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Two-Level Hierarchical Model-Based Predictive

Control for Large-Scale Urban Traffic Networks
Zhao Zhou, Bart De Schutter, Shu Lin and Yugeng Xi

Abstract—Network-wide control of large-scale urban traffic
networks using a hierarchical framework can be more efficient
and flexible than centralized strategies for reducing the traffic
congestion in big cities, because it can adequately address some
problems that occur in controlling such large systems, e.g. compu-
tational complexity, multiple control objectives, weak robustness
to uncertainties, and so on. In this paper, we propose a two-level
hierarchical control framework for large-scale urban traffic net-
works. At the upper level, based on decomposing a heterogeneous
traffic network into several homogeneous subnetworks, a higher-
level optimization problem using the concept of macroscopic
fundamental diagram is formulated to deal with the traffic
demand balance problem. At the lower level, the controller with a
more detailed traffic flow model for each subnetwork determines
the optimal signal timing within the given region under the
guidance of the upper-level controller through communication.
For the application of this architecture in real time, the model-
based predictive control approach is utilized so as to obtain the
best solutions for both levels. Moreover, in order to decrease the
computational complexity, a distributed control scheme within
each subnetwork is developed at the lower level. The proposed
approach is evaluated by simulation under different scenarios
on a hypothetical urban traffic network, and the performance is
compared with that of other control strategies.

Index Terms—Hierarchical control, model predictive control,
large-scale urban traffic networks, macroscopic fundamental
diagram.

I. INTRODUCTION

DUE to the rapid development of society and economy,

traffic congestion in large-scale urban traffic networks

becomes a growing problem all over the world. Therefore,

how to deal with the traffic congestion problem on the basis

of the available transportation infrastructures is still a serious

challenge for the whole society. From a long-term perspective,

network-wide traffic signal control is a promising way to

alleviate traffic jams.

Different control strategies [1]–[5] with different traffic

flow models have been developed for control of urban traf-

fic networks. However, most of these works use centralized

control with detailed modeling to obtain a trade-off between

the accuracy of modeling and the computational complexity.

Since the scale of urban traffic networks consisting of many

links and signalized intersections becomes larger, hierarchical

or distributed control is more tractable than centralized control
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for implementation in practice. Hence, a number of researchers

have investigated hierarchical architectures for the control of

large-scale urban traffic networks. Gartner et al. [6] presented

a three-layer control framework, including the signal timings

optimization at the local control layer, the offsets optimization

for intersections at the coordination layer, and the cycle times

calculation at the synchronization layer. A real-time traffic-

adaptive signal control system with a three-level hierarchical

structure was proposed by Mirchandani and Head [7]. It

addressed different problems from the network level to the

local level, i.e. network load control, network flow control,

and intersection control. De Oliveira and Camponogara [8]

proposed a distributed multi-agent framework for control of

urban traffic networks by decomposing a centralized control

problem into several small coupled sub-problems. Baskar et

al. [9] developed a hierarchical control framework inspired

by Intelligent Vehicles Highway Systems (IVHS) containing

several control levels starting from vehicle controllers at the

bottom to supraregional controllers at the top. Moreover,

several urban traffic control and management systems have

been presented in [10]–[12].

More recently, the concept of macroscopic fundamental

diagram (MFD) has been adopted to obtain an efficient and

elegant way for control of large-scale urban traffic networks

from an aggregated point of view. Its existence was observed

and verified by Geroliminis and Daganzo [13] based on

experimental data. An MFD links the number of vehicles (or

densities) and the space-mean traffic flow in the network.

Some theoretical analysis [14], [15] also illustrated that if

the variance of link densities is small, i.e., the network is

sufficiently homogeneous, the MFD is well-defined, i.e., there

is a low scatter of flows for the same density, as shown in

Fig. 1. The critical number of vehicles, Ncritical, corresponding

to the maximum space-mean traffic flow, divides the curve of

MFD into two parts. The left part of this point corresponds

to the uncongested state, in which the average traffic flow

is in free flow. The right part corresponds to the congested

state, in which the network becomes heavily congested with

an increasing number of vehicles. Therefore, if an urban traffic

network is considered as a whole, the MFD can describe

the characteristics of the network. On the one hand, these

findings make it easier to model the dynamics of traffic

flow at the network level; on the other hand, researchers

can design real-time control strategies based on the MFD

to mitigate congestion and to improve mobility in large-

scale urban traffic networks. Geroliminis et al. [16] proposed

optimal perimeter control for a two-region urban city based

on the MFD by regulating the exchanged traffic flows on
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Fig. 1. Well-defined MFD

the perimeter borders between the two regions. Boundary

control for multiple regions in heterogeneous urban traffic

networks has also been investigated in [17]. Moreover, a

mixed control strategy integrating perimeter control for urban

roads and ramp metering for freeways has been developed in

[18], and a hybrid control approach incorporating perimeter

controllers and switching signal timing plan controllers has

been introduced for urban traffic networks in [19]. Lin et al.

[20] developed a high-level controller to regulate the input

traffic flows based on the work in [21]. Additional urban traffic

control strategies based on the MFD have also been proposed

in [22], [23].

In this paper, we propose a two-level hierarchical control

framework for large-scale urban traffic networks where at

different levels of the hierarchy different models and objectives

are taken into account to solve the traffic congestion problem.

At each level, model predictive control (MPC) [24] is utilized

to solve the optimal control problem, which is a model-

based control strategy in which an optimal control sequence

is determined by implementing numerical optimization over a

given horizon based on a prediction model. Finally, by using

a microscopic simulation tool for a large-scale urban traffic

network, we show the beneficial properties of the proposed

approach compared with other control approaches.

To summarize, this paper contributes to the state-of-the-art

in the following ways. First of all, a two-level hierarchical

control framework for large-scale urban traffic networks is

proposed that is capable of addressing different problems

at different layers, i.e. traffic demand balancing and traffic

signal coordination. Second, we take fully into account the

aggregated characteristics of the MFDs and the task of the

upper-level controller, and therefore, we integrate two control

performance indicators into the MPC scheme to make control

of a multiregion urban network more efficient. Finally, a

distributed multi-agent control scheme is presented to decrease

the on-line computational complexity of the corresponding

optimization problem and to increase the reliability of the

controllers at the lower level, which also allows the problem

to be solved in a parallel fashion.

The remainder of this paper is organized as follows. In

Section II, the structure of two-level hierarchical MPC for

large-scale urban traffic networks is discussed. In Section III,
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Fig. 2. Hierarchy of two-level MPC

a regional traffic flow model based on the MFD is introduced,

and then the optimization problem of the upper-level MPC

controller is formulated. Then, a distributed multi-agent MPC

approach is designed for the lower-level controller in Section

IV. Section V presents a simulation-based case study for a

typical traffic network. Section VI concludes this paper and

outlines future work.

II. STRUCTURE OF TWO-LEVEL HIERARCHICAL MPC

The two-level hierarchical control framework is proposed

to improve mobility and to reduce traffic congestion, and

further to achieve a better performance for large-scale urban

traffic networks. In this framework, we assign the optimization

problem to different layers, in which different optimal control

problems with specific tasks are solved using the MPC ap-

proach. Moreover, the dimension of the optimization problem

is also reduced based on a partition of the traffic network,

which guarantees that a simpler control problem with a lower

dimension can be addressed at a time. Information communi-

cation and coordination are considered between the two layers

to make the whole system reach a better performance. The

control architecture of this approach consists of two layers

with one network controller at the upper level and several

subnetwork controllers at the lower level, as shown in Fig. 2.

The upper-level controller implements coordination of the

lower-level controllers from the network-wide point of view.

According to the requirements of the concept of MFD, a

heterogeneous large-scale urban traffic network can be de-

composed into several homogeneous subnetworks of appro-

priate scale based on some partition methods [25], [26]. The

task of the controller in this layer is to balance the traffic

demand among subnetworks and to avoid traffic congestion

in each subnetwork. An MFD-based traffic flow model with

conservation laws for the space-mean densities and the inflows

and outflows of the subnetworks is used as the prediction

model, and the optimization problem arising from the MPC

approach can then be formulated. This controller performs

the optimization by using the current traffic data (the total

number of vehicles Ni in subnetwork i, for i ∈ M , with

M the set of subnetworks) collected from the subnetworks,

and then sends the optimal traffic flows to be exchanged

among subnetworks (Qi j,optimal, for j ∈ Ni, with Ni the set

of subnetworks connected to subnetwork i) to the subnetwork

controllers as reference targets through communication. It

should be noticed that since the traffic model applied in
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this layer is comparatively simplistic without considering the

dynamic processes inside the subnetworks, the results cannot

be applied directly to the traffic signals. Therefore, lower-level

controllers are also needed.

At the lower level of the hierarchical structure, each sub-

network controller controls a part of an entire urban traffic

network. The aim of the subnetwork controller is to coordinate

the intersection signals within the area. Taking into account

the instructions given by the upper level, the subnetwork

controllers assign the optimal timings gi for each intersection,

so as to regulate traffic flows and mitigate congestion. In this

layer, an elaborate traffic model containing more details is

used as the prediction model for the MPC optimization prob-

lem. In order to reduce the on-line computational complexity

and to make the system robust to unexpected disturbances,

a distributed multi-agent coordination control approach is

proposed. By further dividing each subnetwork into a few

subregions, several agents are developed and allocated to

the corresponding non-overlapping subsystems. Each agent is

capable of making decisions by negotiating with its neighbors

for achieving the best performance of the whole system.

III. UPPER-LEVEL MPC CONTROLLER

In this section, we focus on the design of the upper-level

controller. In order to coordinate the traffic flows among the

subnetworks, an aggregate traffic model that can describe

the dynamic behavior of the traffic system is needed for the

MPC optimization problem. The concept of the MFD provides

a tractable way for this modeling. Three characteristics of

the MFD have been verified in [13], [27]: (1) there is a

unimodal and low-scatter relationship between the network

vehicle density and the space-mean flow; (2) the outflow of

the traffic network is more or less proportional to the space-

mean flow within the network; (3) the shape of the MFD

is independent of the traffic demand but is related to the

topology of the network and control. Therefore, based on some

partition methods [25], [26], a large-scale traffic network can

be decomposed into several homogeneous subnetworks with

a well-defined MFD. Then we get the following model (see

also [16]).

A. Upper-level traffic modeling

Firstly, we can use a simple conservation equation to

describe the dynamic evolution of the traffic system for each

subnetwork

Ni(ku +1) =Ni(ku)+Tu

(
Qi,in(ku)−Qi,out(ku)

+ ∑
j∈Ni

(
Q ji(ku)−Qi j(ku)

)) (1)

where Ni(ku) is the number of vehicles in subnetwork i at

time step ku, Tu is the sample time interval, Qi,in(ku) is

the total inflow from the external origins of subnetwork i,

Qi,out(ku) is the total outflow to the external exits, Q ji(ku) is

the inflow from subnetwork j, Qi j(ku) is the outflow exiting

to subnetwork j, and Ni is the set of subnetworks connected

to subnetwork i, i.e. the set of neighbors of i.

The MFD defines a static relationship between the number

of vehicles and the space-mean flow in the subnetwork:

qw
i (ku) = Gi(Ni(ku)) (2)

where Gi(Ni(ku)) is the function of MFD representing the

weighted traffic flow for subnetwork i at Ni(ku), qw
i (ku) is

the weighted traffic flow in the subnetwork i:

qw
i (ku) =

∑
r∈Ri

qr(ku)lr

∑
r∈Ri

lr
(3)

where Ri is the set of road segments in subnetwork i, lr is

the length of road segment r, and qr(ku) is the traffic flow

measured by the corresponding detector in road segment r

at time step ku. Based on traffic data collected from field

experiments, an MFD of a network can be extracted. Later on,

in the case study of this paper, we will use a polynomial fitting

method (the same as the approximation in [16]) to obtain this

function.

Finally, for each subnetwork there is a proportional relation

between the outflow and the weighted traffic flow based on

the second characteristic of the MFD

Di(ku) = Qi,out(ku)+ ∑
j∈Ni

Qi j(ku)

= κiq
w
i (ku)

(4)

where Di(ku) is the total outflow of subnetwork i, and κi is a

coefficient, which can be estimated from real traffic data.

B. Formulation of the upper-level MPC controller

The aim of the upper-level controller is to provide the

optimal traffic flow between subnetworks as a reference for

the lower-level controllers. Since our goals are to improve the

mobility and to maximize the throughput of the subnetworks,

the objective function can be defined via two parts: the first

is to minimize the number of vehicles in the subnetworks,

mitigating the traffic congestion; the second is to keep the

number of vehicles in all subnetworks below their critical

points, reducing the risk of oversaturation.

Therefore, the total time spent (TTS) is used as the main part

of the objective function, which can be described as follows

JTTS = ∑
i∈M

N
upper
p

∑
p=1

Ni(ku + p) ·Tu (5)

where N
upper
p is the prediction horizon. In addition, we use

another penalty function to meet the second requirement of

the control objective

JPen = ∑
i∈M

N
upper
p

∑
p=1

[max(0,Ni(ku + p)−Ni,critical)]
2 (6)

where Ni,critical is the critical point for the number of vehicles

of the MFD of subnetwork i.

In order to more clearly illustrate this approach, we consider

an urban traffic network that has been divided into three

subnetworks, i, j, and l, as shown in Fig. 3 (this approach can

be extended easily for more subnetworks). By combining the
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macroscopic traffic model (1)-(4) and the objective function

(5)-(6), we can formulate the upper-level optimization problem

as follows

min
Q(ku)

Jupper = JTTS +αupperJPen

s.t. Ni(ku + p+1) = Ni(ku + p)+Tu

(
Qi,in(ku + p)

−Qi,out(ku + p)+ ∑
j∈Ni

(
Q ji(ku + p)−Qi j(ku + p)

))

Di(ku + p) = Qi,out(ku + p)+ ∑
j∈Ni

Qi j(ku + p)

Di(ku + p) = κiq
w
i (ku + p)

qw
i (ku + p) =

d

∑
b=0

abNb
i (ku + p)

0 ≤ Qi j(ku + p)≤ mi jqs,i j for j ∈ Ni

for p = 0, . . . ,Nupper
p −1, for all i ∈ M

(7)

where Q(ku) = [Qi j(ku),Qi j(ku +1), . . . ,Qi j(ku +N
upper
p −1)]T

for all i∈M and j ∈Ni is the set of control variables, αupper >
0 is a weighting coefficient, ab are the coefficients of the MFD

polynomial, and d is the polynomial degree. Considering that

the traffic system is a real physical system, some constraints

have to be imposed on the maximal exchanged traffic flows

between subnetworks, i.e., 0 ≤ Qi j(ku + p) ≤ mi jqs,i j. Here

mi j with j ∈ Ni denotes the number of links connecting the

subnetwork i and its neighbor j, and qs,i j is the average

saturation traffic flow for the links between i and j.

IV. LOWER-LEVEL MPC CONTROLLER

A. Lower-level traffic modeling

At the lower level, it is necessary to apply a more detailed

urban traffic model to regulate the traffic flow within the

subnetworks and to track the optimal outflow received from the

upper-level controllers. In this section, we use a macroscopic

simplified urban traffic model (S model) [5] as the prediction

model of subnetwork MPC controllers, for the reason that

it can describe the dynamic process of traffic flow in a

macroscopic way, including the oversaturated traffic situation.

In the S model, an urban traffic network is constituted of

a number of links and intersections. As shown in Fig. 4,

a typical urban road (link (u,d) ∈ L , where L is the
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Fig. 4. A link between two adjacent intersections

set of links in the whole traffic network) is represented by

its upstream intersection u (u ∈ E , where E is the set of

intersections) and downstream intersection d (d ∈ E ). The sets

of the upstream intersections of input links and downstream

intersections of output links for link (u,d) are Iu,d ⊂ E and

Ou,d ⊂ E . For the link (u,d) in Fig. 4, we have Iu,d = {i1, i2, i3}
and Ou,d = {o1,o2,o3}. Let αenter

u,d (kl), αarrive
u,d (kl), α leave

u,d (kl)
denote the flow rates of vehicles entering link (u,d), the flow

rates of vehicles arriving at the tail of the queue in link (u,d)
and the flow rates of vehicles leaving link (u,d) at time step

kl , and let qu,d(kl) be the queue length in link (u,d).

We assume that the cycle time ccycle is equal to the sampling

time interval Tl for all intersections. Therefore, the number

of vehicles in link (u,d) can be updated by the following

conservation equation

nu,d(kl +1) = nu,d(kl)+(αenter
u,d (kl)−α leave

u,d (kl)) · ccycle (8)

where the flow rate entering link (u,d) is the sum of the flow

rates leaving from its upstream links, i.e.

αenter
u,d (kl) = ∑

i∈Iu,d

α leave
i,u,d (kl) (9)

Similarly, the leaving flow rate for link (u,d) is equal to the

sum of the flow rates leaving for its downstream links, i.e.

α leave
u,d (kl) = ∑

o∈Ou,d

α leave
u,d,o(kl) (10)

The leaving average flow rate over ccycle is determined by

α leave
u,d,o(kl) =min(βu,d,o(kl) ·µu,d ·gu,d,o(kl)/ccycle,

qu,d,o(kl)/ccycle +αarriv
u,d,o(kl),

βu,d,o(kl)(Cd,o −nd,o(kl))/ccycle)

(11)

where the three terms represent the capacity of the intersec-

tion, the number of vehicles waiting and arriving, and the

available space in the downstream link, respectively. Moreover,

βu,d,o(kl) is the relative fraction of the traffic turning to o at

time step kl , µu,d is the saturation flow rate leaving link (u,d),
gu,d,o(kl) is the green time length for the traffic stream towards

o in link (u,d), Cd,o is the capacity of downstream link (d,o)
expressed in number of vehicles, and nd,o is the number of

vehicles in link (d,o).
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The number of vehicles waiting in the queue turning to o

is updated as

qu,d,o(kl +1) = qu,d,o(kl)+(αarriv
u,d,o(kl)−α leave

u,d,o(kl)) · ccycle

(12)

After entering the link (u,d), the flow rate of arriving

vehicles will reach the tail of waiting queues depending on

the turning rates

αarrive
u,d,o (kl) = βu,d,o ·α

arrive
u,d (kl) (13)

For more details about this model, we would like to refer the

interested reader to [4], [5].

B. Formulation of the lower-level MPC controllers

The aim of the lower-level controllers is to generate a set of

optimal traffic signal timings according to the current traffic

conditions. The corresponding algorithm should be embedded

in a rolling-horizon framework so that the optimal control

problem can be solved on-line before every control cycle.

According to the S model presented in Section IV-A, the

dynamic traffic model for each link in subnetwork i (i ∈ M )

can be described as

ni
u,d(kl +1) = fi(n

i
u,d(kl),g

i
d(kl),d

i
u,d(kl)) for all (u,d) ∈ Li

(14)

where ni
u,d(kl) is the number of vehicles in link (u,d) of

subnetwork i at simulation step kl , gi
d(kl) is the green time

of the traffic signals of intersection d, di
u,d(kl) is the traffic

demand, which can be estimated by using historical data,

provided by its neighbors, or received from the upper-level

controller, and Li is the set of links in subnetwork i.

Since our purpose is to regulate the traffic flows and to

guarantee that the outflow of each subnetwork is as close

as possible to the optimal exchanged traffic flow between

subnetworks, the control objective is to minimize the number

of vehicles in the subnetwork and the difference between the

real values and the reference set-points for the traffic flows.

Therefore, given a prediction horizon Nlower
p , the TTS is used

as one of the objective functions

Ji,TTS = ∑
(u,d)∈Li

Nlower
p

∑
p=1

ni
u,d(kl + p) · ccycle (15)

and the second objective function for the lower-level controller

can be defined as

Ji,Track =

Nlower
p

∑
p=1

∑
j∈Ni

((
mi j

∑
e=1

α leave
i j,e (kl + p)

)
−Qi j(kl + p)

)2

(16)

where α leave
i j,e (kl + p) is the total leaving traffic flow in the links

connecting the subnetwork i and its neighbor subnetwork j.

Given the current traffic states at time step kl measured from

all links in the subnetwork i as the initial local states, the future

traffic states over a prediction horizon Nlower
p can be predicted

as

ni
u,d(kl)= [ni

u,d(kl+1|kl) ni
u,d(kl+2|kl) · · · ni

u,d(kl+Nlower
p |kl)]

T

(17)

Based on the predicted traffic demands

di
u,d(kl)= [di

u,d(kl |kl) di
u,d(kl+1|kl) · · · di

u,d(kl+Nlower
p −1|kl)]

T

(18)

and the optimal exchanged traffic flows between subnetwork

i and its neighbors provided by the upper-level controller,

the optimization problem of MPC solved by local lower-level

controller can be formulated as follows

min
gi(kl)

Ji,lower = Ji,TTS +αlowerJi,Track

s.t. ni
u,d(kl + p+1) = fi(n

i
u,d(kl + p),gi

d(kl + p),

di
u,d(kl + p))

for p = 0, . . . ,Nlower
p −1, for all (u,d) ∈ Li

Φ(gi(kl)) = 0

gi
min ≤ gi(kl)≤ gi

max

(19)

where αlower > 0 and gi(kl) contains the optimized control

inputs for all the intersections in subnetwork i, i.e.

gi
d(kl) =[gi

d(kl |kl) gi
d(kl +1|kl) · · ·

gi
d(kl +Nlower

p −1|kl)]
T

gi(kl) =[giT
1 (kl) giT

2 (kl) · · · giT
φ (kl)]

T

(20)

where φ is the number of intersections in subnetwork i,

Φ(gi(kl)) = 0 represents the cycle time constraints for all

intersections in the subnetwork, and gi
min and gi

max are the

bounds for the green time signals. The cycle time constraints

guarantee that the sum of all the green time durations for an in-

tersection equals the given cycle time, i.e. ∑
h∈Hd

gd,h(kl)= ccycle,

where Hd is the set of number of traffic signal phases at

intersection d, and gd,h(kl) is the green time duration of phase

h at intersection d at time step kl .

C. Distributed multi-agent MPC approach

Due to the high computational complexity and low reliabil-

ity (e.g., there is a single point of failure in case the single

controller breaks down) of centralized MPC, it is necessary

to apply a distributed MPC approach for on-line control. In

such an approach the overall problem could be decomposed

into several subproblems. On the one hand, the computational

complexity is significantly reduced because one controller

could determine the control actions for its subsystem by

solving a low-dimensional optimization problem; on the other

hand, this approach could prevent the breaking down of inte-

grated system from the failure of one controller, although the

resulting solution will be sub-optimal. However, this approach

poses many challenges in practice, such as communication

delays, communication errors and so on. It is noted that in

particular if agents fail to provide the accurate information

to their neighbors, this approach cannot yield a good overall

performance. In this subsection, we propose a multi-agent

MPC scheme to deal with the control problem for traffic

subnetworks.

Assume without loss of generality that an urban subnetwork

i can be further decomposed into several subregions (i.e. sub-

subnetworks) in terms of some network partition methods [25],

[26], the capability of processors, or the instructions from
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traffic operators. For subregion w ∈ Mi (Mi is the set of

subregions in subnetwork i) with its neighbor v ∈ Nw (Nw

is the set of the subregions in subnetwork i connected to

subregion w, i.e. the set of neighbors of subregion w in

subnetwork i), the optimization problem can be expressed as

min
giw (kl)

Jw = Jiw,lower

s.t. n
iw
u,d(kl + p+1) = fiw(n

iw
u,d(kl + p),giw

d (kl + p),

d
iw
u,d(kl + p),zvw(kl + p))

Φ(giw(kl)) = 0

giw,min ≤ giw(kl)≤ giw,max

zvw(kl + p) = yvw(kl + p)

for p = 0, . . . ,Nlower
p −1

for all (u,d) ∈ Liw , for v ∈ Nw

(21)

where yvw(kl + p) and zvw(kl + p) are the interaction variables

between subregions w and v. More specifically, yvw(kl + p)
is the output flow of subregion v and then into subregion

w, and zvw(kl + p) is the input flow of subregion w from v.

Obviously, the interaction traffic flow zvw(kl + p) must be equal

to yvw(kl + p). Therefore, the interactions between subregions

will be guaranteed by the following interaction constraints

ywv(kl + p) = zwv(kl + p) (22)

yvw(kl + p) = zvw(kl + p) (23)

However, since each interaction constraint contains two

variables from different agents, it cannot be added into the

optimization problem of any of the individual agent directly.

Therefore, in order to make sure the satisfaction of interaction

constraints among subregions, the coordination methodology

of multi-agent MPC is developed.

The combined overall control problem of subnetwork i

is formed by the aggregation of the local agents (21) and

the interaction constraints (22)-(23). Due to the interaction

constraints, this problem is not able to be decomposed into

several independent optimization subproblems using only local

information. In order to deal with this problem, the dual

decomposition method (the augmented Lagrangian method)

[28]–[30] is introduced to move the interaction constraints into

the objective function in the form of using the Lagrangian

multipliers and additional quadratic terms. Therefore, the

Lagrangian function of the overall optimization problem can

be written as

Li = ∑
w∈Mi

(
Jw + ∑

v∈Nw

Nlower
p −1

∑
p=0

(
λvw(kl + p)(zvw(kl + p)

− yvw(kl + p))+
c

2
‖zvw(kl + p)− yvw(kl + p)‖2

2

)) (24)

where λvw(kl + p) is the Lagrangian multiplier vector corre-

sponding to the interaction constraint zvw(kl + p) = yvw(kl + p),
and c is a positive constant.

Since the formulation (24) includes the non-separable

quadratic terms, we approximate it with the following equation

by using the approach proposed in [31]:

L̃i = ∑
w∈Mi

(Jw + Jw,inter)

= ∑
w∈Mi

(
Jw + ∑

v∈Nw

Nlower
p −1

∑
p=0

([
λ s

vw(kl + p)
−λ s

wv(kl + p)

]T [
zvw(kl + p)
ywv(kl + p)

]

+
c

2

∥∥∥∥
[

zs−1
wv (kl + p)− ywv(kl + p)

ys−1
vw (kl + p)− zvw(kl + p)

]∥∥∥∥
2

2

))

(25)

where Jw,inter is the cost function associated with the interac-

tion variables. At each iteration s, the variables λ s
vw(kl + p) and

λ s
wv(kl + p) are the Lagrange multipliers for its interaction con-

straints zvw(kl + p) = yvw(kl + p) and zwv(kl + p) = ywv(kl + p)
respectively. Moreover, zs−1

wv (kl + p) and ys−1
vw (kl + p) are the

previous information of the agents of the last iteration s−1.

The approximation of the non-separable quadratic terms

is solved by using the so-called auxiliary problem principle

[32]. Compared with the popular alternating direction method

of multipliers [33], this approach allows agents to address

an approximation of the augmented Lagrangian problem in

a parallel way. In order to reduce the number of optimization

variables of the control problem of each agent, the input traffic

flow of subregion w at every iteration s, i.e. zs
vw(kl + p), is

estimated using the previous information from its neighbors,

e.g. zs
vw(kl + p)= ys−1

vw (kl + p). Therefore, the distributed multi-

agent MPC approach for urban traffic subnetworks at each

control step kl can be described in a flowchart, as shown in

Fig. 5, where es = zs
vw(kl + p)−ys

vw(kl + p) is the error between

the desired traffic flow input zs
vw(kl + p) and the real traffic

flow supply ys
vw(kl + p) from the neighboring subregions, and

ε > 0 is a threshold value.

V. SIMULATION-BASED CASE STUDIES

To evaluate the effectiveness of the proposed two-level

hierarchical MPC method for urban traffic management, we

build a hypothetical urban traffic network to assess the per-

formance of the proposed approach and to compare it with

other existing control approaches, namely fixed-time control,

centralized MPC, and decentralized MPC.

A. Scenarios and set up

The simulated network is shown in Fig. 6. There are 55

nodes including 21 source nodes providing traffic demands

and 34 intersections controlled by traffic signals, and 154

two-way links with different lengths (216-366 m). All the

links have two lanes. The simulation is carried out by us-

ing CORridor SIMulation (CORSIM), C++, and MATLAB.

CORSIM is a microscopic traffic simulation tool for imple-

menting traffic operations. The rolling-horizon optimization

problem is solved in MATLAB, while C++ provides the

interface between CORSIM and MATLAB. Considering that

the optimization problems at both levels are non-linear non-

convex problems because of the nonlinearity of the models,



7

Collect the current 

traffic data

1s  

1

Subproblem 1

    min  
s

L 2

Subproblem 2

    min  
s

L

Subproblem 

    min  
s

w

w

L 

2

Check the termination condition

                 || ||

        Algorithm converge ?

s
 !e

Final

solution

Yes

No

Solve subproblems in parallel

Initial parameters

        , 
s s

 z

1 1

    Update parameters

= , s s s s sc  
! !

! "e z y

Fig. 5. Flowchart of the distributed multi-agent MPC algorithm

i

j

l

Fig. 6. Urban traffic network used for simulation

the function fmincon in the MATLAB optimization toolbox

based on Sequential Quadratic Programming (SQP) is utilized

to calculate the optimal control inputs. Moreover, in order to

avoid the optimization ending up in a local minima, a multi-

start technique is used to search for a global optimal solution.

Given different random initial points, we run the solver for

each one and record the results. The one corresponding to

the lowest objective function value is selected as the optimal

solution and then applied to the traffic signals. With respect

to the selection of the number of initial points, please refer to

[34]. Therefore, five initial points are adopted in the multi-start

SQP approach for the following case studies.

First of all, the entire urban traffic network should be

appropriately divided into several subnetworks. We consider

the partition method proposed by Zhou et al. [26] and divide

the whole network into three subnetworks, as shown in Fig. 6.

In order to implement distributed MPC control at the lower

level, each subnetwork is partitioned into two subregions

with the same size by taking into account the computational

efficiency. Since the shape of the MFD is related to the signal

timing plans, we execute 5 predefined fixed-time plans for

the signalized intersections in each subnetwork. The selec-

tion of these plans is based on the tuning green time ratio

for the intersections, where each plan is predefined for the

undersaturated (2 plans), saturated and oversaturated traffic

situation (2 plans). Therefore, the MFDs under different signal

timing plans for each subnetwork can be obtained, as shown in

Fig. 7(a), (b) and (c), respectively. In this case study, in order

to obtain the relationship in (2), we use a five-order polynomial

function of number of vehicles in each subnetwork to derive

an averaged nonsymmetric unimodal MFD, e.g., qw(ku) =
a ·N5(ku)+ b ·N4(ku)+ c ·N3(ku)+ d ·N2(ku)+ e ·N(ku)+ f ,

where a, b, c, d, e, and f are estimated parameters with unit

/s. From Fig. 7(a), (b) and (c), the parameters for all three

subnetworks are obtained by using the same approximation

method in [16], i.e., ai = 8.1374× 10−17, bi = −6.0171×
10−13, ci = 1.6470×10−9, di =−2.1778×10−6, ei = 0.0014,

fi = −0.0899, a j = 8.6971× 10−18, b j = −1.1286× 10−13,

c j = 5.0639 × 10−10, d j = −1.0573 × 10−6, e j = 0.0011,

f j = −0.0936, al = 9.2148 × 10−19, bl = −4.1038 × 10−14,

cl = 2.8660×10−10, dl =−7.9809×10−7, el = 8.8556×10−4,

fl = −0.0468, Ni,critical = 1300 veh, N j,critical = 1700 veh,

Nl,critical = 1000 veh. Finally, to estimate the relationship

in (4), we calculate the weighted traffic flow qw and the total

outflow D for all three subnetworks based on the traffic data

from CORSIM. The results are shown in Fig. 7(d), (e) and

(f), i.e., κi = 0.08, κ j = 0.07, κl = 0.075.

In this paper, we consider two scenarios with different traffic

demands (i.e. the network input flow rates) for simulation

of the network. The first corresponds to an increasing, high

traffic demand to simulate the oversaturated traffic condition.

The second is to simulate a peak hour situation with an

increasing demand from the beginning of the simulation and

then a decreasing demand towards the end. For simplicity, the

input traffic flow rates of all the source nodes to the network

are assumed to be equal, and the traffic demand variation is

illustrated in Table I. The cycle times of the traffic signals

ccycle are 60 s for all intersections and the offsets between two

adjacent intersections are 0 s during the simulation. These

two parameters are constant in our simulations. The sample

time interval adopted at the upper and lower level is the same

and is equal to the cycle time of signalized intersections, i.e.

Tu = Tl = 60 s. The total simulation time is 5400 s. The control

time interval Tc is 180 s, which corresponds to 3 sample time

intervals. At each intersection, the turning rate βu,d,o for each

direction is 33.33%. The saturation flow rate µu,d is 2000

veh/h per link. The lower and upper bounds of the green

time signals are selected as gmin = 10 s and gmax = 50 s for

all intersections. The prediction horizons are the same for all

the MPC controllers, and for both levels N
upper
p = Nlower

p = 7

(i.e. 21 min). (The choice for the prediction horizon is based

on the analysis in [34]). Moreover, the weighting coefficient

αupper = 10−4 in (7) and the weighting coefficient αlower =
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10−3 in (19) are obtained based on the nominal values of the

main objective function and the penalty or tracking term.

TABLE I
NETWORK INFLOW FOR EACH SOURCE NODE

Simulation time (s)
Traffic demand flow (veh/h)
Scenario 1 Scenario 2

0-900 2000 800
900-1800 2000 1000
1800-2700 2500 1200
2700-3600 2500 1500
3600-4500 3000 1500
4500-5400 3000 1000

In the following we compare four control methods:

1) Fixed-time control method, which is a signal control

plan where the green time split has been predefined for

each intersection. Here, we use the best one of the 5

predefined fixed-time plans, i.e., the cycle times is 60 s

for all intersections, and the green time durations are 30

s and 30 s for the two phases of all the intersections.

2) A single agent using centralized MPC to control the

whole network. In this approach, a large-scale urban

traffic network is controlled by a single centralized

agent without decomposition into several subnetworks.

Moreover, the S model is utilized as the prediction model

of the MPC controller. At each control step, the MPC

optimization problem is formulated by minimizing the

TTS in the network subject to the dynamics of network

over the horizon and the input constraints.

3) Decentralized MPC strategy. The whole urban traffic

network is decomposed into several subnetworks. Each

subnetwork is assigned an MPC controller. However,

there is no communication between one controller and

its neighbors. In other words, when the decentralized

strategy is adopted, each subnetwork controller solves

an independent optimization problem without the infor-

mation (traffic demands) provided by its neighbors and

without the coordination by the upper-level controller.

Therefore, the optimization problem is formulated by

minimizing the objective function TTS in (15) subject

to the local dynamics of subnetwork over the horizon

and the input constraints in (19).

4) Hierarchical control based on the proposed two-level

coordinated MPC approach. This approach involves the

upper-level controller described in Section III and the

lower-level control strategy described in Section IV.C.

In order to compare the results and to evaluate the perfor-

mance of each control approach, we consider four estimation

criteria. TTSeval is the accumulated amount of the total time

spent by all the vehicles inside the traffic network since

the beginning of the simulation, including both the vehicles

running freely on a link and the vehicles slowing down or

waiting in queues

TTSeval =
Kc

∑
k=1

∑
(u,d)∈L

Tc ·nu,d(k) (26)

where Kc is the number of control time steps in the considered

time horizon. Total Delay Time (TDT) [5] is the difference

between the total travel time of all vehicles inside the road

network since the beginning of the simulation and the total

free-flow travel time (i.e., the time needed by the vehicles

traveling at the maximum permitted speed), so the TDT is

actually the total amount of time that the vehicles are delayed:

TDT =
K

∑
k=0

∑
(u,d)∈L

( lu,d

v
average
u,d (k)

−
lu,d

vfree
u,d

)
·nu,d(k) (27)

where lu,d is the length of link (u,d), v
average
u,d (k) is the average

speed of all vehicles in link (u,d) at time step k. It is provided

directly by CORSIM. The weighted average flow has been

defined in (3), which represents the mobility of the traffic

network. The number of vehicles in each subnetwork is also

considered as a criterion.

B. Simulation results

In this section, simulation results are presented to assess the

efficiency for two traffic scenarios of the two-level hierarchical

MPC control approach compared with the other three control

methods. All data collected from CORSIM is used to evaluate

the performance.

The TTSeval and TDT results of entire traffic network for

all control approaches in the two scenarios are shown in

Fig. 8. From Fig. 8(a), we can see that the centralized, the

decentralized and the hierarchical control approaches yield a

significant decrease in the TTSeval compared with fixed-time

control. Before the 20th control step, the traffic network is

not very congested. The difference between the three control

approaches is not obvious. When the traffic situation reaches

the oversaturated condition because of the high traffic demand,

the centralized control exhibits a better performance than the

other two control approaches. The average difference between

decentralized control and centralized control is 3.78% and the

maximal difference is 8.52%. The average difference between

hierarchical control and centralized control is 2.46% and

the maximal difference is 4.8%. Although the optimization

objective of decentralized control is TTS, the MPC controllers

only consider the local information in their own subnetwork

without communication with their neighbors. This will not

result in the global optimum for the whole network. From

Fig. 8(b), we can see that compared to decentralized control,

the improvement in TDT by using hierarchical control is more

obvious, especially in the oversaturated traffic situation. This

means that hierarchical control is capable of improving the

mobility in the network. At the upper level, hierarchical control

not only considers minimization of the objective function TTS,

but also takes the MFDs of the subnetworks into account to

prevent the traffic situation from falling into the oversaturated

condition. According to the guidance from the upper level,

the lower-level MPC controllers are able to coordinate the

traffic flows through communication, and then achieve a better

performance for the whole network. The results shown in

Fig. 8(c) and 8(d) under Scenario 2 also confirm the efficiency

of our proposed method and the conclusions. The detailed

comparisons are shown in Table II. The results illustrate

that hierarchical control can approximate the performance of
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Fig. 7. Characteristics of MFDs for the different subnetworks. (a), (b) and (c) Relationship between the number of vehicles and the weighted average flow.
(d), (e) and (f) Relationship between the weighted average flow and the total output.
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Fig. 8. TTSeval and TDT comparison for all control approaches in the two
scenarios. (a) and (b) Scenario 1. (c) and (d) Scenario 2.

centralized control, and is able to reduce the TTS and TDT

more than decentralized control.

In order to investigate that hierarchical MPC control is able

to balance the traffic demand and to coordinate the traffic flow,

we further compare the weighted average flow and the number

of vehicles in each subnetwork by different control strategies

under the two scenarios. The evolution of the weighted average

flow over time corresponding to three subnetworks i, j and l

in Scenario 1 is shown in Fig. 9(a), 9(b) and 9(c), respectively.

These figures demonstrate that hierarchical MPC control and

centralized MPC control are both able to keep a relative higher

traffic flow in each subnetwork compared with the other two

control schemes in an increasing traffic demand situation. This

can be inferred from the evolution of the number of vehicles

in each subnetwork shown in Fig. 9(d), 9(e) and 9(f). From

Fig. 9(d), we can see that fixed-time control and decentralized

control lead the number of vehicles in subnetwork i to the

jam state, and that hierarchical control keeps the number of

vehicles near the critical point Ni,critical = 1300 veh, preventing

the traffic situation from achieving the oversaturated situation,

and that centralized control performs a little worse in this

aspect than hierarchical control. The same result also appears

in Fig. 9(f). The average differences between the number

of vehicles and the critical point under hierarchical control

are less than the differences under centralized control for

subnetwork i and l. However, Fig. 9(e) shows that the number

of vehicles in subnetwork j under hierarchical control is larger

than the number of vehicles under centralized control, i.e.

hierarchical control performs worse than centralized control
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Fig. 9. Comparison for two performance indices of the four control strategies for three subnetworks in Scenario 1. (a), (b) and (c) Weighted average flow.
(d), (e) and (f) Number of vehicles.

TABLE II
TTSeval AND TDT FOR ALL CONTROL APPROACHES IN THE TWO SCENARIOS

Control approach
S1 S2

TTSeval (veh·s) Improve (%) TDT (veh·s) Improve (%) TTSeval (veh·s) Improve (%) TDT (veh·s) Improve (%)

Fixed-time 2.80×107 - 11.2×105 - 1.53×107 - 4.93×105 -

Centralized 2.26×107 19.3 6.81×105 39.2 1.14×107 25.5 2.45×105 50.3

Decentralized 2.46×107 12.1 8.31×105 25.8 1.26×107 17.6 3.04×105 38.3

Hierarchical 2.36×107 15.7 6.87×105 38.7 1.18×107 22.9 2.62×105 46.9

in subnetwork j. This can be explained by the fact that the

MFD of subnetwork j has a wide saturation area as shown

in Fig. 7(b), and also because of the upper-level controller

balancing the traffic demand among three subnetworks, which

makes a compromise for the improvement of performance

of the whole network. In the absence of network-wide real-

time optimization, fixed-time control leads to an oversaturated

traffic situation, and even to a gridlock situation. Without

communication and coordination, decentralized control takes

the risk of increasing the congestion degree of the whole

network. Centralized control can achieve the best performance

of the whole system, however, hierarchical control not only can

approximate the performance of centralized control, but also

is capable of balancing the distribution of number of vehicles

of road network in an increasing traffic demand situation.

Furthermore, we also compare the weighted average flow

and the number of vehicles in each subnetwork under Scenario

2, i.e., the peak hour simulation. From Fig. 10(a), 10(b) and

10(c), we can see that all three MPC schemes, i.e. centralized

control, decentralized control and hierarchical control, yield a

high average traffic flow in three subnetworks, which is better

than fixed-time control. The difference between subnetwork

i and l is not obvious. In subnetwork j, hierarchical control

yields a better performance than decentralized control, and a

worse one than centralized control. The reason is that under

these three control schemes, the traffic situation does not

exceed the saturated situation too much, and along with the

decrease of the traffic demand, the traffic situation becomes

better. This can be verified in Fig. 10(d), 10(e) and 10(f). The

number of vehicles in subnetwork i under hierarchical control

is larger than under centralized control, and is less than under

decentralized control, as shown in Fig. 10(d). It decreases after

the 25th control step because of the decreasing traffic demand,

and it then returns to the neighborhood of the critical point. In

Fig. 10(e), hierarchical control keeps the number of vehicles

in subnetwork j at a comparatively stable state after the traffic

condition reaches the peak hour situation, while decentralized

control leads to the congestion state with the increasing of

number of vehicles and centralized control improves the traffic

situation. In subnetwork l, hierarchical control and decentral-

ized control both approach the performance of centralized

control, as shown in Fig. 10(f). Moreover, for subnetwork i

the average difference between the number of vehicles and

the critical point under hierarchical control is 132 veh and
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Fig. 10. Comparison for two performance indices of the four control strategies for three subnetworks in Scenario 2. (a), (b) and (c) Weighted average flow.
(d), (e) and (f) Number of vehicles.

the number of vehicles under centralized control does not

exceed the critical point, for subnetwork j, both the number

of vehicles under hierarchical and centralized control do not

exceed the critical point, and for subnetwork l, the average

difference under hierarchical control is less than under central-

ized control. It seems that centralized control achieves a better

performance than hierarchical control. However, note that in

subnetwork j the number of vehicles decreases quickly with

the decrease of traffic demand, while the traffic states are still

in a relatively congested situation in the other subnetworks, es-

pecially in subnetwork l. In contrast, hierarchical control keeps

the traffic state in each subnetwork in an appropriate situation,

and along with the decrease of traffic demand from source

nodes, the traffic states in the three subnetworks return from

the congested situation synchronously. These results illustrate

the fact that the coordination within hierarchical control plays

an important role in balancing the traffic demands among

subnetworks. It keeps the traffic state in each subnetwork at an

appropriate situation. Therefore, the rate of change of number

of vehicles at the end of the simulation is more balanced for

hierarchical than centralized control.

All optimization problems are solved in a MATLAB 7.11

environment on a computer with a 3.20-GHz Intel Core (TM)

I5 processor and 4-Gb RAM. In our case studies, there are two

control variables at each signalized intersections. Moreover,

the test traffic network has 34 signalized intersections and 154

two-way links, and the prediction horizon is 7. In the optimiza-

tion problem of centralized control, there are 2×34×7 = 476

control variables and 154 × 7 + 34 × 7 + 2 × 34 × 7 = 1792

constraints. In the decentralized MPC strategy, the whole

network is decomposed into three subnetworks. The largest

subnetwork contains 12 signalized intersections and 55 links.

Therefore, there are 2× 12× 7 = 168 control variables and

55 × 7 + 12 × 7 + 2 × 12 × 7 = 637 constraints in the cor-

responding optimization problem. In the hierarchical MPC

strategy, each subnetwork is further decomposed into two sub-

regions for the application of the multi-agent MPC approach.

The largest subregion contains 6 signalized intersections and

29 links. There are 2 × 6 × 7 = 84 control variables and

29×7+6×7+2×6×7 = 329 constraints in the lower-level

optimization problem of hierarchical control. Moreover, at the

upper level, there are only 6× 7 = 42 control variables and

6×7+6×7 = 84 constraints. In the case studies, we assume

that there is no communication delays between the upper level

and the lower level, and between the agents at the lower level.

Since the scale of the optimization problem in hierarchical

control is decreased, the CPU time for obtaining the optimal

solutions is much less than that of the other approaches.

The average and maximum CPU time spent for one run by

the three control approaches is shown in Table III, which

illustrates that the computational complexity of hierarchical

control is significantly reduced. The average (maximum) CPU

time represents the average (maximum) computation time used

for solving the on-line optimization problems at each control

time step. It should be noted that the SQP algorithm has been

applied 5 times in each control step. Since the simulations

are carried out on a single computer in our case studies, the

SQP optimizations are run one by one to obtain the final

solution. Therefore, the actual computation time of the multi-

start technique of each control approach is 5 times of the

average CPU time.
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TABLE III
COMPARISON OF CPU TIME SPENT FOR THE THREE CONTROL STRATEGIES

Control strategy Average CPU time (s) Max CPU time (s)

Centralized control 797.2 1055.3
Decentralized control 149.6 193.0
Hierarchical control 80.7 105.8

VI. CONCLUSIONS AND FUTURE WORK

Network-wide traffic control plays an important role in

mitigating and avoiding congestion in urban traffic networks.

In this paper, based on a partition of the network, we have

proposed a two-level hierarchical control scheme, the traffic

demand balancing controller at the upper level together with

the signal optimization controllers at the lower level to control

a large-scale urban traffic network. The optimization problem

at each level is formulated with a different traffic model

and a different objective function. Through communication,

the controllers work collaboratively to regulate the traffic

flow and to guarantee a better performance of the whole

network. Moreover, in order to reduce the computation time,

a parallel distributed control scheme is introduced at the

lower level to coordinate the subregion controllers, making

them reach an agreement on their control decisions through

negotiations. All optimization problems are embedded in an

MPC scheme for real-time implementation. The simulation

results under two different traffic demand scenarios show

that the proposed hierarchical control approach can increase

the weighted average traffic flow by keeping the number of

vehicles approaching to the critical point of the MFD, and

yield an efficient performance that is comparatively close to

the results of centralized MPC. The results of the case studies

illustrate the importance of the coordinating traffic demands

in our approach compared with the decentralized control.

Furthermore, it should be noted that the computation times

required for solving the optimization problems in our approach

are much lower than the other two MPC control methods.

In the future, we will explore how to increase the com-

putation speed for solving the non-linear non-convex MPC

optimization problem. Possible approaches to reduce the com-

putation time, such as fast MPC [4], parallel computing

and parameterized MPC [35], will also be investigated to

further improve the computational efficiency and to make the

proposed approach applicable in practice. In addition, other

traffic performance objectives such as the L2-norm and the

L∞-norm [36] could be taken into account in the optimization

problem to make the traffic network more homogeneous. Sev-

eral formal guarantees will also be investigated in the future.

There are two ways to guarantee the recursive feasibility of

the MPC controller. The first is to develop a robust MPC

control approach, and the second is to introduce additional

positive variables, such as soft constraints in optimization

problems. The stability could be guaranteed by designing the

corresponding Lyapunov function. In [37], they pave the way

for the investigation of stability of non-convex optimization

problem using PWA-based method.
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