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Abstract

This paper investigates cooperative synchromodal freight transport planning among multiple in-

termodal freight transport operators in different and interconnected service networks. The coop-

erative planning is formulated as a cooperative model predictive container flow control problem,

and solved with three Distributed Model Predictive Flow Control (DMPFC) approaches: the

parallel and serial Augmented Lagrangian Relaxation (ALR) based DMPFC approaches, and

the Alternating Direction Method of Multipliers (ADMM) based DMPFC approach. The sim-

ulation results show that the serial ALR-based DMPFC approach requires the least iterations

and information exchanges while the ADMM-based DMPFC approach takes the least amount of

actual computation time.

Keywords: Cooperative synchromodal freight transport, distributed model predictive control,

alternating direction method of multipliers

1. Introduction

Hinterland haulage among deep-sea terminals and inland terminals has become an important

component in global logistics systems. Intermodal freight transport holds the promise of outper-

forming single-mode truck freight transport in port hinterland container transport in the aspects of

cost efficiency, sustainability, robustness against planning uncertainties e.g., traffic congestion on

freeways (Macharis and Bontekoning, 2004; Craig et al., 2013; SteadieSeifi et al., 2014). How-

ever, the integrated use of different modalities in intermodal freight transport also brings many

planning challenges, among which the collaboration and cooperation among different stakehold-

ers are central in practice (Macharis and Bontekoning, 2004; SteadieSeifi et al., 2014; van der

Horst and de Langen, 2008; van der Horst and van der Lugt, 2011). These stakeholders include

shippers, intermodal freight forwarders, intermodal freight transport operators, terminal opera-

tors, and port authorities. Therefore, cooperative planning among multiple intermodal freight

transport operators is starting to receive more and more attention from both transport operation

practitioners and academic researchers. To perform cooperative planning, efficient information
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and communication systems should be established and used in an integrated way for tracking

vehicles and containers, and exchanging planning information among transport operators.

Synchromodal freight transport moves one step forward from intermodal freight transport

by adopting the mode-free booking concept and allowing timely switching among available

modalities according to the real-time information of the freight transport process (Groen et al.,

2011; Europe Container Terminal, 2011; van Riessen et al., 2015a,b). In the mode-free book-

ing, shippers make transport orders without specifying which mode of transport is going to be

used and give transport operators the freedom to select the most suitable modalities on the ba-

sis of the up-to-date planning information. In this paper, we investigate cooperative planning

among multiple intermodal freight transport operators that provide synchromodal freight trans-

port services among deep-sea terminals and inland terminals in hinterland haulage in different

but interconnected service networks. The service network of an intermodal freight transport op-

erator consists of a set of terminals and a set of transport services connecting these terminals.

This service network is pre-designed by the operator through solving its service network design

problem (Crainic, 2000). These transport services are provided by the operator with its own or

hired vehicles (e.g., trucks, trains, and barges), and are defined by routes (i.e., origin terminals,

intermediate terminals, destination terminals), modalities (i.e., one modality or a combination

of multiple modalities), transport times and costs, capacities, frequencies, and schedules. The

current paper defines two service networks as non-overlapping when there is no vehicle sharing

between any two transport services from these two service networks. Each operator has its own

service network, and cooperates with the other operators in accommodating certain transport or-

ders. The current paper considers that an operator is responsible for managing container flow in

its own service network. Because this operator has or hires different types of vehicle (e.g., trucks,

trains, and barges) that perform transport services in its own service network. These operators

are either the customers or the service providers of other stakeholders (e.g., shippers, terminal

operators) in the transport process.

The cooperative planning is done at the tactical flow level by all operators. The cooperation

goal is to serve transport demands at the lowest overall freight delivery cost. Each operator aims

to minimize its own container delivery cost while being willing to consider the interests of other

operators in its planning process, although each operator holds independent planning authority

in its own service network. The trade-off between the cooperation goal of all operators and the

goal of each individual operator is obtained by negotiating with other operators about transport

plans. For an operator, the transport plan consists of its route choices and flow assignments in

the container delivery process. Operators cooperate to reach an agreement on the volumes of

container flows that each operator will hand over to other operators during each planning inter-

val. It is possible that some operators might sacrifice for reducing the freight delivery cost of

other operators in order to achieve the cooperation goal. Therefore, proper profit distribution

mechanisms should be designed and agreed upon to compensate for the sacrifice made by some

operators. A feasible cooperation needs to guarantee a win-win situation and fairness among

operators. Detailed discussions on the issue of fairness in cooperative planning in supply chain

management are presented in Stadtler (2009). One way to obtain a feasible cooperation is to first

find cooperative planning solutions to minimize the total operating cost, and then to distribute the

profit among all operators in such a way that a fair distribution is reached. The work presented

in this paper focuses on the important step of finding the cooperative transport plans that can

minimize the total freight delivery cost (i.e., the total operating cost) of all operators. Calcula-

tion of side-payments, as part of a future fairness approach, could be based on the differences

between the obtained cooperative planning solutions and the corresponding freight delivery costs
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of operators in the cooperative planning and the planning solutions and the corresponding freight

delivery costs of operators in a situation where each operators performs its own transport plan-

ning without cooperation. This paper considers that each operator adopts an Model Predictive

Control (MPC) strategy for the flow planning problem within an overall multi-level freight trans-

port planning framework. This multi-level planning framework consists of the flow planning

level and the container planning level, and integrates the information from different planning

level with appropriate mapping approaches. We refer to our earlier work Li et al. (2015) for

a detailed explanation of the multi-level freight planning framework. Therefore, the resulting

cooperative planning problem can be abstracted as a Distributed Model Predictive Flow Control

(DMPFC) problem.

Distributed model predictive control (DMPC) is a general control methodology that can cope

with control problems arising in large-scale systems due to organizational couplings among dif-

ferent parties involved in a common task, limited measurement ability and control access of

different parties, and different, possibly conflicting, objectives of different parties, etc. The pa-

pers and books Camponogara et al. (2002); Scattolini (2009); Christofides et al. (2013); Maestre

and Negenborn (2014) review the basic concept of, the research results in, and future research

directions on DMPC. DMPC approaches have been investigated in various controlled systems

and applications (de Oliveira and Camponogara, 2010; Ghods et al., 2010; Frejo and Cama-

cho, 2012; Zhou et al., 2015; De Souza et al., 2015; Negenborn et al., 2008; Mc Namara et al.,

2013; del Real et al., 2014; Negenborn et al., 2009; Leirens et al., 2010; Maestre et al., 2009).

The Augmented Lagrangian Relaxation based Distributed Model Predictive Control (ALR-based

DMPC) approaches (Negenborn et al., 2008) and the Alternating Direction Method of Multipli-

ers based Distributed Model Predictive Control (ADMM-based DMPC) approaches have been

successively developed based on the method of multipliers and the Alternating Direction Method

of Multipliers (ADMM) algorithm (Boyd and Vandenberghe, 2004; Boyd et al., 2010; Bertsekas,

1982). The ALR-based DMPC approaches have been used to successfully solve distributed con-

trol problems in various applications (Negenborn et al., 2008; Mc Namara et al., 2013; del Real

et al., 2014; Negenborn et al., 2009; Leirens et al., 2010; Alvarado et al., 2011; Zhou et al., 2015).

The ADMM-based DMPC approach is a counterpart of the ALR-based DMPC approaches and

has effectively been used to determine cooperative control actions for multiple MPC controllers

in many applications (Kögel and Findeisen, 2012; Farokhi et al., 2014; Summers and Lygeros,

2012; Costa et al., 2014; Mota et al., 2012; Spudić et al., 2015). To the best knowledge of the au-

thor, no work has been done in literature on applying ALR-based DMPC approaches or ADMM-

based DMPC approaches for cooperative synchromodal freight transport planning. In this paper,

we propose to use these two classes of DMPC approaches for cooperative synchromodal freight

transport planning.

The current paper is an extended version of the authors’ earlier papers Li et al. (2014, 2015).

The contributions of the current paper are as follows: 1) besides the parallel ALR-based DMPC

approach we also investigates the serial ALR-based DMPC approach and the ADMM-based

DMPC approach for solving cooperative synchromodal freight transport planning problems; 2)

more importantly, we explain the basic concept of three DMPFC approaches, give their algorithm

formulations, analyze their convergence properties, and discuss their practical implementation.

In addition, we illustrate graphically the cooperation process of three DMPFC approaches, and

evaluate their performance by conducting numerical simulations with a linear network model in

an intermodal freight transport network connecting Rotterdam to Antwerp and Frankfurt.

The structure of this paper is as follows. Section 2 briefly reviews the literature on service

network design problems, ALR-based DMPC approaches, ADMM-based DMPC approaches,

3



and the recent work on developing DMPC approaches in intermodal freight transport. Section

3 contains a detailed explanation of the considered cooperative synchromodal freight transport

planning problem and gives the Cooperative Model Predictive Flow Control (CMPFC) formu-

lation. Section 4 presents three DMPFC approaches, discusses their implementation issues, and

define their performance indicators. A comparison of the three DMPFC approaches is done by

numerical simulation experiments in Section 5. Section 6 concludes the paper with some remarks

and directions for future research.

2. Problem description and literature review on DMPC approaches

This section introduces first the Service Network Design (SND) problem in literature, and

describes its similarities and differences between the work presented in the current paper. Next,

the literature on DMPC approaches based on the ALR method and based on the ADMM algo-

rithm is reviewed in Sections 2.2 and 2.3, respectively. Meanwhile, recent works on applying

DMPC approaches in intermodal freight transport are also discussed in the end of this section.

2.1. Problem description

Planning models for freight transport should be formulated to address specific planning prob-

lems of specific stakeholders at specific decision making levels, i.e., strategic level, tactical level,

and operational level (Crainic and Laporte, 1997). We refer to the review papers Crainic and

Laporte (1997); Craig et al. (2013); Macharis and Bontekoning (2004); SteadieSeifi et al. (2014)

and references therein for a detailed review of the main problems, planning models, and solution

methods at each level of the freight transport. The cooperative planning problem considered in

the current paper is built upon the operations research literature on the SND problems. This sec-

tion reviews briefly the literature on the SND models, and explain the similarities and differences

between the work presented in the current paper and the SND problems.

The SND problems generally involve the search for optimal decisions on the selection and

scheduling of services, the specification of terminal operators, the routing of freight, and the

repositioning of vehicles in freight transportation (Crainic, 2000; Armacost et al., 2002; Ped-

ersen et al., 2009; Lium et al., 2009; Bai et al., 2012). SND models typically consist of both

continuous variables and integer/binary variables. The continuous variables are used to represent

the commodity flows in the network, while the integer/binary variables are typically used for

determining whether to select a service or not (SteadieSeifi et al., 2014). SND models can be

categorized into arc-based models and path-based models depending on whether the variables

are used for representing flows on arcs or paths. SND models usually lead to mixed-integer

network optimization problems, for which no exact and efficient solution methods are available,

except for some special variants (Crainic, 2000). Many approaches have been developed to ob-

tain tractable solutions to the SND problems for large-scale transport networks, e.g., deploying

composite variable formulations of the SND problems (Armacost et al., 2002), using tabu search

metaheuristics (Pedersen et al., 2009), and tabu assisted guided local search approaches (Bai

et al., 2012). Moreover, recent research has also investigated the issue of stochasticity in the

SND problems (Lium et al., 2009; Bai et al., 2012). In Lium et al. (2009), a stochastic service

network design formulation has been used to take into account the stochasticity in the demand in

service network design. The papers Bock (2010); Goel (2010) proposed replanning strategies to

address the issue of uncertain and dynamically changing situations in transport networks. Fol-

lowing the same line of reasoning, a similar replanning strategy has also been used to solve the

SND problems in an uncertain environment (Bai et al., 2012).
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The current paper considers cooperative synchromodal freight transport planning among

multiple transport operators, and proposes DMPFC approaches for container flow control in

pre-designed service networks under dynamic transport demands and dynamic traffic conditions

in the network. We clarify the similarities and differences between the work presented in the

current paper and the SND problems reviewed above as follows. On the one hand, a similarity is

that the model predictive container flow control approach adopted by each operator in the current

paper shares the same line of reasoning for coping with uncertainties as the approaches used in

Bock (2010); Goel (2010); Bai et al. (2012). On the other hand, the main difference is that the

cooperative synchromodal freight transport problem and the network models used in this paper

require the input of or the availability of pre-determined service networks for all operators.

2.2. ALR-based DMPC approaches

The augmented Lagrangian relaxation method gains its name from employing two methods

(i.e., auxiliary problem principle, and block coordinate descent) to decouple the quadratic terms

in the augmented Lagrangian when the method of multipliers is directly applied to the origi-

nal optimization problem with interconnecting constraints. These two methods will lead to two

distributed optimization algorithms and consequently two ALR-based DMPC approaches, i.e.,

the parallel ALR-based DMPC approach and the serial ALR-based DMPC approach (Bertsekas,

1982; Royo, 2001; Negenborn et al., 2008). The paper Negenborn et al. (2008) gives a detailed

explanation on these two DMPC approaches and compares their control performance on inter-

connected linear subsystems with an application to load-frequency control in a power network.

The parallel and serial ALR-based DMPC approaches have also been proposed and applied

for frequency control in a multiple high-voltage-direct-current link power network (Mc Namara

et al., 2013), power flow management of a mixed energy network that integrates renewable en-

ergy sources and storage (del Real et al., 2014), reference tracking for water levels in irrigation

canals (Negenborn et al., 2009), controlling the loss coefficient of valves and pressure injection

of pumps in urban water supply networks (Leirens et al., 2010), regulating the pneumatic valves

in a three-tank benchmark (Alvarado et al., 2011), signal split control in large-scale urban traffic

networks (Zhou et al., 2015), and container flow assignment in intermodal freight transport (Li

et al., 2014). Most of the applications are for interconnected linear systems (Negenborn et al.,

2008; Mc Namara et al., 2013; del Real et al., 2014; Negenborn et al., 2009; Leirens et al., 2010;

Alvarado et al., 2011), while the papers Li et al. (2014) and Zhou et al. (2015) consider transport

networks with nonlinear and non-convex dynamics.

2.3. ADMM-based DMPC approaches

The alternating direction method of multipliers algorithm aims to combine the efficient con-

vergence property of the method of multipliers and the decomposability of the dual ascent

method. It was originally introduced in Glowinski and Marroco (1975); Gabay and Mercier

(1976). The paper Boyd et al. (2010) presents a recent review on applying the ADMM algorithm

for distributed optimization and statistical machine learning problems. The ADMM algorithm

and the method of multipliers share the same primal-variable-minimization and Lagrangian-

multiplier-update structure in their iteration processes and both use the penalty parameter as the

step size at the Lagrangian multiplier update steps. These two algorithms are different in the

sense that the ADMM algorithm minimizes primal variables in an alternating fashion, while the

method of multipliers minimizes them at the same time. Actually, the ADMM algorithm can be
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interpreted as a special case of the method of multipliers where the primal variables are not min-

imized jointly, but in a single Gauss-Seidel procedure (Boyd et al., 2010; Summers and Lygeros,

2012).

Recently, some research works have been focused on developing DMPC strategies for a net-

work of coupled subsystems based on the ADMM algorithm. The papers Kögel and Findeisen

(2012); Farokhi et al. (2014); Summers and Lygeros (2012); Costa et al. (2014); Mota et al.

(2012) consider linear systems while the papers Farokhi et al. (2014); Spudić et al. (2015) inves-

tigate nonlinear systems. The applications of the ADMM-based DMPC strategies cover various

areas, e.g., a three tank system (Kögel and Findeisen, 2012), a formation acquisition problem of

multiple nonholonomic vehicles (Farokhi et al., 2014), TCP/IP congestion control (Mota et al.,

2012), distributed control of a water delivery canal (Costa et al., 2014), and wind farm (Spudić

et al., 2015).

To the authors’ best knowledge, there is not yet any work reported in the literature on apply-

ing the ALR-based DMPC approaches and the ADMM approach for cooperative synchromodal

freight transport planning.

2.4. DMPC for intermodal freight transport

Recently, research efforts in intermodal freight transport have been undertaken for developing

hierarchical MPC schemes for intermodal container terminal operation (Nabais et al., 2013b,a),

a cooperative MPC scheme for optimizing freight transport on multimodal corridors (Di Feb-

braro et al., 2013), and an DMPC approach for cooperative planning in intermodal container

flow control (Li et al., 2014). The paper Nabais et al. (2013b) proposed to decompose the con-

tainer terminal system into smaller subsystems, each of which is related to a transport connection

available at the terminal. An MPC controller was adopted for the container flow assignment in

each subsystem. A central coordinator was introduced to coordinate the use of limited handling

resources at the terminal by all MPC controllers, and therefore a hierarchical MPC framework

was established for optimizing terminal operations. Similarly, a multi-agent MPC system was

also proposed to generate cooperative relations among intermodal terminals for using transport

capacity in a seaport (Nabais et al., 2013a). The paper Di Febbraro et al. (2013) decomposed

the overall freight transport planning problem on multimodal corridors into terminal operations

at network nodes and transport operations on network links, each of which solves its own op-

timization problem with a particular planning goal and constraints. These operations interact

two-by-two based on a cooperative receding horizon control scheme that uses Lagrangian relax-

ation for minimizing lateness of delivery of individual containers to end users.

Meanwhile, a multi-agent cooperative intermodal container transport planning approach for

multiple transport operators was proposed using a parallel implementation of the DMPC ap-

proach based on augmented Lagrangian relaxation (Li et al., 2014). The differences between the

paper Li et al. (2014) and the paper Di Febbraro et al. (2013) lie in the reasoning and the way

that the intermodal freight transport network is partitioned. Instead of the node-link partition

and the Lagrangian formulation of the cooperative planning problem used in Di Febbraro et al.

(2013), the paper Li et al. (2014) considers that an intermodal freight transport network is parti-

tioned into a group of non-overlapping subnetworks due to the involvement of multiple operators

in the whole delivery process. Moreover, the paper Li et al. (2014) adopts the augmented La-

grangian formulation of the cooperative planning problem instead of the Lagrangian formulation

to overcome strict requirements on convexity or finiteness of the objective function.

However, the paper Li et al. (2014) only investigates the parallel ALR-based DMPC approach

and a simple network model. Therefore, the current paper will investigate and compare the
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performance of two ALR-based DMPC approaches, and the ADMM-based DMPC approach in

cooperative synchromodal container flow control.

3. Cooperative synchromodal freight transport planning

This section explains our considered cooperative synchromodal freight transport planning

problem. Section 3.1 first introduces basic settings and main assumptions in cooperative plan-

ning. After introducing interconnecting variables and interconnecting constraints in Section 3.2,

Section 3.3 formulates cooperative synchromodal freight transport planning as an CMPFC prob-

lem.

3.1. Cooperative planning setting and main assumptions

Cooperative transport planning happens among a group of Nsub operators in an intermodal

freight transport network G (V ,E ,M ). The network G (V ,E ,M ) is an integration of a group of

non-overlapping subnetworks Gn(Vn,En,Mn),n = 1, . . . ,Nsub, i.e., V = ∪
Nsub
n=1Vn, E = ∪

Nsub
n=1En,

M = ∪
Nsub
n=1Mn, Vn ∩Vm = ∅, En ∩Em = ∅, n ∈ {1, . . . ,Nsub}, m ∈ {1, . . . ,Nsub}, n , m. Three

sets Vn, En, and Mn represent the set of all nodes in the network of operator n, the set of all

links in the network of operator n, and the set of all modalities (e.g., trucks, trains, and barges)

and modality changes (e.g., from trucks to trains) in the network of n, respectively. The partition

of the overall network is determined during the establishment of the cooperation among opera-

tors, and is assumed to be fixed during the cooperative planning. Figure 1 presents a cooperative

synchromodal freight transport setting among three operators. Each of these three operators

control container flows in a subnetwork indicated by dash-dotted black ellipses. A link connect-

ing two subnetworks is an interconnecting link, e.g., the railway link from node 4 to node 5 in

Figure 1. This railway link has two functionalities, an incoming interconnecting link for subnet-

work/operator 1, and an outgoing interconnecting link for subnetwork/operator 2. This railway

link is assumed to belong to subnetwork 1, from which it starts. The set of incoming intercon-

necting links of subnetwork n and that of outgoing interconnecting links are denoted as E in
n and

E out
n . For any two subnetworks, a subnetwork is considered as one neighboring subnetwork of

the other subnetwork if there is at least one interconnecting link from this subnetwork to the other

subnetwork. The set of all neighboring subnetworks of subnetwork n is denoted as N nei
n .

Cooperative transport planning considers certain transport demands in the whole network,

and their origin and destination pairs and their volumes for time interval k are given as the set

Ood ⊆ V ×V , and do,d(k),(o,d) ∈ Ood. Operator n provides transport services and determines

container transport plans in subnetwork n. In cooperative planning, operator n plans intermodal

freight transport in subnetwork n by solving an optimal container flow control problem with the

objective of minimizing its own total delivery cost,

min
xn,un,yn

Jn

(

xn,un,yn,vn

)

(1)

and is subject to the dynamics and planning constraints of subnetwork n:

xn(k+1) = f1,n

(

xn(k),un(k),dn(k),vn(k)
)

, (2)

yn(k+1) = f2,n

(

xn(k+1),un(k),dn(k),vn(k)
)

, (3)

gn

(

xn(k+1),yn(k+1),un(k),dn(k),vn(k)
)

≤ 0, (4)
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Figure 1: A cooperative synchromodal freight transport planning setting for three operators. The solid black arcs, the

dashed red arcs, and the dotted blue arcs indicate freeway links, railway links, and inland waterway links in the network,

respectively. For simplicity, the modality change is not shown at intermodal terminals in this figure.

where xn(k), yn(k), dn(k), vn(k), and un(k) are subnetwork states, subnetwork outputs, distur-

bances, and the remaining variables that influence the dynamics of subnetwork n and subse-

quently the container flow control actions of operator n for time interval k, and xn, yn, un, vn

include xn(k), yn(k), un(k), vn(k) for the whole planning period, respectively. The disturbances

include the volumes of container flows entering each node from the outside of the network and

the traffic density on freeway links. The objective function (1), equations (2)–(3), and constraints

(4) are derived from a linear discrete-time intermodal freight transport network model developed

by the authors in Li et al. (2015). The objective function (1) consists of the total transport cost,

the cost penalty on unfinished transport demands, and the equivalent monetary costs of the total

transport time and the time penalty on unfinished transport demands. These equivalent monetary

costs are calculated with the conversion factor or the value of time. The current paper considers

aggregated container flows at tactical planning level, and is therefore essentially not possible to

directly take into account the due time requirement of each individual container in the network

model. The inclusion of these monetary costs in the objective function enables operators to take

into account the due time requirements of containers in transport planning in an indirect way.

The cost penalty and the time penalty on unfinished transport demands are calculated as the

multiplications of the volumes of containers that have not reached their destinations at the end

of the planning period with the typically transport time and the typically transport cost between

two nodes or one node and one link in the network, respectively. Equations (2)–(3) capture the

evolution of container flows in links and nodes of the network, and their interactions. Constraints

(4) basically describe physical capacity limitations of the network, and timetables of trains and

barges.

Before presenting the cooperative container flow control formulation, some important as-

sumptions on cooperative planning made in this paper are listed as follows:

- The topology and properties of, transport capacities of and traffic conditions in service

network n are the operator-dependent information, and can only be measured/estimated by
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operator n.

- The typical transport time and the typical transport cost between two nodes or one node

and one link in the whole network are obtained from the historical data or the working

knowledge of operators, and are independent of the particular operators. For instance, if

it typically takes 3 hours for trucks from any operators to travel from Euromax Container

Terminal in the Port of Rotterdam to Venlo in The Netherlands, the typical transport time

between Euromax Container Terminal and Venlo will be taken as 3 hours. Therefore, we

assume the typical transport time and the typical transport cost between two nodes or one

node and one link in the whole network are available for all operators.

- Transport demand information can be estimated with a certain accuracy and is shared by

all operators.

- Operator n only cooperates with its neighboring operators m ∈N nei
n . Operator n imple-

ments the cooperative planning by sharing its container flow information with its neigh-

boring operators and by taking into account the information shared by its neighboring

operators. The decisions of operator n consist of three parts: 1) the volumes of container

flows leaving each node through each of the node’s outgoing links in subnetwork n, 2)

the volumes of container flows leaving subnetwork n through all outgoing interconnecting

links of subnetwork n, and 3) the expected volumes of container flows entering subnet-

work n through all incoming interconnecting links of subnetwork n. For operator n, the

container flow information shared with its neighboring operators in the cooperative plan-

ning are typically the parts 2) and 3) of its decisions. For clarification, operator n could

optimize the volumes of the container flows entering subnetwork n according to its own

planning objective, and share the optimized volumes to its neighboring operators in the

cooperative planning. But the optimized volumes are just something expected by operator

n, and are actually determined by the neighboring operators of operator n. Therefore, we

use the word “expected” to make a clarification.

Depending on a particular cooperative planning approach, the information that is provided

by so-called Lagrange multipliers represents the preferences of operators on whether to

enlarge or reduce the volumes of container flows exchanged among them, and this infor-

mation also needs to be shared among neighboring operators. The Lagrange multipliers

used by the presented DMPFC approaches will be explained in detail in Section 4.

- Transport plans in subnetwork n are determined through a negotiation process among op-

erator n and its neighboring operators by considering both this operator’s objective and the

cooperation goal. But the final transport plans will be made by operator n.

3.2. Interconnecting variables and interconnecting constraints

Incoming and outgoing container flows on interconnecting links create interactions with the

states of neighboring subnetworks and further with the corresponding container flow control de-

cisions made by the operators. These interactions are captured by including input and output

interconnecting variables and interconnecting constraints in the container flow control problem

of each operator. The input interconnecting variables of an operator represent the volumes of con-

tainer flows that enter the subnetwork of this operator through all incoming interconnecting links

of the subnetwork. The output interconnecting variables of an operator represent the volumes of

container flows that leave the subnetwork of this operator through all outgoing interconnecting
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links of the subnetwork. There are two sets of interconnecting variables respectively from two

neighboring operators associated with an interconnecting link between the subnetworks of these

two neighboring operators. For example, there is a railway link from node 4 in the subnetwork

of operator 1 to node 5 in the subnetwork of operator 2 in Figure 1. On the one hand, a set

of input interconnecting variables from operator 2 associated with this railway link represents

the volumes of container flows that operator 2 is expected to receive from operator 1 at node 5

through this railway link. On the other hand, a set of outgoing interconnecting variables from

operator 1 associated with this railway link represents the volumes of container flows that op-

erator 1 hands over to operator 2 at node 5 through this railway link. Operator 1 and operator

2 will negotiate and search for an agreement on the values of these two sets of interconnecting

variables during the cooperative planning process. For all incoming interconnecting links of sub-

network n, input interconnecting variables win,n(k) represent the volumes of container flows that

enter subnetwork n from its neighboring subnetworks for time interval k. Output interconnecting

variables wout,n(k) are introduced in the same way. Specific to the optimal container flow control

problem of operator n, win,n(k) and wout,n(k) are formulated as:

win,n(k) = vn(k), (5)

wout,n(k) = Knyn(k), (6)

where the interconnecting output selection matrix Kn is constructed to select the output container

flow variables on the outgoing interconnecting links of subnetwork n. Interconnecting links

between subnetwork n and subnetwork m, m ∈N nei
n function both as outgoing interconnecting

links of subnetwork n, and as incoming interconnecting links of subnetwork m simultaneously.

Therefore, the following interconnecting constraints should be met:

win,m,n(k) = wout,n,m(k), m ∈N
nei

n (7)

wout,m,n(k) = win,n,m(k), m ∈N
nei

n , (8)

where win,m,n(k) and wout,m,n(k) represent the volumes of container flows that respectively en-

ter or leave subnetwork n from or to its neighboring subnetwork m. The collections of all

win,m,n(k),m ∈N nei
n and all wout,m,n(k),m ∈N nei

n are win,n(k) and wout,n(k), respectively.

3.3. Cooperative model predictive container flow control

In cooperative planning, each operator adopts an MPC strategy for controlling container

flows in its subnetwork. Therefore, cooperative synchromodal freight transport planning can be

formulated as an CMPFC problem and solved with different DMPC approaches. The CMPFC

problem for Nsub operators for time interval k is formulated as follows:

min
x̃1(k+1), ũ1(k), ỹ1(k+1)

...
x̃Nsub

(k+1), ũNsub
(k), ỹNsub

(k+1)

Nsub

∑
n=1

Jn

(

x̃n(k+1), ỹn(k+1), ũn(k), ṽn(k)
)

(9)

for n = 1, . . . ,Nsub, subject to
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xn(k+1+ l) = f1,n

(

xn(k+ l),un(k+ l),dn(k+ l),vn(k+ l)
)

, (10)

yn(k+1+ l) = f2,n

(

xn(k+1+ l),un(k+ l),dn(k+ l),vn(k+ l)
)

, (11)

for l = 0, . . . ,Npred−1,

gn

(

x̃n(k+1), ỹn(k+1), ũn(k), d̃n(k), ṽn(k)
)

≤ 0, (12)

w̃in,n(k) = ṽn(k), (13)

w̃out,n(k) = K̃nỹn(k), (14)

w̃in,m,n(k) = w̃out,n,m(k), ∀m ∈N
nei

n (15)

xn(k) = xn,k, (16)

d̃n(k) = d̃n,k, (17)

where

- The network states, network outputs, and disturbances of subnetwork n and the con-

tainer flow control actions of operator n in a finite prediction horizon Npred are denoted as

x̃n(k+ 1) =
[

xT
n (k+1), · · · ,xT

n (k+Npred)
]T

, ỹn(k+ 1) =
[

yT
n (k+1), · · · ,yT

n (k+Npred)
]T

,

d̃n(k) =
[

dT
n (k), · · · ,d

T
n (k+Npred−1)

]T
, and ũn(k) =

[

uT
n (k), · · · ,u

T
n (k+Npred−1)

]T
, re-

spectively. The remaining variables that influence the dynamics of subnetwork n in the pre-

diction horizon are included in ṽn(k) =
[

vT
n (k), · · · ,v

T
n (k+Npred−1)

]T
. The initial states

of subnetwork n are given by xn,k in (16). The disturbance information of subnetwork n in

the prediction horizon is given by d̃n,k in (17).

- The interconnecting input and output variables of the model predictive container flow

control problem of operator n with respect to that of operator m ∈ N nei
n in the predic-

tion horizon Npred are expressed as w̃in,n(k) =
[

wT
in,n(k), · · · ,w

T
in,n(k+Npred−1)

]T

and

w̃out,n(k) =
[

wT
out,n(k), · · · ,w

T
out,n(k+Npred−1)

]T
. The interconnecting output selection

matrix K̃n is constructed to select the output container flow variables on the interconnect-

ing outgoing links from subnetwork n to all its neighboring subnetworks m ∈N nei
n in the

prediction horizon.

Equations (10)–(11) are the dynamics of subnetwork n. All the planning constraints in the plan-

ning problem of subnetwork n are included in inequalities (12). The equalities (13)–(14) cor-

responds to the definition of interconnecting input and output variables in the model predictive

container flow control problem of operator n. The interconnecting constraints between the plan-

ning problem of operator n and that of subnetwork m ∈ N nei
n are equalities (15). In the co-

operative planning setting considered in this paper, the incoming container flow information of

subnetwork n from neighboring subnetwork m ∈N nei
n , w̃in,m,n(k), is not directly available for

operator n and has to be exchanged with neighboring operators. The value of w̃in,m,n(k) can be

negotiated by operator n with its neighboring operator m through an iterative process, but will

finally be determined by operator m after the negotiation even in case of no feasible agreements

have been reached. This is because that for concerns of information privacy and independent

operations each operator persists to have the independent power in planning freight transport in

its subnetwork when participating in the cooperative planning. Therefore, the CMPFC problem

(9)-(17) has to be solved distributedly.
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4. Distributed model predictive container flow control

In the CMPFC problem (9)–(17), the interconnecting variables from different Model Predic-

tive Flow Control (MPFC) problems exist in the interconnecting constraints (15). Therefore, the

problem (9)–(17) cannot be directly distributed as a group of MPFC problems, each of which

can be solved by an operator independently. Three algorithms are first presented in this paper

to address the issue of interconnecting constraints correspondingly resulting in three DMPFC

approaches for solving the problem (9)–(17). These three algorithms are the parallel ALR al-

gorithm, the serial ALR algorithm, and the ADMM algorithm. Moreover, this section discusses

some implementation issues of and presents performance indicators for these three DMPFC ap-

proaches.

4.1. The ALR-based DMPFC approaches

The ALR-based DMPFC approaches cope with interconnecting constraints (15) by construct-

ing an augmented Lagrangian formulation of the problem (9)–(17) that captures interconnecting

constraints (15) in the control objective function as a combination of linear and quadratic terms:

Nsub

∑
n=1

[

Jn

(

x̃n(k+1), ỹn(k+1), ũn(k), ṽn(k)
)

+

∑
m∈N nei

n

[

λ T
in,m,n(k)(w̃in,m,n(k)− w̃out,n,m(k))+

ρ

2
‖w̃in,m,n(k)− w̃out,n,m(k)‖

2
2

]

]

, (18)

where λ in,m,n(k) and ρ > 0 are the Lagrangian multipliers associated with interconnecting con-

straints (15) and the penalty parameter. Due to the appearance of quadratic terms, the control

objective function (18) cannot be separated over the operators. In order to solve the augmented

Lagrangian formulation of the problem (9)–(13) in a distributed way, the non-separable quadratic

terms have to be decoupled such that the control objective function (18) can be distributed across

operators for a distributed implementation of multiple MPC controllers.

The parallel and serial DMPFC approaches are obtained by using the ALR-based DMPC

approaches reviewed in Section 2.2, which apply the auxiliary problem principle, and block co-

ordinate descent to decouple the quadratic terms in (18), respectively. Algorithm 1 presents

the implementation of the parallel ALR-based DMPFC approach for time interval k. In Al-

gorithm 1 operators are ordered according to a predetermined cooperation and communication

protocol, i.e., operator 1, . . . , operator Nsub. The distinction between the serial ALR-based

DMPFC approach and the parallel ALR-based DMPFC approach mainly lies on the Iteration

process for performing cooperation among operators. Therefore, Algorithm 2 only gives the

Iteration process part of the implementation of the serial ALR-based DMPFC approach. In Al-

gorithms 1 and 2, the initial states of subnetwork n for time interval k are denoted by xn,k. The

disturbance information of subnetwork n in the prediction period
[

kTs,(k+Npred)Ts

]

is denoted

by d̃n,k. The notations ũs
n(k), w̃s

in,m,n(k), w̃s
out,m,n(k), and λ s

in,m,n denote the control actions of

operator n at iteration s for time interval k, the input and output interconnecting variables of the

control problem of operator n related to its neighboring operators m ∈N nei
n , and the associated

Lagrangian multipliers at iteration s for time interval k.

In the current paper, each transport operator uses a linear discrete-time intermodal freight

transport network model. For each ALR-based DMPFC approach, each operator repeatedly

solves Quadratic Programming (QP) optimization problems. The QP optimization problem has

a positive semi-definite quadratic matrix. Therefore, in general the QP optimization problem will
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not have an unique solution. A regularization term is typically included in the objective functions

(19) and (20) to obtain a positive definite quadratic matrix in the QP optimization problem. On

the one hand, adding the regularization term might lead to a slightly increase in the value of

the objective function, but it guarantees one unique solution for the regularized QP optimization

problem in each DMPFC approach considered in this paper. On the other hand, the regularization

term is typically of the form: ρregular ‖x̃(k+1)‖2
2, where ρregular is a small positive number. This

implies that the corresponding flow control actions will be determined not only to minimize the

freight delivery cost, but also to avoid having very large container flows at nodes or in links of the

network. After the inclusion of the regularization term in the objective functions, the solutions

from the DMPFC approaches converge theoretically to the solution resulting from solving the

problem in a centralized way (Bertsekas, 1982; Royo, 2001). Moreover, the above convergence

property holds also for the ADMM-based DMPFC approach presented in Section 4.2.

4.2. The ADMM-based DMPFC approach

The ADMM-based DMPC approach introduces a set of global optimization variables to deal

with the coupling issue of interconnecting constraints (15). The global optimization variables

contain the outgoing container flow information on all interconnecting links among all subnet-

works over the prediction horizon, denoted as z̃(k) =
[

z̃1(k), . . . , z̃Nsub
(k)

]T
.

The cooperative control problem (9)–(17) can then be reformulated as an extended version of

the general form consensus optimization problem by replacing interconnecting constraints (15)

with

w̃in,m,n(k) = Em,nz̃(k), ∀m ∈N
nei

n (21)

w̃out,m,n(k) = En,mz̃(k), ∀m ∈N
nei

n , (22)

where Em,n and En,m are constructed to select the outgoing container flow information on in-

terconnecting outgoing links from subnetwork m to subnetwork n and that from subnetwork n

to subnetwork m, i.e., z̃m,n(k) = Em,nz̃(k) and z̃n,m(k) = En,mz̃(k), respectively. The variables

z̃n(k) =
[

Em1,n, · · · ,Em
|N nei

n |
,n

]T

z̃(k) include operator n’s local copies of some components of

global optimization variables. Operator n updates and stores z̃n(k) during each time interval

such that there is no need for a central coordinator in the implementation. The ADMM-based

DMPFC approach applies the ADMM algorithm to solve the augmented Lagrangian formulation

of the resulting extended version of the problem (9)–(17). The detailed implementation of the

ADMM-based DMPFC approach is presented in Algorithm 3. The notations defined in Section

4.1 for Algorithms 1 and 2 holds also for Algorithm 3. The additional notation z̃s
n(k) represents

operator n’s local copies of some components of global optimization variables at iteration s for

time interval k.

4.3. Implementation issues

For practical implementation of the DMPFC approaches, cooperative planning decisions

should be made during each time interval even if agreement cannot be obtained by the opera-

tors. To achieve this, a fixed maximum computation time Tallowed is allowed for all operators to

achieve agreement on the container flow control actions for each time interval of the cooperative

planning process. The maximum allowed computation time is typically set to be equal to or

smaller than Ts. In the case that the operators cannot reach agreement within a period of length

Tallowed during a particular time interval, the cooperative planning will be done in a master-slave
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Algorithm 1 The parallel ALR-based DMPFC approach using the auxiliary problem principle

for time interval k

Input : xn,k, d̃n(k), maximum allowed computation time Tallowed (h), iteration stopping thresh-

old ε , positive parameters ρ and b, b≥ 2ρ
Initialization : iteration count s← 1, maximum absolute difference among the values of the

Lagrange multipliers at iteration s and its previous iteration εs←∞, current computation time

tn(k)← 0 (h) spent by operators n = 1, · · · ,Nsub for time interval k,

ũs
n(k), w̃s

in,m,n(k), w̃s
out,m,n(k), and Lagrangian multipliers λ s

in,m,n, n = 1, . . . ,Nsub,m ∈N nei
n in

the prediction period
[

kTs,(k+Npred)Ts

)

are initialized as zeros when k = 1, and are initialized

by using a warm start strategy with their values computed during time interval k− 1 when

k > 1.

Iteration process :

while εs ≥ ε and maxn=1,··· ,Nsub
tn(k)≤ Tallowed do

for operators n = 1, . . . ,Nsub, in a parallel fashion do

Compute ũs+1
n (k), w̃s+1

in,m,n(k) and w̃s+1
out,m,n(k) for a local MPFC problem (19) subject to

subnetwork dynamics (10)–(17) as follows:

min
x̃n(k+1), ũn(k), ỹn(k+1)

w̃in,n(k), w̃out,n(k)

Jn

(

x̃n(k+1), ỹn(k+1), ũn(k), ṽn(k)
)

+

∑
m∈N nei

n

[

[

λ s
in,m,n

−λ s
in,n,m

]T [
w̃in,m,n(k)
w̃out,m,n(k)

]

+
ρ

2

w

w

w

w

[

w̃s
in,n,m(k)− w̃out,m,n(k)

w̃s
out,n,m(k)− w̃in,m,n(k)

]w

w

w

w

2

2

+

b−ρ

2

w

w

w

w

[

w̃in,m,n(k)− w̃s
in,m,n(k)

w̃out,m,n(k)− w̃s
out,m,n(k)

]w

w

w

w

2

2

]

(19)

end for

Send w̃s+1
in,m,n(k) and w̃s+1

out,m,n(k) to the neighboring operators m∈N nei
n and receive w̃s+1

in,n,m(k)

and w̃s+1
out,n,m(k) from the neighboring operators correspondingly

Update λ s+1
in,m,n← λ s

in,m,n +ρ
(

w̃s+1
in,m,n(k)− w̃s+1

out,n,m(k)
)

, n = 1, · · · ,Nsub,m ∈N nei
n

Send λ s+1
in,m,n to the neighboring operators m ∈N nei

n and in parallel receive λ s+1
in,n,m from the

neighboring operators

Compute εs+1←

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w



























λ s+1
in,m1,1

−λ s
in,m1,1

...

λ s+1
in,m

|N nei
1
|
,1−λ s

in,m
|N nei

1
|
,1

λ s+1
in,m1,2

−λ s
in,m1,2

...

λ s+1
in,m

|N nei
Nsub

|
,Nsub
−λ s

in,m
|N nei

Nsub
|
,Nsub



























w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

∞
s← s+1

end while

Output : ũs
n(k), w̃s

in,m,n(k), w̃s
out,m,n(k), and λ s

in,m,n, n = 1, · · · ,Nsub,m ∈N nei
n .
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Algorithm 2 The Iteration process part of a serial ALR-based DMPFC approach using block

coordinate descent for time interval k

while εs ≥ ε and ∑
Nsub
n=1 tn(k)≤ Tallowed do

for operators n = 1, . . . ,Nsub, in a serial fashion do

Compute ũs+1
n (k), w̃s+1

in,m,n(k), and w̃s+1
out,m,n(k) for a local MPFC problem (20) subject to

subnetwork dynamics (10)–(17) as follows:

min
x̃n(k+1), ũn(k), ỹn(k+1)

w̃in,n(k), w̃out,n(k)

Jn

(

x̃n(k+1), ỹn(k+1), ũn(k), ṽn(k)
)

+

∑
m∈N nei

n ,m<n

[

[

λ s
in,m,n

−λ s
in,n,m

]T [
w̃in,m,n(k)
w̃out,m,n(k)

]

+
ρ

2

w

w

w

w

[

w̃s+1
in,n,m(k)− w̃out,m,n(k)

w̃s+1
out,n,m(k)− w̃in,m,n(k)

]w

w

w

w

2

2

]

+

∑
m∈N nei

n ,m>n

[

[

λ s
in,m,n

−λ s
in,n,m

]T [
w̃in,m,n(k)
w̃out,m,n(k)

]

+
ρ

2

w

w

w

w

[

w̃s
in,n,m(k)− w̃out,m,n(k)

w̃s
out,n,m(k)− w̃in,m,n(k)

]w

w

w

w

2

2

]

(20)

Send w̃s+1
in,m,n(k) and w̃s+1

out,m,n(k) to the neighboring operators m ∈N nei
n

end for

Update λ s+1
in,m,n← λ s

in,m,n +ρ
(

w̃s+1
in,m,n(k)− w̃s+1

out,n,m(k)
)

, n = 1, · · · ,Nsub,m ∈N nei
n

Send λ s+1
in,m,n to neighboring operators m ∈ N nei

n and in parallel receive λ s+1
in,n,m from the

neighboring operators

Compute εs+1←

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w



























λ s+1
in,m1,1

−λ s
in,m1,1

...

λ s+1
in,m

|N nei
1
|
,1−λ s

in,m
|N nei

1
|
,1

λ s+1
in,m1,2

−λ s
in,m1,2

...

λ s+1
in,m

|N nei
Nsub

|
,Nsub
−λ s

in,m
|N nei

Nsub
|
,Nsub



























w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

∞
s← s+1

end while
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Algorithm 3 The ADMM-based DMPFC approach for time interval k

Input : x̃n,k, d̃n(k), maximum allowed computation time Tallowed (h), iteration stopping thresh-

old ε , positive parameters ρ
Initialization : iteration count s← 1, maximum absolute difference among the values of the

Lagrange multipliers at iteration s and its previous iteration εs←∞, current computation time

tn(k) = 0 (h) spent by operators n = 1, · · · ,Nsub for time interval k,

ũs
n(k), z̃s

n(k), and Lagrangian multipliers λ s
in,m,n, λ s

out,m,n, λ s
in,n,m, and λ s

out,n,m corresponding

to constraints (21)–(22) for n = 1, . . . ,Nsub in the prediction period
[

kTs,(k+Npred)Ts

)

are

initialized as zeros when k = 1, and are initialized by using a warm start strategy with their

values computed during time interval k−1 when k > 1.

Iteration process :

while εs ≥ ε and maxn=1,··· ,Nsub
tn(k)≤ Tallowed do

for agents i = 1, . . . ,Nsub, in a parallel fashion do

Compute ũs+1
n (k), w̃s+1

in,m,n(k), and w̃s+1
out,m,n(k) for a local MPFC problem (23) subject to

subnetwork dynamics (10)–(14), (16)–(17), and (21)–(22) as follows:

min
x̃n(k+1),ũn(k),ỹn(k+1)

Jn

(

x̃n(k+1), ỹn(k+1), ũn(k), ṽn(k)
)

+

∑
m∈N nei

n

[

[

λ s
in,m,n

λ s
out,m,n

]T [
w̃in,m,n(k)− z̃s

m,n(k)
w̃out,m,n(k)− z̃s

n,m(k)

]

+
ρ

2

w

w

w

w

[

w̃in,m,n(k)− z̃s
m,n(k)

w̃out,m,n(k)− z̃s
n,m(k)

]w

w

w

w

2

2

]

(23)

Send w̃s+1
in,m,n(k) and w̃s+1

out,m,n(k) to neighboring operator m ∈N nei
n and in parallel receive

w̃s+1
in,n,m(k) and w̃s+1

out,n,m(k) from the neighboring operators

Compute z̃s+1
n (k) with the relation (24)

z̃s+1
m,n (k)←

1

2

([

w̃s+1
in,m,n(k)

w̃s+1
out,m,n(k)

]

+

[

w̃s+1
out,n,m(k)

w̃s+1
in,n,m(k)

])

(24)

end for

Update

[

λ s+1
in,m,n

λ s+1
out,m,n

]

←

[

λ s
in,m,n

λ s
out,m,n

]

+ ρ

([

w̃s+1
in,m,n(k)

w̃s+1
out,m,n(k)

]

− z̃s+1
m,n (k)

)

, n = 1, · · · ,Nsub,

m ∈N nei
n

Compute εs+1←maxn=1,··· ,Nsub,m∈N nei
n

w

w

w

w

w

[

λ s+1
in,m,n−λ s

in,m,n

λ s+1
out,m,n−λ s

out,m,n

]w

w

w

w

w

∞
s← s+1

end while

Output : ũs
n(k), w̃s

in,m,n(k), and w̃s
out,m,n(k), n = 1, · · · ,Nsub,m ∈N nei

n .
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fashion by operators in a given pre-defined order based on the distances between the main seaport

and different subnetworks, i.e., operators 1, 2, and 3 in a sequence.

The implementation of different DMPFC approaches in practice is influenced by different

properties. Three main properties are:

- The cooperation mechanism: Whether the mechanism operates in parallel or in a serial

way.

- The degree of confidentiality of information exchange: We use the number of information

types that are exchanged and the number of information exchanges among operators to

indicate the degree of confidentiality.

- The way of information processing: How each type of information shared by one operator

is used by its neighboring operators.

First of all, the serial ALR-based DMPFC approach performs cooperation in a serial way while

the parallel ALR-based DMPFC approach and the ADMM-based DMPFC approach cooper-

ate in a parallel fashion. In terms of the degree of confidentiality of information exchange, the

ADMM-based DMPFC approach requires only to exchange the interconnecting variables among

neighboring operators, while the two ALR-based DMPFC approaches need to exchange both

the interconnecting variables and the Lagrange multipliers. Thirdly, the ADMM-based DMPFC

approach first uses the information of interconnecting variables received from neighboring op-

erators to update the local copy of a part of the global optimization variables, i.e., z̃s+1
n (k) in

(24), and then indirectly to update the Lagrange multipliers and to implement the optimization

(23) at the next iteration. The exchanged information is used by the two ALR-based DMPFC

approaches for directly updating the Lagrange multipliers and performing the optimization (20)

or (19) at the next iteration.

4.4. Performance indicators

To make a comparison of the performance of different DMPFC approaches, the following

performance indicators are employed:

- The total delivery cost Jtotal (e) : the sum of the delivery costs incurred in the transport

planning of all operators when the operators cooperate to complete the transport demands,

i.e.,

Jtotal =

Nplanning

∑
k=1

Nsub

∑
n=1

Jn

(

x̃n(k+1), ỹn(k+1), ũn(k), ṽn(k)
)

. (25)

The whole planning period is NplanningTs (h), where Ts is the length of the planning time

interval. This indicator corresponds to the cooperative planning goal of all Nsub operators.

- The communication cost Jcom (float): the total number of floating-point numbers transmit-

ted between operators during the whole cooperative planning process.

- The computation time Tcom (h): the total amount of time taken by operators to perform

cooperative planning in the whole planning period.
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5. Simulation study

The three DMPFC approaches for cooperative synchromodal freight transport planning pre-

sented in Section 4 will be evaluated using an international intermodal freight transport network

connecting Rotterdam with Antwerp and Frankfurt. Section 5.1 introduces the basic setting of

the cooperative planning problem. The performance of the three DMPFC approaches is analyzed

and evaluated in Section 5.2.

5.1. The cooperative planning problem

This section considers a group of three operators that cooperatively plan synchromodal freight

transport in an international intermodal freight transport network. The network topology and the

corresponding virtual network representation are shown in Figure 2 and Figure 3, respectively.

This network consists of 6 nodes, and 16 transport connections, i.e., 5 railway connections, 5

inland waterway connections, and 6 freeway connections. As indicated by the dotted black ellip-

soids in Figure 2, the network consists of 3 subnetworks, in each of which one operator provides

synchromodal freight transport services. The numbers 1, 2, 3, 4, 5, and 6 in the labels of nodes in

the network denotes Rotterdam, Venlo, Antwerp, Liege, Neuss, and Frankfurt, respectively. The

distance of and the transport time on each link of the network are shown in their labels in Fig-

ure 3. Transport times troad
1R,2R ,troad

2R,4R ,troad
2R,5R ,troad

3R,4R , troad
4R,6R , troad

5R,6R , twater
1W,2W ,twater

1W,3W , twater
1W,5W ,twater

3W,4W , twater
5W,6W ,

trail
1T,2T , trail

2T,5T ,trail
3T,4T , trail

4T,6T ,trail
5T,6T , are determined by the corresponding link dynamics.

The typical transport time among any two nodes of the whole network is given in Table 1, and

the corresponding typical delivery cost is estimated as the monetary cost of the typical transport

time with a conversion factor of 25 (e/h). The time and the cost taken for changing between two

different modalities, i.e., trucks, trains, and barges, are 23.89 (e/TEU) and 4 (h) while they are

11.945 (e/TEU) and 2 (h) for changing between the storage and one of these three modalities.

The storage cost at terminals is taken as a small value i.e., 0.0001 (e/TEU/h). The container

loading and unloading capacity at each node of the network is taken to be unlimited. The storage

capacity at storage nodes i.e., 1S, 2S, 3S, 4S, and 5S, is assumed to be unlimited while that at

other nodes is 1000 (TEU). The maximum entering container flow is 400 (TEU/h) on freeway

links, determined by timetables of trains and barges for railway links and inland waterway links,

and 10000 (TEU/h) for modality change links. The distance-dependent transport costs and the

time-dependent transport costs are 0.2758 (e/TEU/km) and 30.98 (e/TEU/h) for freeway links,

0.0635 (e/TEU/km) and 7.54 (e/TEU/h) for railway links, and 0.0213 (e/TEU/km) and 0.6122

(e/TEU/h) for inland waterway links, respectively (van den Driest, 2010). Trucks are assumed

to be always available on the freeway links for delivering containers, and the freeway speed-

density relation model parameters are respectively vroad
i, j,free = 110 (km/h), aroad

i, j = 1.636, and

ρ road
i, j,crit = 33.5 (veh/km/lane) (Kotsialos et al., 2002). The speed-density relation model is one

part of the intermodal freight transport network model proposed by the authors in Li et al. (2015).

This model is used to calculate and predict the flow speed on freeway links in the network with

the input of the current and estimated flow density and the model parameters listed above. The

typical length of trucks is three times that of cars.

Trains and barges are assumed to operate according to pre-determined timetables that plan

regular train services and barge services on railway links and inland waterways links, respec-

tively. On link l3T,4T , a train is scheduled to be available at node 3T every 6 hours, spends 2 hours

for loading containers, then departure from node 3T and run t3T,4T = 4 hours to arrive at node 4T.

On other railway links and inland waterways links, services are planned in the same way but with
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Rotterdam

Venlo

Antwerp

Liege

Neuss

Frankfurt

The Netherlands

Belgium

Germany

Figure 2: The topology of an intermodal freight transport network between Rotterdam and Frankfurt. The solid black

arcs, the dashed red arcs, and the dotted blue arcs indicate freeway links, railway links, and inland waterway links in the

network, respectively.

the following two differences: the service frequency on links from and to deep-sea ports (i.e.,

Rotterdam and Antwerp) is every 4 hours while that on other links is every 6 hours; the actual

running times on links t1T,2T , t2T,5T , t4T,6T , t5T,6T , t1W,2W , t1W,3W , t1W,5W , t3W,4W , and t5W,6W are 6

hours, 2 hours, 8 hours, 6 thous, 16 hours, 12 hours, 18 hours, 10 hours, and 16 hours, respec-

tively. The capacity of trains and the allocated container handling capacities are 100 (TEU) and

100 (TEU/h) and they are 200 (TEU) and 200 (TEU/h) for barges. For both the case of a central

operator and the case of multiple operators, timetables of barges and trains and the capacities of

the network are the same.

We consider cooperative planning for a period of 48 (h) with a planning time interval Ts = 2

(h). The densities of traffic flows on the freeway links are given in Table 2. A transport demand

enters subnetwork 1 from node 1W with the destination node 6R in subnetwork 3. This transport

demand has a piecewise constant volume as shown in Table 2. The value of time for the trans-

port demand is taken as 25 (e/h). The use of this transport demand scenario in this simulation

study is helpful for the graphical illustration of the cooperation process of and the comparison

of the performance of our proposed cooperative planning approaches. It is noteworthy that in

practical transport planning, there are multiple transport demands with different origin and des-

tination pairs. The increase of the transport demand will augment both the number of decision

variables that have to be determined by operators and the number of interconnecting variables

that need to be shared by and negotiated among operators in cooperative planning problems.

Consequently, a larger amount of computation time will be required by the DMPFC approaches

to perform cooperative planning. Because the DMPFC approaches can theoretically converge

when a regularization term is added to the objective functions (19), (20), and (23), the container
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Figure 3: The corresponding virtual network representation of the network shown in Figure 2. Each double-headed arc

in the figure represents two directed links with opposite directions.
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Table 1: The typical transport time. The entity “–” indicates that there is no transport service from the corresponding row node to the

corresponding column node in the intermodal freight transport network shown in Figure 2

ri,d 1S 1W 1R 1T 3W 3R 3T 3S 2W 2R 2T 2S 4S 4W 4R 4T 5W 5R 5S 5T 6W 6R 6T

1S 0 1 1 1 8 11 11 10 10 4 5 8 13 14 6 14 11 6 10 7 20 9 15

1W 1 0 2 2 6 9 9 8 8 5 6 8 12 12 7 12 9 7 10 8 18 10 15

1R – – 0 – – – – – – 2 5 5 7 – 4 7 7 4 8 7 16 7 11

1T – – – 0 – – – – – 6 3 6 11 – 8 11 11 8 10 5 20 11 12

3W – – – – 0 2 2 1 – – – – 7 5 8 8 – – – – – 12 13

3R – – – – – 0 – 1 – – – – 4 – 1 4 – – – – – 5 9

3T – – – – – – 0 1 – – – – 5 – 5 2 – – – – – 9 7

3S – – – – 1 1 1 0 – – – – 6 7 3 4 – – – – – 7 9

2W – – – – – – – – 0 2 2 1 6 – 4 7 7 4 6 4 16 7 10

2R – – – – – – – – – 0 2 1 3 – 1 4 5 2 4 4 14 5 8

2T – – – – – – – – – 2 0 1 6 – 4 7 5 4 4 2 14 8 6

2S – – – – – – – – 1 1 1 0 5 – 3 6 6 3 5 3 15 6 10

4S – – – – – – – – – – – – 0 1 1 1 – – – – – 5 6

4W – – – – – – – – – – – – 1 0 2 2 – – – – – 6 7

4R – – – – – – – – – – – – 1 – 0 2 – – – – – 3 7

4T – – – – – – – – – – – – 1 – 2 0 – – – – – 6 5

5W – – – – – – – – – – – – – – – – 0 2 1 2 8 5 6

5R – – – – – – – – – – – – – – – – 2 0 1 2 11 2 6

5S – – – – – – – – – – – – – – – – 1 1 0 1 10 4 6

5T – – – – – – – – – – – – – – – – 2 2 1 0 11 5 3

6W – – – – – – – – – – – – – – – – – – – – 0 2 –

6R – – – – – – – – – – – – – – – – – – – – – 0 –

6T – – – – – – – – – – – – – – – – – – – – – 2 0

Table 2: Densities of traffic flows on the freeway links and transport demand

Period (h) 0 – 8 9 – 20 21 – 32 33 – 40 41 – 48

ρ road,oth

1R,2R ,ρ road,oth

3R,4R (veh/km/lane) 35.0 45.0 35.0 30.0 30.0

ρ road,oth

2R,4R ,ρ road,oth

2R,5R ,ρ road,oth

4R,6R ,ρ road,oth

5R,6R (veh/km/lane) 20.0 45.0 20.0 45.0 20.0

d1W,6R (TEU/h) 150 200 175 150 0

flow control actions and the total delivery costs resulting from the DMPFC approaches will be

the same as the container flow control actions and the total delivery cost obtained by a central

operator. The current paper considers that freight truck flows generated by operators can only

slightly influence the traffic conditions on freeways with tens of kilometers or even hundreds of

kilometers in the intermodal freight network that we consider. We therefore assumed that traffic

conditions in the network are independent of the volume of transport demands. All subnetworks

are initially considered to be empty (i.e., x̃i(k) = 0, i = 1, . . . ,N, k ≤ 0).

5.2. DMPFC approach evaluations

After introducing the controller and solver settings, this section illustrates the cooperation

process of the investigated DMPFC approaches and assesses their performance using the coop-

erative synchromodal freight transport planning problem defined in Section 5.1.

5.2.1. Controller and solver settings

Based on initial empirical experiments carried out for this particular problem setting, the

prediction horizon of individual operators is taken as Npred = 16. In the simulation, we assume
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that the information of traffic density on freeway links and the transport demand in the prediction

period
[

k ·Ts,(k+Npred) ·Ts

)

can be predicted accurately at time kTs. The maximum allowed

computation time for operators is Tallowed = 30 (min). The cooperation parameters are taken as

ρ = 0.3 and b = 5ρ for the parallel DMPFC approach, and ρ = 0.3 for the other two DMPFC

approaches. The iteration stopping threshold for the two ALR-based DMPFC approaches is set

as ε = 3×10−3, while the threshold for the ADMM-based DMPFC approach is set as ε = 1.5×
10−3. These iteration stopping thresholds are selected to make sure that an accuracy of εvariable =
10−2 on interconnecting constraints (7)-(8) is required for all the three DMPFC approaches.

We assume that a floating-point number is needed to transmit one interconnecting variable or

one Lagrange multiplier between two operators. Therefore, the communication cost Jcom can be

calculated as NiterationIiteration, where Niteration is the total number of iterations during the whole

simulation process and Iiteration is the number of information exchanges per iteration.

For comparison purposes, a central operator is first assumed to be able to obtain all necessary

planning information and to plan synchromodal freight transport in the whole network. There-

fore, this central operator performs planning in a centralized way. The corresponding planning

problem for the central operator is a linear programming optimization problem given by (9)–

(12) and (16)–(17). This planning problem is solved using the simplex method implemented

by the CPLEX solver of the TOMLAB Optimization Toolbox (Inc., 2014). Next, our presented

DMPFC approaches are applied for the cooperative synchromodal freight transport planning

problem. The regularized QP optimization problems in each DMPFC approach are solved with

the barrier method implemented by the CPLEX Barrier QP solver of the TOMLAB Optimization

Toolbox (Inc., 2014). The simulation experiments are done with the use of a desktop computer

with an Intel® Xeon(R) CPU W3690 with 3.47 GHz and 16 GB RAM.

5.2.2. Cooperation process illustration

We illustrate the cooperation process of the three DMPFC approaches by presenting the evo-

lution of the differences between particular interconnecting variables in the MPFC problems of

two neighboring operators and the evolution of the associated Lagrangian multipliers for a partic-

ular time interval. We choose two sets of interconnecting variables between the MPFC problem

of operator 1 (providing transport services in The Netherlands) and the MPFC problem of op-

erator 3 (providing transport services in Germany) for time interval k = 1. These two sets of

interconnecting variables are output interconnecting variables wout,3,1,lroad

2R,5R
(k + l) and the cor-

responding input interconnecting variables win,1,3,lroad

2R,5R
(k+ l) associated with the freeway link

lroad
2R,5R for l = 1,2, . . . ,Npred.

For the serial ALR-based DMPFC approach, Figure 4 shows the cooperation process on

the values of wout,3,1,lroad

2R,5R
(k + l) and the values of win,1,3,lroad

2R,5R
(k + l) between operator 1 and

operator 3 at the first iteration of time interval k = 1. At the first iteration, operator 1 first

solves its MPFC problem and sends the preferred values of output interconnecting variables

w1
out,3,1,lroad

2R,5R

(k+ l) (given in Figure 4(a)) to operator 3; then operator 3 computes its preferred

values of input interconnecting variables w1
in,1,3,lroad

2R,5R

(k+ l) (by solving its MPFC problem with

the values of w1
out,3,1,lroad

2R,5R

(k + l) received from operator 1), and sends these preferred values

(given in Figure 4(b)) to operator 1; finally, operator 3 updates the values of the associated

Lagrange multipliers λ 1
w

in,1,3,lroad
2R,5R

(k+l) (presented in Figure 4(c)) and sends them to operator 1 to
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be used at the next iteration. The next iterations will repeat the same cooperation process of the

first iteration until the iterations are stopped. It is noteworthy that a negative value of a Lagrange

multiplier λ 1
w

in,1,3,lroad
2R,5R

(k+l) implies that larger values of win,1,3,lroad

2R,5R
(k+ l) and smaller values of

wout,3,1,lroad

2R,5R
(k+ l) are preferred in the next iteration by operator 3 and operator 1, respectively.

The evolution of the differences between ws

out,3,1,lroad

2R,5R

(k+ l) and ws

in,1,3,lroad

2R,5R

(k+ l) during

the iteration process for time interval k = 1 in the serial ALR-based DMPFC approach are pre-

sented in Figure 5. Figure 6 presents the evolution of the values of the Lagrange multipliers

λ s
w

in,1,3,lroad
2R,5R

(k+l) associated with interconnecting variables wout,3,1,lroad

2R,5R
(k+ l) and win,1,3,lroad

2R,5R
(k+

l) for time interval k = 1 in the serial ALR-based DMPFC approach. In general, the cooperation

process between two operators involves multiple pairs of interconnecting variables and should

be terminated when the absolute differences between the values of their associated Lagrange

multipliers at two successive iterations are smaller than certain threshold, e.g., ε = 3× 10−3.

The relation ε = ρεvariable holds in the serial ALR-based DMPFC approach (see Algorithm 2).

Terminating the iteration process with a threshold ε = 3×10−3 will therefore guarantee that the

absolute differences between the values of all pairs of interconnecting variables are not larger

than εvariable = 10−2.

For the parallel ALR-based DMPFC approach, the cooperation process on the values of

wout,3,1,lroad

2R,5R
(k+ l) and the values of win,1,3,lroad

2R,5R
(k+ l) between operator 1 and operator 3 at the

first iteration of time interval k = 1 is presented in Figure 7. This cooperation process has the

same execution sequence, (i.e., first solving optimization problems, and next updating Lagrange

multipliers), as that of the cooperation process of the serial ALR-based DMPFC approach given

in Figure 4. The major difference is the sequence in which operator 1 and operator 3 solve their

MPFC problems: for the serial ALR-based DMPFC approach, operator 1 first solves its MPFC

problem (presented in Figure 4(a)), and next operator 3 solves its MPFC problem (presented

in Figure 4(b)); for the parallel ALR-based DMPFC approach, operator 1 and operator 3 solve

their MPFC problems simultaneously (presented in Figure 7(a)). The cooperation process of the

iterations in the parallel ALR-based DMPFC approach is similar to the cooperation process of

the serial ALR-based DMPFC approach shown in Figures 5 and 6.

For the ADMM-based DMPFC approach, Figure 8 shows the cooperation process on the val-

ues of wout,3,1,lroad

2R,5R
(k+ l) and the values of win,1,3,lroad

2R,5R
(k+ l) between operator 1 and operator

3 at the first iteration of time interval k = 1. At the first iteration, operator 1 and operator 3 first

solve their DMPFC problems in parallel and send their preferred values of the input intercon-

necting variables w1
in,1,3,lroad

2R,5R

(k+ l), and w1
out,3,1,lroad

2R,5R

(k+ l) (see Figure 8(a)) to each other; next,

each of two operators uses the values of w1
out,3,1,lroad

2R,5R

(k+ l) or w1
in,1,3,lroad

2R,5R

(k+ l) received from

the other operator to update its own Lagrange multipliers λ 1
w

out,3,1,lroad
2R,5R

(k+l) or λ 1
w

in,1,3,lroad
2R,5R

(k+l)

(see Figure 8(b)). Each operator will keep the Lagrange multipliers updated by itself to be used

in the next iteration. The next iterations will perform the same cooperation process of the first

iteration (Figure 8) until the stopping criteria are reached. Moreover, the cooperation process

of the iterations in the ADMM-based DMPFC approach differs from the cooperation process of

the parallel ALR-based DMPFC approach in terms of having locally updated and privately used

Lagrange multipliers for operator 1 and operator 3, respectively.
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Figure 4: The cooperation process on the values of interconnecting variables w1

out,3,1,lroad

2R ,5R

(k+ l) and w1

in,1,3,lroad

2R ,5R

(k+ l)

over a prediction period of Npred = 16 time intervals, hence, for l = 1,2, . . . ,16 between operator 1 and operator 3 at

the first iteration of time interval k = 1 in the serial ALR-based DMPFC approach. The associated Lagrange multipliers

λ 1
w

in,1,3,lroad
2R ,5R

(k+l) are shown in Figure 4(c).
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At convergence

Figure 5: The evolution of the differences between the values of output interconnecting variable of the MPFC problem

of operator 1, i.e., ws

out,3,1,lroad

2R ,5R

(k+ l), and the values of the corresponding input interconnecting variable of the MPFC

problem of operator 3, i.e., ws

in,1,3,lroad

2R ,5R

(k+ l) in the serial ALR-based DMPFC approach, for the time interval k = 1 over

a prediction period of Npred = 16 time intervals, hence, for l = 1,2, . . . ,16.
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Figure 6: The evolution of the Lagrange multipliers λ s
w

in,1,3,lroad
2R ,5R

(k+l) computed by operator 3 in the serial ALR-based

DMPFC approach for the time interval k = 1 over a prediction period of Npred = 16 time intervals, hence, for l =
1,2, . . . ,16.
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The associated Lagrange multipliers updated by operator 3

Figure 7: The cooperation process on the values of interconnecting variables w1

out,3,1,lroad

2R ,5R

(k+ l) and w1

in,1,3,lroad

2R ,5R

(k+ l)

over a prediction period of Npred = 16 time intervals, hence, for l = 1,2, . . . ,16 associated with the freeway link lroad
2R ,5R

between operator 1 and operator 3 at the first iteration of time interval k = 1 in the parallel ALR-based DMPFC approach.

The associated Lagrange multipliers λ 1
w

in,1,3,lroad
2R ,5R

(k+l) are shown in Figure 4(b).
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Figure 8: The cooperation process on the values of interconnecting variables w1

out,3,1,lroad

2R ,5R

(k+ l) and w1

in,1,3,lroad

2R ,5R

(k+ l)

over a prediction period of Npred = 16 time intervals, hence, for l = 1,2, . . . ,16 associated with the freeway link lroad
2R ,5R

between operator 1 and operator 3 at the first iteration of time interval k = 1 in the ADMM-based DMPFC approach. The

associated Lagrange multipliers λ 1
w

out,3,1,lroad
2R ,5R

(k+l) and λ 1
w

in,1,3,lroad
2R ,5R

(k+l) updated by two operators are shown in Figure

8(b).
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Table 3: The performance of three DMPFC approaches. The entities ‘sDMPFC’, ‘pDMPFC’ and ‘ADMM’ in the ’DMPFC approaches’

column stands for the serial ALR-based DMPFC approach, the parallel ALR-based DMPFC approach, and the ADMM-based DMPFC

approach, respectively.

DMPFC approaches Delivery cost
Communication cost

Computation time (min)
Niteration Iiteration Jcost (floats)

sDMPFC

Overall 5.8627×106

1840 336 618240

8.23

Operator 1 3.9326×106 2.85

Operator 2 1.9076×106 3.18

Operator 3 2.2500×104 2.21

pDMPFC

Overall 5.8627×106

5249 336 1763664

8.26

Operator 1 3.9326×106 7.86

Operator 2 1.9076×106 8.13

Operator 3 2.2500×104 5.98

ADMM

Overall 5.8627×106

4652 224 1042048

7.55

Operator 1 3.9326×106 6.78

Operator 2 1.9076×106 7.48

Operator 3 2.2500×104 5.01

5.2.3. Performance evaluation

The total delivery cost obtained by this central operator is 5.8627× 106 (e). The planning

performance of the DMPFC approaches is presented in Table 3. As shown in Table 3 all three

DMPFC approaches obtain the same total delivery cost, i.e., 5.8627× 106 (e), the same as the

total delivery cost attained by the central operator. The corresponding delivery costs of the three

operators in their subnetworks are also the same for different DMPFC approaches. The control

actions resulted from the three DMPFC approach are also the same as the control actions of the

centralized operator. However, the corresponding performance of the DMPFC approaches is still

different in terms of communication cost, and actual computation time. On the one side, the

serial ALR-based DMPFC approach takes the minimum total number of iterations Niteration =
1840 and also the least total communication cost Jcost = 618240 (floats). On the other side,

the ADMM-based DMPFC approach requires the least amount of actual computation time i.e.,

7.55 (min) while that for the serial ALR-based DMPFC approach and the parallel ALR-based

DMPFC approach are 8.23 (min), and 8.26 (min), respectively. It is worthwhile to note that

even though the serial ALR-based DMPFC approach requires the least number of iterations,

it actually spends more computation time than the ADMM-based DMPFC approach due to its

serial cooperation mechanism.

For the cooperative planning problem considered in this section, it can be concluded that all

three DMPFC approaches can attain the same cooperation goal as that of the central operator.

With respect to the other performance indicators and the properties of different DMPFC ap-

proaches listed in Section 4.4 two comments can be made: the ADMM-based DMPFC approach

outperforms the parallel ALR-based DMPFC approach by exchanging fewer types of informa-

tion and requiring fewer iterations and actual computation time; the serial ALR-based DMPFC

approach takes fewer iterations than the ADMM-based DMPFC approach, but it needs a higher

degree of confidentiality (or more types of information exchanged) in information exchanges and

requires a larger amount of actual computation time.

The DMPFC approaches determine container flow control actions at the beginning of each

time interval for a prediction period of Npred time intervals with the up-to-date planning informa-

tion available at the beginning of the current time interval. The up-to-date planning information,

which is the real-time information, consists of the real-time measurements and estimations on
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the transport demand and the traffic conditions in the network. Only the control actions for the

current time interval will be implemented. For next time intervals, the same procedure will be

executed in a receding horizon way. Because the control actions are determined for each time

interval with the current available planning information, the DMPFC approaches can perform

timely changing among multiple modalities according to real-time information in the simula-

tion study. In general, the implementation and performance of an DMPFC approach depends

on the cooperation mechanism, the required degree of confidentiality in information exchanges,

the quantity of information exchanges, and the way in which the received information is used by

operators. Therefore, for a particular cooperative synchromodal freight transport planning prob-

lem the appropriate DMPFC approach should be chosen considering the communication ability

of transport operators, their accepted degree of confidentiality in information exchanges, and

their preferences on performance indicators, e.g., less information exchanges or less computa-

tion time.

6. Conclusions and future work

This paper has investigated cooperative synchromodal freight transport planning among mul-

tiple transport operators in the hinterland haulage among deep-sea ports and inland terminals.

Each operator is assumed to adopt a model predictive control approach for controlling container

flows in one of the multiple interconnected subnetworks at the tactical flow level. This paper has

formulated the Cooperative Model Predictive Flow Control (CMPFC) problem by introducing

interconnecting variables and interconnecting constraints among the planning problems of each

of the operators. Three Distributed Model Predictive Flow control (DMPFC) approaches have

been used to solve the CMPFC problem in a distributed way, either adopting the Augmented La-

grange Relaxation (ALR) method or the Alternating Direction of Multiplier Method (ADMM)

algorithm to decouple the interconnecting constraints. The simulation results indicate that the

ADMM based-DMPFC approach takes the smallest actual computation time while the serial

ALR-based DMPFC approach requires the least iterations and information exchanges.

Future research will investigate more complex demand scenarios and different organizational

structures of cooperative planning, e.g., the cooperative planning for providing synchromodal

freight transport services by multiple different unimodal freight transport operators. Moreover,

since a fixed network partition has been considered in the current paper the investigation of

having a dynamic network partition is one future research direction.
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