in Fig. 1. Nodes of the tree correspond

to reachable states; in particular, the root node is the initial

state x0. Edges of the tree correspond to the possible control

actions. Each node at some depth d is reached by a unique

path through the tree, i.e., each node corresponds to a unique

control sequence ud = (u0, . . . , ud−1). Expanding a node

means adding its M children to the current tree, i.e., generating

transitions and rewards as well as computing the v and b-values

for the M children. Given a finite number of node expansions,

at each step, OPD always expands the most promising leaf2,

i.e., the control sequence ud with the largest upper bound

b(ud). The algorithm terminates if the given number of node

expansions n has been reached. Finally, the algorithm returns

the control sequence u
∗

d′ = (u∗

0, u
∗

1, . . . , u
∗

d′−1) that maximizes

the lower bound v where d′ is the length of the returned

optimal control sequence. The process of OPD is summarized

in Algorithm 1.

Define the set of near-optimal nodes at depth d as follows:

T ∗

d =
{

ud

∣

∣

∣
J̄∗(x0)− v(ud) ≤

γd

1− γ

}

.

OPD only expands the nodes in T ∗

d , d = 0, 1, 2, . . ., so the

number of nodes in T ∗

d , denoted as |T ∗

d |, determines the

efficiency of the algorithm. Define the asymptotic branching

factor κ ∈ [1,M ] as κ = lim supd→∞
|T ∗

d |1/d, which

2A leaf of a tree is a node with no children.

Algorithm 1 Optimistic planning for deterministic systems

Input: initial state x0, action space U = {u1, . . . , uM}, number of node
expansions n

Initialize: T ← {x0}
expand the root node by adding its M children to T
t← 1
while t < n

expand the leaf with largest b-value
t← t+ 1

end while

return u∗
d′

= argmaxud∈L(T ) v(ud) where L(T ) is the set of leaves
of T

characterizes the complexity of the problem. The following

theorem summarizes the near-optimality analysis presented in

[11], [13], [16].

Theorem 1: Let the initial state x0 and the number of node

expansions n be given.

(i) Let u
∗

d′ be the sequence returned by the OPD algorithm

and let u
∗|d′ be any infinite-length sequence of which the first

d′ components coincide with u
∗

d′ . Then we have J̄∗(x0) −

J̄(u∗|d′ , x0) ≤ b(u∗

d′)− v(u∗

d′) ≤
γd′

1−γ .

(ii) If κ > 1, then J̄∗(x0)− J̄(u∗|d′ , x0) = O
(

n−
log 1/γ
log κ

)

.

(iii) If κ = 1, then J̄∗(x0)− J̄(u∗|d′ , x0) = O
(

γcn
)

where

c is a constant. �

Remark 2: Theorem 1(i) provides an a posteriori bound on

the near-optimality of the returned control sequence; while

Theorem 1(ii)-(iii) imply a prior bounds based on the com-

plexity of the problem. The branching factor κ characterizes

the number of nodes that will be expanded by the OPD

algorithm. If κ > 1, then OPD needs the number of expansions

n = O(κd) to reach the depth d in the optimistic planning tree;

if κ = 1, then n = O(d) is required. Thus, κ = 1 is the ideal

case where the number of near-optimal nodes at every depth is

bounded by a constant independent of d and the a prior bound

on the near-optimality decreases exponentially with n.

OPD uses a receding-horizon scheme, so once u
∗

d′ has been

computed, subsequently, only the first component u∗

0 of u
∗

d′

is applied to the system, resulting in the state x∗

1. At the next

time step, x∗

1 is used as the initial state and the whole process

is repeated.

III. OPTIMISTIC PLANNING FOR MAX-PLUS LINEAR

SYSTEMS

A. Problem statement

In this paper, we consider the optimal control problem for

the MPL system (1)-(2). The input u(k) is rewritten as

u(k) = u(k − 1) + ∆u(k). (7)

We consider the single input case (i.e., nu = 1) for the sake

of simplicity; however, an extension to multiple inputs can be

made. We assume that the increments ∆u(k) of the input take

values from a given finite set U , {u1, . . . , uM} with M the

number of actions and with ui ≥ 0 for all i, and where U is

called the action space.

Given a reference signal {yref(k)}∞k=0 with yref(k) ∈ R
l,

a typical objective in optimal control for MPL systems is



minimizing the tracking error (e.g., the tardiness max(yj(k)−
yrefj (k), 0)) between the output event times and the reference

signal, which represents a due date signal. So we consider the

following stage cost:

ρ(k) =

ny
∑

j=1

min
(

max(yj(k)− yrefj (k), 0), g
)

+ λF (∆u(k))

(8)

where the positive scalar g is introduced to make ρ(k)
bounded, and λ > 0 is a trade-off between the delay of

completion times with respect to the due date signal and the

feeding rate. For each element ui of the finite set U , we assign

a cost F according to some criterion. If we consider a just-in-

time setting, then the smaller the value of ∆u(k), the larger the

value of its cost, i.e., F should be a positive monotonically

nonincreasing function of ∆u(k). For example, assume that

U = {u1, u2}, i.e., the next feeding time is after u1 or u2

time units and assume that u1 < u2, then we could have

F (∆u(k)) = αig if ∆u(k) = ui

with α1 > α2 and α1 + α2 = 1. Another example could be:

F (∆u(k)) = g −∆u(k) with g ≥ max(U).

It is easy to verify that ρ(k) always belongs to the interval

[0, g + λg].

Given initial conditions x(0) and u(−1), define an infinite-

length control sequence ∆u = (∆u(0),∆u(1), . . .) and the

corresponding infinite-horizon discounted cost function of this

sequence:

J(∆u, x(0), u(−1)) =

∞
∑

k=0

γkρ(k + 1)

Note that we have J(∆u, x(0), u(−1)) ∈ [0, g+λg
1−γ ].

The infinite-horizon discounted optimal control problem for

MPL systems with discrete actions is now defined as follows:

min
∆u

J(∆u, x(0), u(−1)) =
∞
∑

k=0

γkρ(k + 1) (9)

subject to (1), (2), (7) and

∆u(k) ∈ U , {u1, . . . , uM}, k = 0, 1, . . . (10)

Note that (3) is automatically satisfied since ui ≥ 0 for all i.

B. Approach

In order to apply OPD to solve the infinite-horizon dis-

counted optimal control problem (9)-(10), we first define lower

and upper bound functions similar to (5) and (6). The bounded

stage cost function (8) corresponds to a bounded reward

function:

r(k) = 1−
ρ(k)

g + λg
. (11)

Furthermore, r(k) ∈ [0, 1]. The minimization problem (9) can

now be translated into the following maximization problem:

max
∆u

J̄(∆u, x(0), u(−1)) =
∞
∑

k=0

γkr(k + 1) (12)

subject to (1), (2), (7), (8), (10), and (11). (13)

Define

∆ud = (∆u(0), . . . ,∆u(d− 1))

v(∆ud) =

d−1
∑

k=0

γkr(k + 1)

b(∆ud) = v(∆ud) +
γd

1− γ
.

So v(∆ud) and b(∆ud) provide lower and upper bounds of

J̄(∆u|d, x(0), u(−1)) for any infinite-length sequence ∆u|d
of which the first d components coincide with ∆ud. When

applying OPD to solve the problem (12)-(13), the upper

bound function b is used to select the most promising control

sequence (corresponding to the largest b-value among all

leaves of the current tree) to expand. The lower bound function

v is used for determining the best control sequence at the end

of the algorithm.

Given initial conditions x(0) and u(−1), a reference signal

{yref(k)}∞k=0, and the number of node expansions n, OPD

returns a control sequence ∆u
∗

d′ that maximizes the lower

bound v function. The first action of ∆u
∗

d′ is applied to the

system and the whole process is repeated at each event step. In

this way, a receding-horizon controller is obtained. The length

d′ of the returned sequence is the maximum depth reached by

the algorithm for the given finite n. According to Theorem

1(i), we have the following corollary for the near-optimality

guarantee of the returned control sequence:

Corollary 3: Let

J̄∗(x(0), u(−1)) , max
∆u

J̄(∆u, x(0), u(−1))

be the optimal value of the objective function in (12). Let

∆u
∗|d′ be any infinite-length sequence of which the first d′

components coincide with ∆u
∗

d′ returned by OPD. Then we

have

J̄∗(x(0), u(−1))− J̄(∆u
∗|d′ , x(0), u(−1))

≤ b(∆u
∗

d′)− v(∆u
∗

d′)

≤
γd′

1− γ
.

�

OPD applies just the first component of ∆u
∗

d′ to the system

and generates a new control sequence at the next event step.

Rather than recomputing a new control sequence at every

event step, one can alternatively apply the first subsequence

of length d̄ of ∆u
∗

d′ (with d̄ ≤ d′) to the system and

recompute the control sequence only every d̄ event steps.

Namely, once a length d̄ control sequence is applied, the

next sequence is computed from the predicted state at the



end of the current sequence. Applying sequences of control

actions in parallel with running OPD to find the next control

sequence is investigated in [21] where conditions under which

the algorithm is guaranteed to be feasible in real-time are

provided. Recall that d′ is the maximum depth reached by the

algorithm for the fixed n. In order to obtain a control sequence

with a sufficient length, the number of node expansions n

should be large enough such that the length of the returned

sequence ∆u
∗

d′ is at least d̄. In the worst case, the algorithm

will explore all branches of the tree, so n should be larger than
∑d̄−1

k=0
Mk +1 to generate that at least one path has length d̄.

However, in general a smaller n can be selected because OPD

explores the tree in an efficient way rather than evaluating all

actions in the action space at each step of node expansion. We

can also add the depth d̄ as a new termination rule in OPD.

Applying a subsequence of length d̄ means that the controller

has more time to compute a new control sequence, so we can

then increase n. This in general may have positive effect on

performance.

C. Relation to Model Predictive Control

From the viewpoint of the receding-horizon scheme, opti-

mistic planning can be seen as a variant of model predictive

control (MPC). In MPC, a receding-horizon controller is ob-

tained by repeatedly solving a finite-horizon open-loop optimal

control problem and applying the first control input to the sys-

tem. Using the current system state as the initial state, a control

sequence is computed by optimizing an objective function over

a finite horizon (prediction horizon). The whole procedure is

repeated at the next step when new state measurements are

available. Different from MPC, rather than a fixed horizon

setting optimistic planning optimizes an infinite-horizon dis-

counted objective function. The length of the returned control

sequence is influenced by the computational budget, the value

of the discount factor γ, and the complexity of the problem.

IV. EXAMPLE

Consider the following MPL system from [22]

x(k + 1) =









ε 0 ε 9
4 3 4 5
8 ε 2 8
0 1 ε ε









⊗ x(k)⊕









0
5
2
8









⊗ u(k) (14)

y(k) =
[

6 5 8 ε
]

⊗ x(k). (15)

Given a due date signal yref(k) = 50 + 6.5k, and the initial

conditions x(0) =
[

6 12 9 14
]T

and u(−1) = 6, we

consider the following stage cost function

ρ(k) = min
(

max(y(k)− r(k), 0), g
)

+ λ(g −∆u(k)) (16)

with g = 500, λ = 0.001, ∆u(k) ∈ U = {6, 8}, M = 2.

The optimistic planning based approach is implemented to

obtain a receding-horizon controller for the MPL system (14)-

(15). In addition, a finite-horizon approach is also implemented

for comparison. More specifically, given a fixed finite horizon

k
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Fig. 2. Tracking error for the closed-loop controlled system when applying
the first action only of the returned sequences

dN, a full tree3 is explored from the root node to the depth

dN. The finite-horizon approach returns a control sequence

that maximizes the following function

J̄N =

dN−1
∑

k=0

γkr(k + 1)

where γ = 0.95 and r is the reward corresponding to (16).

The difference yref −y is used for comparing the optimistic

planning approach and the finite-horizon approach. For each

approach, we consider both applying the first action only

and applying a subsequence of length d̄ to the system once

an optimal control sequence is obtained. Fig. 2 shows the

results of applying the first action only with n = 100 for the

optimistic planning approach and with dN = 10 for the finite-

horizon approach. We can see that the two approaches result

in the same tracking error. Fig. 3 shows the results of applying

a subsequence of length d̄ = 9 with n = 500 and dN = 10.

We can see that in this case the optimistic planning approach

gives a lower tracking error than the finite-horizon approach.

In addition, for both approaches, the range of tracking errors

by applying a subsequence is smaller than that by applying

the first action only. Thus, for the considered MPL system

(14)-(15), applying a subsequence of length d̄ = 9 yields

better tracking than applying the first action only for both

approaches. However, this does not mean that applying a

subsequence performs better for any experimental instance.

V. CONCLUSIONS

In this paper, we have considered the infinite-horizon op-

timal control problem for max-plus linear (MPL) systems.

The considered infinite-horizon discounted objective function

aims at reducing the tracking error between the output and a

reference signal. We have adapted optimistic planning to solve

3Here a full tree is a tree in which every node other than the leaves has
M children.
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Fig. 3. Tracking error for the closed-loop controlled system when applying
the first subsequence of length d̄ = 9 of the returned sequences

the resulting problem by taking the increments of the inputs

as control variables and a discrete action space. Within a lim-

ited computational budget, the optimistic planning algorithm

returns a control sequence of which the near-optimality can

be characterized. In particular a bound can be derived for the

difference between the optimal value of the objective function

and the near-optimal value corresponding to the returned

control sequence. A numerical example has been implemented

to assess the effectiveness of the proposed approach. The

results show that for the given MPL system the proposed

approach yields better tracking than a finite-horizon approach

when applying a subsequence of the returned control sequence.

In the future, we will focus on solving the robust optimal

control problem for MPL systems with disturbances using

(variants of) optimistic planning. We will also explore the

infinite-horizon optimal control problem for other discrete-

event and hybrid systems such as max-min-plus-scaling and

piecewise affine systems.
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