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Fuel cell cars in a microgrid for synergies between hydrogen and

electricity networks – Addendum

F. Alavi, E. Park Lee, N. van de Wouw, B. De Schutter, and Z. Lukszo

Abstract

This addendum contains the lemmas and their proofs that are used to simplify the

optimization problem developed in Section 4 of the manuscript “Fuel cell cars in a

microgrid for synergies between hydrogen and electricity networks” by F. Alavi, E. Park

Lee, N. van de Wouw, B. De Schutter, and Z. Lukszo, Applied Energy, vol. 192, pp. 296-

304, Apr. 2017.

Lemmas and proofs

Lemma 1: Defining

ω̃min =
[

ω̄ . . . ω̄
]T

Np×1
(34)

ω̃max =
[

ω . . . ω
]T

Np×1
, (35)

the inequality (7) holds for all possible disturbances ω satisfying Assumption 1 if the following
two inequalities hold:

G1X(k) ≤ G2 +G3x(k) +G4ω̃min (36)

G1X(k) ≤ G2 +G3x(k) +G4ω̃max. (37)

Proof : The existence of a maximum and minimum value for ω implies that:

∀ω ∃λ1, λ2 ∈ [0, 1] : λ1ω + λ2ω̄ = ω and λ1 + λ2 = 1. (38)

Now assume an arbitrary realization of ω̃(k) as follows:

ω̃(k) =
[

ω(k) ω(k + 1) . . . ω(k +Np − 1)
]T

.

The inequality constraint (7) consists of several inequalities belonging to each time step in
the prediction horizon. Considering the structure of G1, G2, G3, and G4, it can be shown
that (7) consists of the following inequalities, for j ∈ {0, . . . , Np − 1}:

G1,k+jX(k) ≤ G2,k+j +G3,k+jx(k) + g4,k+jω(k + j) (39)

where G1,k+j, G2,k+j, G3,k+j, and g4,k+j are the j+1th row of G1, G2, G3, and G4, respectively.
From (36) and (37), we have:

G1,k+jX(k) ≤ G2,k+j +G3,k+jx(k) + g4,k+jω (40)

G1,k+jX(k) ≤ G2,k+j +G3,k+jx(k) + g4,k+jω̄, (41)
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Property (38) shows that for any realization of ω(k+j), there exists a pair (λ1(k+j), λ2(k+j))
such that λ1(k+ j)ω+ λ2(k+ j)ω̄ = ω(k+ j) and λ1(k+ j) + λ2(k+ j) = 1. By multiplying
these factors to (40) and (41), it can be easily seen that (39) holds. This reasoning can be
done for all j ∈ {0, . . . , Np − 1} and, hence, (7) holds. �

Lemma 2: The maximum of the cost function (9) over all the possible realizations of ω̃(k),
i.e. maxω̃(k) {J(k)}, can always be assumed to occur at one of the vectors ω̃1(k), ω̃2(k), . . . ,
ω̃N(k) defined as follows:

ω̃1(k) =
[

ω ω . . . ω
]T

ω̃2(k) =
[

ω̄ ω . . . ω
]T

...

ω̃N(k) =
[

ω̄ ω̄ . . . ω̄
]T

.

Proof : The first term of the cost function, Wx(k)X(k), can be written in the following from:

Wx(k)X(k) = Wx,1(k)X(k) +Wx,2(ω̃(k))X(k). (42)

The first term in (42), Wx,1(k)X(k), is not affected by ω̃(k). The expanded form of the
second term, Wx,2(ω̃(k))X(k), is given by:

Np−1
∑

j=0

(

Ce,imp(k + j)(1− δexp(k + j))− Ce,exp(k + j)δexp(k + j)
)

ω(k + j)

which is either equal to Ce,imp(k + j)ω(k + j) or −Ce,exp(k + j)ω(k + j) at each time step
k+ j, based on the value of δexp(k+ j). In these cases, the maximum value of Wx(ω̃(k))X(k)
at each time step k for all realizations of ω(k + j) occurs at ω̄ and ω, respectively.

The second term of the cost function, Wd(k)ω̃(k), can be written in the form:

Wd(k)ω̃(k) =

Np−1
∑

j=0

Ce,imp(k + j)ω(k + j).

It is assumed that the tariff of imported power, Ce,imp(k) is positive, and hence, the maximum
value of Wd(k)ω̃(k) at each time step k for all realizations of ω(k + j) occurs at ω̄. The
total cost function contains the addition of Wx,2(ω̃(k))X(k) and Wd(k)ω̃(k), and hence, the
maximum of the total cost function at time step k + j occurs on either ω̄ or ω. By following
the same reasoning for all j ∈ {0, . . . , Np − 1}, we can conclude that the maximum value of
the cost, J(k), would be realized when ω̃(k) is equal to one of the vectors ω̃1, . . . , ω̃N . �

Lemma 1 and 2 show that the optimization problem (10) subject to the constraints (7)
can be formulated as a number of MILP problems. However, the number of MILP problems
to be solved is N = 2Np . In this case, an increase in the prediction horizon will create an
exponential increase in the computational time needed for the controller, which is not desired.
In order to reduce the number of MILP problems that need to be solved in each time step and
therewith to reduce the computational burden of the proposed control strategy, we consider
the following additional assumption:

Assumption 2: In the optimization problem (10), the value of δexp(k + j) is the same for
all j ∈ {0, . . . , Np − 1}.
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Assumption 2 is a restriction on the import or export of electricity in the future. It
means that the control actions are determined based on the assumption of either exporting
or importing electricity during the entire prediction period [k, k+Np], but not a combination
of them. This assumption may decrease the system performance, but it is used due to its
influence on the reduction of computational burden.

Lemma 3: Considering Assumption 2, the maximum of the cost function (9) over all the
possible realizations of ω̃(k), i.e. maxω̃(k) {J(k)}, can always be assumed to occur at one of
the vectors ω̃min or ω̃max defined in (34) and (35).

Proof : Similar to the proof of Lemma 2, we have the following term for the cost function
that is related to ω̃(k):

Np−1
∑

j=0

(

Ce,imp(k + j)(1− δexp(k))− Ce,exp(k + j)δexp(k)
)

ω(k + j)

which is either equal to
∑Np−1

j=0 Ce,imp(k+ j)ω(k+ j) or
∑Np−1

j=0 −Ce,exp(k+ j)ω(k+ j), based
on the value of δexp(k). In both cases, the maximum value for all realizations of ω(k + j) for
j ∈ {0, . . . , Np − 1} occurs for extreme value of ω for all the prediction horizon. In the first
case, this extreme case is ω̄ and in the second case, ω. Therefore, the maximum value of the
cost, J(k), would be realized when ω̃(k) is equal to either ω̄ or ω. �

Lemma 1 and 3 show that the optimization problem (10) subject to the constraints (7)
can be formulated as an MILP problem (11) subject to the constraints (12) and (13). The
conversion of the optimization problem (10) into (11) reduces the complexity of the problem
and as a result, the computation time in the model predictive controller is decreased.
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