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Robust Model Predictive Control for an Uncertain Smart Thermal Grid

Samira S. Farahani∗, Zofia Lukszo∗∗, Tamás Keviczky∗∗∗, Bart De Schutter∗∗∗, Richard M. Murray∗

Abstract— The focus of this paper is on modeling and control
of Smart Thermal Grids (STGs) in which the uncertainties in
the demand and/or supply are included. We solve the corre-
sponding robust model predictive control (MPC) optimization
problem using mixed-integer-linear programming techniques to
provide a day-ahead prediction for the heat production in the
grid. In an example, we compare the robust MPC approach with
the robust optimal control approach, in which the day-ahead
production plan is obtained by optimizing the objective function
for entire day at once. There, we show that the robust MPC
approach successfully keeps the supply-demand balance in the
STG while satisfying the constraints of the production units in
the presence of uncertainties in the heat demand. Moreover, we
see that despite the longer computation time, the performance
of the robust MPC controller is considerably better than the
one of the robust optimal controller.

I. INTRODUCTION

Smart Thermal Grids (STGs) can contribute to obtaining
sustainable energy systems by guaranteeing a reliable heating
supply to various customers by using renewable energy
sources such as solar or geothermal energy. STGs are best ap-
plicable to neighborhoods with small-scale utility companies
and independent users. As about half of a neighborhood’s
electricity consumption is typically used for thermal purposes
[1], introducing STG neighborhoods could have substantial
benefits, such as: 1) less transport of energy, less energy loss,
and lower transportation costs, and 2) using the produced
heat at the neighborhood level as an energy source to avoid
wasting heat.

Considering the complexities of such systems, mainly due
to uncertainty in demand and supply as well as the large size
of the networks, smart energy systems need to be managed
and controlled in an automated way in order to increase the
efficiency for both producers and consumers. To this end,
model predictive control (MPC) [15] has been proved to be
a useful tool in both simulations and real-life applications
[7], [12], [13].

We consider robust MPC for STGs in the presence of
uncertainties in the grid to provide a day-ahead heat pro-
duction plan for the thermal grid. The uncertainties in the
network can be due to the uncertainty in the demand and/or
in the production because of using different resources such
as solar energy or biogas. Although the control aspects of
thermal energy have been studied implicitly in the context of
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Combined Heat and Power (CHP) systems or general smart
grids, using distributed MPC and other similar agent-based
control approaches [9], [14], the explicit implementation of
the controller for STG systems requires careful investigation
due to the structural differences between STGs and other
types of smart grids such as smart electric grids. In the
context of smart thermal grids and MPC, to the authors’
best knowledge, this paper will be the first attempt that
studies robust MPC for STGs. Hence, the novelty of our
contribution is not in the approach but is in the application
of this approach. To model the network, we use a mixed
logical dynamical (MLD) model and we assume that the
uncertainty is bounded within a polyhedral set. Hence, the
worst-case MPC optimization problem can be recast as a
Mixed-Integer-Linear Programming (MILP) problem which
can be solved efficiently using the available algorithms. In
the end, in an example, we compare this approach with the
robust optimal control approach in which the optimal input
is calculated at once for the entire simulation hours (24 hours
related to the day-ahead prediction).

II. SMART THERMAL GRIDS

We consider a regional network of greenhouses, which is a
typical example of a thermal grid. Each of these greenhouses
is considered as an agent and the full information of each
agent, such as the production resources, the demand request
for the next day, etc., is assumed to be available to the whole
network. Each agent is facilitated with an CHP system and
a boiler and hence, is capable of local production of heat
and electricity that can be used by the same agent or be
exported/sold to the network. We assume that the agents can
only trade heat among each other and the electricity will
be bought or sold to the electricity market only. Moreover,
each agent has a buffer system to store heat and either
to use it internally or to sell it to the other agents in the
network. In addition to the local heat generation, there are
one or more external parties that can provide heat to the
network. We consider all the external parties as one single
agent. The greenhouses are connected to each other and to
the external suppliers by several pipes of different sizes.
Moreover, to adjust the input and output heat to and from
the greenhouses, there are several heat exchangers located
outside the greenhouses.

To model the physical system, we discretize the system
with sampling time of one hour. The time step counter is
denoted by k. For the sake of compactness, the definition of
model parameters are presented in Table I.

As indicated by experts, the heat exchangers do not add
additional costs to the heat production and hence, they can



Parameters Symbol Unit
Transportation cost per MW Ctrans e
The energy content of gas for CHP start up gstart MW
Electrical efficiency of the CHP unit ηe -
Thermal efficiency of the CHP unit ηth -
Thermal efficiency of the boiler ηBoil -
Turnaround efficiency of the buffer unit ηBuf -
Fuel price per MW Fprice e
CHP maintenance cost per MW CCHP e
CHP fixed start up cost Cfix e
Buffer capacity of each greenhouse BC MWh
Minimum heat production capacity for unit u U

¯ u MWh
Maximum heat production capacity for unit u Ūu MWh

TABLE I

be left out from the network model. The fuel energy content
(gas in our case) used by a CHP unit at greenhouse j at time
step k in MW can be specified as [16]

gCHP j(k) =
PGCHP j(k)

ηe
= HGCHP j(k) ·

1
ηth

, (1)

where PGCHP j(k) and HGCHP j(k) are respectively the electrical
power and the heat generated by the CHP unit of greenhouse
j at time step k in MW. Similarly, for a boiler, we have [10]

gBoil j(k) = HGBoil j(k) ·
1

ηBoil
, (2)

where gBoil j(k) is defined similarly to gCHP j(k) and HGBoil j(k)
is the heat generated by the boiler of greenhouse j at time
step k in MW.

If the CHP or boiler unit are operating at greenhouse j, the
thermal power can vary at each time step between a certain
minimum and maximum for both the CHP and the boiler as

U
¯ CHP j ≤ HGCHP j(k)≤ ŪCHP j ∀ k, j (3)

U
¯ Boil j ≤ HGBoil j(k)≤ ŪBoil j ∀ k, j. (4)

Moreover, in the case that the production units, i.e., the boiler
and the CHP, of greenhouse j produce more heat than is
demanded by the greenhouse itself, the heat can be stored
in a buffer to be used at other hours or to be used by other
greenhouses in the network. We assume that each greenhouse
j can only send or receive heat to or from its immediate
neighbors, respectively. Let Hexchi j denotes the exchanged
heat between two adjacent greenhouses i and j. The buffer
state of greenhouse j can then be defined as

BS j(k) = BS j(k−1)+ηBuf

(
HGCHP j(k)+HGBoil j(k)

−HD j(k)+HimpEx j(k)+ ∑
i∈φ j

(1−αi j)Hexchi j

)
, (5)

where HD j(k) denotes the heat demand of greenhouse j
at time step k, HimpEx j(k) denotes the imported heat by
greenhouse j from an external party at time step k, φ j
is the set of neighbors of greenhouse j, and αi j denotes
the percentage of heat loss due to transportation between
greenhouse i and j. Moreover, we have capacity constraints
for the buffer and constraint for the amount of heat imported

from external parties or exchanged between two neighbors
due to for instance pipe or network capacity.

There is also an additional constraint for the transported
heat among the greenhouses in order to make sure that the
supply-demand balance is satisfied at each time step,

0 ≤ BS j(k)≤ BC j ∀ k, j (6)
0 ≤ HimpEx j(k)≤ ŪimpEx j ∀ k, j (7)

Hexchi j =−Hexch ji ∀ j, i ∈ φ j (8)
U
¯ exchi j ≤ Hexchi j ≤ Ūexchi j (9)

where ŪimpEx j is the maximum possible heat import from
external parties and U

¯ exchi j and Ūexchi j are minimum and
maximum amount of heat that can be exchanged between two
adjacent neighbors. Note that Hexchi j takes both positive and
negative values indicating the imported heat by greenhouse
j from greenhouse i and exporting heat from greenhouse i
to greenhouse j, respectively.

Figure 1 illustrates the energy flow between one green-
house and the network of greenhouses, as well as the heat-
producing external parties and the energy retailers.
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Fig. 1. Energy flow between greenhouse j, network of greenhouses, heat
producing external parties, and energy retailers.

Remark 1: The connection between each greenhouse j
and the external parties in Figure 1 does not reflect the
physical connection and is only an indicator for the heat
flow.

III. MODEL PREDICTIVE CONTROL FOR STGS

Our aim is to reduce the overall production costs of the
network while providing the network’s required heat under
different operational constraints such as the limits for the
generators and the buffers. To this end, we intend to develop
an advanced control approach that is suitable for practical
applications. The control objective will be focused on de-
mand response [9], [17], which is the ability of domestic
net-consumption of heat to respond to real-time1 electricity
prices. In this paper by “real-time” electricity prices we mean
the hourly varying supply tariff, which is equal to the hourly
day-ahead prices of the electricity market.

1The real-time electricity price is the one that varies almost every
15 minutes in the electricity market on the exact day of the electricity
production.



The control strategy that is proposed here for demand
response is Model Predictive Control (MPC). The control
objective is to minimize the total heat production costs,
which includes the variable costs of the network related to
the heat production as well as the earnings. Without loss of
generality, we assume that the network is owned by a single
owner and hence, all greenhouses cooperate with each other
in order to keep the total heat generation costs of the network
as low as possible. This means that they try to generate as
much heat as possible in order to satisfy the heat demand
of the network and buy as less as possible from the external
parties. The total heat production cost function of greenhouse
j at time step k can be defined as

C(PGCHP j(k),HGBoil j(k),HimpEx j(k),µstart
CHP j(k)) (10)

=CG(PGCHP j(k),HGBoil j(k))+CO(PGCHP j(k))

+Cimp(HimpEx j(k))+Cstart(µ
start
CHP j(k))−EP(PCHP, j(k)).

The heat generation cost for each greenhouse depends
on the amount of fuel that is used. Therefore, considering
equations (1) and (2), it can be defined as

CG(PGCHP j(k),HGBoil j(k)) =
(

gCHP j(k)+gBoil j(k)
)

Fprice.

(11)

For each CHP, there will also be an additional cost, namely,
the operation cost, which is defined for each greenhouse j
at time step k as

CO(PGCHP j(k)) = PGCHP j(k) ·CCHP. (12)

The import cost matters when the greenhouse needs to buy
heat from an external party, in the case that the generated heat
by the greenhouse itself and the amount that is imported from
other greenhouses in the network is less than its demand. The
cost of importing heat by greenhouse j at time step k is

Cimp(HimpEx j(k)) = HimpEx j(k) ·HbuyingEx(k), (13)

where HbuyingEx(k) is the price that greenhouse j pays for
buying heat from external parties at time step k. We assume
that the taxes and the transportation cost are included in
HbuyingEx(k). Moreover, there are fixed start-up costs and
fuel-based start-up costs for a CHP unit of greenhouse j,
which can be calculated as [8]

Cstart(µ
start
CHP j(k)) = µ

start
CHP j(k)

(
Cfix +gstart ·Fprice

)
, (14)

where µstart
u j is a binary variable such that µstart

u j (k) = 1 if unit
u (CHP or boiler) of greenhouse j is started for production
of energy at time step k and µstart

u j (k) = 0 otherwise. The
second part of the production cost is related to the electricity
earnings obtained from selling electricity to the electricity
market. The selling price is variable and is different every
hour. The electricity earnings of greenhouse j at time step k

can be written as

EP(PGCHP j(k)) =


(

PGCHP j(k)−PD j(k)
)

Pselling(k)

if PGCHP j(k)≥PD j(k)
0 if PGCHP j(k)<PD j(k)

(15)

where PD j(k) indicates the electricity demand of greenhouse
j at time step k and Pselling(k) is the selling price of electricity
at time step k. Note that since we assume cooperation
between the greenhouses, there are no heat earnings while
the greenhouses exchange heat among each other.

Therefore, considering (10), the cost function J(k) at time
step k over the prediction horizon Np is defined as

J =
Np−1

∑
l=0

n

∑
j=1

C
(

PGCHP j(k+ l),HGBoil j(k+ l),

HimpEx j(k+ l),µstart
CHP j(k+ l)

)
. (16)

This cost function will be minimized subject to the con-
straints on different components of the systems. Some of
these constraints have been presented in the previous section.
In addition to those, we need extra constraints related to on-
off states of the CHP and boiler [9]. We define µ

stop
u, j as

a binary variable such that µ
stop
u, j (k) = 1 if unit u (CHP or

boiler) of greenhouse j is shut down at time step k and 0
otherwise. Moreover, we define the binary variable vu j(k)
for each production unit u, of greenhouse j at time step
k such that vu j(k) = 1 if unit u operates and 0 otherwise.
Therefore, the capacity constraints for the heat production,
i.e., equations (3)-(4) can be rewritten as

U
¯ u j ·vu j(k)≤HGu j(k)≤ Ūu j ·vu j(k) ∀ k, j (17)

Moreover, the following equations link the above binary
variables [8], [9]:

vu j(k)−vu j(k−1)=µ
start
u, j (k)−µ

stop
u, j (k) ∀ j,k (18)

µ
start
u, j (k)+µ

stop
u, j (k)≤ 1 ∀ j,k (19)

vCHP j(k)≥ ∑
k−U

¯
on
CHP j<ℓ≤k

µ
start
CHP, j(ℓ) ∀ j,k (20)

1− vCHP j(k)≥ ∑
k−U

¯
o f f
CHP j<ℓ≤k

µ
stop
CHP, j(ℓ) ∀ j,k (21)

The last two constraints are related to the minimum time-on
and time-off constraints for each CHP unit 2 where U

¯
on
CHP j

and U
¯

o f f
CHP j are minimum required on and off time steps

respectively.
In order to obtain a linear system with continuous and bi-

nary variables, we apply the mixed logical dynamical (MLD)
formalism [3], which allows the transformation of logical
statements involving continuous variables into mixed-integer
linear inequalities. Accordingly, we can rewrite (15) as a
linear equation by introducing new binary and continuous

2As mentioned by experts at Eneco, a Dutch utility company and our
project sponsor, boilers do not require a time-on/off constraints.



auxiliary variables. In this way, the system dynamics and the
constraints are formulated as mixed-integer linear equations
and hence, we solve a mixed-integer linear programming
(MILP) problem. Note that this control approach is a central-
ized one, which means while the overall production cost of
the network is minimized, each individual greenhouse may
not have the optimal cost at each time step.

IV. SOLVING THE WORST-CASE MPC

At the beginning of each time step k, the controller mea-
sures the system state of the previous step. In our case, the
state variables are BS j, vCHP j, and vBoil j. At each time step k,
we assume that the previous value of these variables is known
or measured. Then, using the information regarding the
demand and the energy price, the controller determines the
decision variables PGCHP j,HGBoil j,HimpEx j,µ

stop
u j , and µstart

u j .
We choose 24 time steps, i.e., k = 1, . . . ,24, corresponding
to the 24 hours in one day.

We also assume that there is an uncertainty in the heat
demand HD, i.e., HD(k) = HD,pred(k)+e(k) where HD,pred(k)
is the predicted heat demand for the greenhouses at time step
k. We gather the uncertainty for time steps k, . . . ,k+Np−1 in
the vector ẽ(k) = [eT (k), . . . ,eT (k+Np−1)]T ∈ E where E =
{ẽ(k) : S̃ẽ(k)≤ q̃} is a bounded polyhedral set. Accordingly,
we can define the worst-case MPC optimization problem as

min
ũ(k)

max
ẽ(k)∈E

J(ũ(k), ẽ(k)) (22)

s.t. P(k)ũ(k)+Q(k)ẽ(k)+q(k)≤ 0 (23)

where J is the cost function, ũ(k) is the vector of decision
variables containing both continuous and binary variables
as well as the continuous and binary auxiliary variables
obtained from the MLD model (defined similarly to ẽ(k)),
P(k),Q(k) are inequality constraint matrices and q(k) is the
inequality constraint constant vector, all defined according
to the constraints (6)-(9) and (17)-(21). Since both the cost
function J and the constraints are piecewise affine in ũ(k),
we can solve the optimization problem (22)-(23) as an MILP
problem.

Remark 2: Solving an MILP for the robust MPC de-
sign does not scale well with the complexity (size) of the
model/system, and disturbance set representation. This issue
can be avoided by either decreasing the number of binary
variables by choosing a small-enough prediction horizon Np,
or by relaxing the constraints on the binary variables to
obtain an LP optimization problem instead. Generally, MILP
complexity grows exponentially as the number of binary
variables increases.

The first approach we apply to solve our MILP op-
timization problem is multi-parametric MILP (mp-MILP)
optimization. To this end, we solve the inner optimization
problem first. For a given ũ(k), the optimization problem

max
ẽ(k)

J(ũ(k), ẽ(k)) (24)

s.t. S̃ẽ(k)≤ q̃ (25)
P(k)ũ(k)+Q(k)ẽ(k)+q(k)≤ 0

can be solved as an mp-MILP problem, in which ũ(k) is the
parameter, using the algorithm in [6].

Let ẽ∗(ũ(k)) = argmaxẽ(k) J(ũ(k), ẽ(k)) denote the solution
of the mp-MILP problem (24)-(25), which is a piecewise-
affine function in ũ(k) (see [4], [11]). Hence, the outer
optimization problem, i.e.,

min
ũ(k)

J(ũ(k), ẽ∗(ũ(k))) (26)

s.t. P(k)ũ(k)+Q(k)ẽ∗(ũ(k))+q(k)≤ 0 (27)

can be solved as an MILP optimization problem using the
available MILP solvers that are based on e.g. branch-and-
bound or cutting plane algorithms [2].

Note that the available mp-MILP algorithms are not
very efficient when the size of the vector of param-
eters and the prediction horizon Np increases. There-
fore, we now discuss alternative approaches to mp-
MILP. One approach is to use Monte Carlo simulation
to eliminate the inner optimization problem as follows.
Let ẽ(1)(k), . . . , ẽ(M)(k) denote M different noise realiza-
tions belonging to the polyhedral set E and let t(k) =
maxẽ(1)(k),...,ẽ(M)(k)(J(ũ(k), ẽ(1)(k)), · · · ,J(ũ(k), ẽ(M)(k))). The
optimization problem (22)-(23) can be then rewritten as

min
ũ(k),t(k)

t(k) (28)

s.t. t(k)≥ J(ũ(k), ẽ(1)(k)) (29)
· · ·
t(k)≥ J(ũ(k), ẽ(M)(k))

P(k)ũ(k)+Q(k)ẽ(1)(k)+q(k)≤ 0
· · ·
P(k)ũ(k)+Q(k)ẽ(M)(k)+q(k)≤ 0

which can be solved as an MILP optimization problem.
Another approach is to use the Farkas’ lemma [5] to obtain

an MILP optimization problem that is equivalent to (22)-(23).
Let J(ũ, ẽ)=CT

1 ũ(k)+CT
2 ẽ(k) where C1 and C2 are vectors of

coefficients. For a fixed value of t, we can rewrite (22)-(23)
as

min
ũ(k)

CT
1 ũ(k)+ t (30)

s.t. CT
2 ẽ(k)≤ t ∀ẽ(k) : Sẽ(k)≤ q̃ (31)

P(k)ũ(k)+Q(k)ẽ(k)+q(k)≤ 0 (32)

Now, using Farkas’ lemma, we can rewrite the constraints as

CT
2 ẽ(k)− t = µ

T (Sẽ(k)− q̃)+α (33)
Pi(k)ũ(k)+Qi(k)ẽ(k)+qi(k) = βi +Λi(Sẽ(k)− q̃) (34)

i = 1, . . . ,m
Λ,µ ≥ 0, α,β ≤ 0 (35)

where µ and Λ are Lagrange multipliers such that µ is a
vector of size q̃, Λ is a matrix of size m×nq̃ and nq̃ is the
size of vector q̃. Let m denote the number of constraints in
(23), β is a vector of length m, and α is a scalar. So we can
rewrite (30)-(32) as

min
ũ,µ,Λ,α,β

CT
1 ũ+ t (36)



s.t. C2 = ST
µ (37)

t = µ
T q̃−α (38)

Qi(k) = ST
Λi i = 1, . . . ,m (39)

Pi(k)ũ(k)+qi(k) = βi −Λiq̃ i = 1, . . . ,m (40)
Λ,µ ≥ 0, α,β ≤ 0 (41)

which is an MILP optimization problem. This problem will
be solved for different values of t and then, we choose the
optimal ũ that have the minimum objective function CT

1 ũ+ t
for all these values of t. Note that since in our model for
the STG, the cost function is not explicitly dependent on
ẽ(k), we can solve the optimization problem (36)-(41) by
eliminating t and the constraints (37) and (38).

V. EXAMPLE

In this section, we solve robust MPC optimization problem
to obtain a day-ahead prediction for the heat production plan
for a small network of greenhouses and we compare the
results with the ones obtained using robust optimal control
approach. In this case study, we consider two greenhouses
and an external producer. Each of the greenhouses has a CHP
unit, a boiler, and a buffer. The aim is to minimize the heat
production cost of the network while satisfying the network
constraints and the supply-demand balance.

Fig. 2. Physical topology of the thermal network of the case study

We consider the cost function (16) and we an uncertain
heat demand HD j(k) = HD,pred j(k)+ e j(k) where HD,pred j(k)
is the predicted heat demand for greenhouse j ∈ {1,2} at
time step k and e j(k) denotes the uncertainty such that
|e j(k)| ≤ 1. We also have U

¯
on
CHP j = 5 and U

¯
o f f
CHP j = 3.

The cost function is minimized subject to the constraints
(6)-(9) and (17)-(21). Using MPC with a prediction horizon
Np = 15, at each time step we have 285 control variables
(150 binary variables including the auxiliary variables from
the MLD model), an uncertainty vector of size 30, and 660
inequality constraints. In the optimal control approach since
we optimize the system for 24 hours, we have 456 control
variables (240 binary variables), an uncertainty vector of size
48, and 1056 inequality constraints. For both approaches, we
apply the three different methods explained in Section IV.
Even though we picked a very small network to be able to
use mp-MILP approach, solving the mp-MILP optimization
problem using the MPT toolbox seems to be very inefficient
for a problem of this size. Even for a small prediction
horizon such as Np = 3, the computation time is so long that
makes this approach infeasible for this example. Therefore,

we only use the Monte Carlo approach and the equivalent
reformulation of min-max problem based on Farkas’ lemma
(cf. Section IV) to obtain the day-ahead heat production plan,
which is solved in Matlab R2014b on a 2.6 GHz Intel Core
i5 processor. To solve the optimization problem (28)-(29),
we chose M = 500 different uncertainty vectors e to obtain
a 0.95% confidence level with accuracy error of 1% and we
use the MILP solver from IBM CPLEX. The computation
time and the total heat production cost of the network during
24 hours are given in Table II. The total production costs

Control Solution Time Production Cost
Approach Approach (s) (e)

Robust MPC Monte Carlo 3180 22576
Farkas’ lemma 116 22325

Robust Optimal Control Monte Carlo 207 23190
Farkas’ lemma 13 22708

TABLE II
COMPUTATION TIME AND TOTAL PRODUCTION COST FOR THE NETWORK

of this network for the case that the greenhouses do not
exchange heat among each other and only buy from the
external heat producers is 30194e. The choice between the
MPC approach and the optimal control approach is a matter
of trade-off between the computation time and the production
cots. The MPC computation time can be reduced by choosing
a smaller prediction horizon Np. In this example we have
chosen Np = 15 to show that even for a large prediction
horizon, this approach is still computationally feasible.

Fig. 3. Heat and electricity production plan of the thermal network using
robust MPC approach vs. robust optimal control (OC) approach.

The optimization results using robust optimal control ver-
sus the robust MPC, solved using the reformulation technique
based on Farkas’ lemma, are shown in Figure 3. The first
plot of Figure 3 shows the heat demand of each greenhouse
for one day. The second and third plots show the amount
of electricity and heat that needs to be generated by the
CHP and boiler units at each greenhouse, respectively. The
forth plot shows the amount of imported heat from the



external parties. The fifth plot illustrates the amount of heat
that is imported by each greenhouse from the other one.
The last plot shows the amount of electricity that each
greenhouse can export to the electricity market. Here, we
assume that the production capacity of the CHP and boiler
units are similar to each other for the sake of illustration; in
reality, the boilers capacities are much higher and since they
impose less production costs, they will be used more than
the CHPs. Hence, in practice, CHPs are mainly used when
the electricity price is high so the greenhouses can benefit
from selling the extra generated electricity to the electricity
market. Here also, the CHPs are mainly used during the
hours that the electricity price is quite high and they can also
sell the extra electricity in the market (cf. second, third, and
last plot is Figure 3). Moreover, since the greenhouses can
exchange heat among each other, they only need to import
heat from the external party in the early hours of the day
and for the rest, they receive heat from each other (cf. forth
and fifth plot in Figure 3).

Based on this case study, we can conclude that the current
network setting is more cost-efficient compared to the setting
with a single (main) producer where the greenhouses act as
a costumer rather than being a prosumer. Moreover, robust
MPC is a better control choice than robust optimal control
although it requires more computation time. In the former
approach, the control input will be updated and hence,
the controller performs better in the presence of the new
information, while in the latter, the optimal control input
is obtained for the entire simulation period (24 hours) and
hence, it is only based on the initial information from the
network.

VI. CONCLUSIONS

We have considered control of a typical smart thermal
grid, namely a network of greenhouses, under uncertainties
in demand and/or response. Our aim was to provide a day-
ahead heat production plan for the network assuming there
is uncertainty in the heat demand. To obtain an economical
plan, we minimized the total heat production cost of the
network using model predictive control. We assumed the
uncertainty to be bounded and hence, a worst-case MPC op-
timization problem was solved. Since both the cost function
and the constraints are linear, the optimization problem was
formulated as a mixed-integer linear programming (MILP)
problem; we have discussed three approaches to solve the
obtained optimization problem. In a case study, we compared
the MPC approach with the optimal control approach to
obtain a day-ahead production plan for a sample network of
greenhouses. Based on this example, robust MPC performs
better than robust optimal control although it requires more
computation time.

An alternative scenario to the centralized control archi-
tecture is that each greenhouse tries to maximize its own
benefit and hence, they will sell heat to the other greenhouses
in the network. The efficient control approach in this case
is a distributed model predictive control approach in which
the agents can only have partial information about the

network. Moreover, in future work, we will also consider
the constraints of the physical network’s model to be able to
take the dependencies and the possible delays into account.
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