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Optimistic optimization formodel predictive control of

max-plus linear systems ⋆

Jia Xu a, Ton van den Boom a, Bart De Schutter a

aDelft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

Abstract

Model predictive control for max-plus linear discrete-event systems usually leads to a nonsmooth nonconvex optimization
problem with real valued variables, which may be hard to solve efficiently. An alternative approach is to transform the given
problem into a mixed integer linear programming problem. However, the computational complexity of current mixed integer
linear programming algorithms increases in the worst case exponentially as a function of the prediction horizon. The focus
of this paper is on making optimistic optimization suited to solve the given problem. Optimistic optimization is a class of
algorithms that can find an approximation of the global optimum for general nonlinear optimization. A key advantage of
optimistic optimization is that one can specify the computational budget in advance and guarantee bounds on the suboptimality
with respect to the global optimum. We prove that optimistic optimization can be applied for the given problem by developing
a dedicated semi-metric and by proving it satisfies the necessary requirements for optimistic optimization. Moreover, we show
that the complexity of optimistic optimization is exponential in the control horizon instead of the prediction horizon. Hence,
using optimistic optimization is more efficient when the control horizon is small and the prediction horizon is large.

Key words: Max-plus linear systems; Model predictive control; Optimistic optimization.

1 Introduction

Max-plus algebra is a useful tool to model and analyze
discrete-event systems (DES). Maximization and addi-
tion are two basic operations in the max-plus algebra.
In conventional algebra, DES usually result in nonlin-
ear systems, but there is a class of DES which can lead
to linear systems in the max-plus algebra, called max-
plus linear (MPL) systems [2,7]. Many results for con-
trol of MPL systems have been achieved, e.g. [1,4,8,10–
12,14,15].

The model predictive control (MPC) framework has
been extended to MPL systems [9]. For some special
cases, the MPL-MPC problem can be formulated as a
linear programming; however, in general, it results in a
nonsmooth nonconvex optimization problem. To solve
this problem, one approach is to recast it as a mixed inte-
ger linear programming (MILP) problem. Nonetheless,
the computational complexity of most MILP algorithms

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author J. Xu.

Email addresses: j.xu-3@tudelft.nl (Jia Xu),
a.j.j.vandenboom@tudelft.nl (Ton van den Boom),
b.deschutter@tudelft.nl (Bart De Schutter).

grows in the worst case exponentially if the number of
variables increases [19]. For the MILP problem resulting
from the MPL-MPC problem, the number of auxiliary
binary variables is proportional to the number of max
operators (i.e. the prediction horizon and the number of
inputs and outputs). Thus, the computation time of the
corresponding MILP problem will become unacceptable
if the prediction horizon is large. As the period corre-
sponding to the prediction horizon should contain the
crucial dynamics of the process, the prediction horizon
can be very large for some MPL-MPC problems.

In this paper, we will show that the MPL-MPC problem
can be solved efficiently by using optimistic optimiza-
tion. Optimistic optimization [18] is a class of algorithms
that can find an approximation of the global optimal so-
lution for nonlinear optimization problem. This method
is called optimistic because the most promising solutions
are examined first at each iteration. The main advantage
of optimistic optimization is that one can specify the
computational budget (e.g. the number of node expan-
sions) in advance and guarantee bounds on the subopti-
mality with respect to the global optimum. Note that the
gap between the result returned by optimistic optimiza-
tion and the optimal value can be made arbitrarily small
as the computational budget increases. In our previous
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conference paper [22], we have applied optimistic opti-
mization to the MPC problem for single-input single-
output MPL systems. In the current paper, we study
multi-input multi-outputMPL systems; we also consider
arbitrary piecewise linear output cost functions and two
kinds of input cost functions. In addition, we develop
an expression for the dedicated semi-metric required by
optimistic optimization for each type of objective func-
tion. The proposed approach is evaluated with a group
of random instances with different parameters settings.
Moreover, we show that the computational complexity
of optimistic optimization for the MPL-MPC problem
depends on the control horizon instead of the prediction
horizon.

Situations with a short control horizon and a long pre-
diction horizon are common for DES control and it is
useful to have a method to solve the corresponding MPC
optimization problem without a significant influence of
the prediction horizon. For a given MPL-MPC problem,
the method using optimistic optimization in this paper
will be more efficient than the MILP method in case of
small control horizons and large prediction horizons.

2 Preliminaries

Define ε = −∞ and Rε = R ∪ {ε}. The max-plus-
algebraic addition (⊕) and multiplication (⊗) are de-
fined as follows: x ⊕ y = max(x, y), x ⊗ y = x + y, for
numbers x, y ∈ Rε;

[

A⊕B
]

ij
= aij⊕bij = max(aij , bij),

[

A ⊗ C
]

ij
=

⊕m

k=1 aik ⊗ ckj = maxk=1,...,m(aik + ckj),

for matrices A,B ∈ R
n×m
ε and C ∈ R

m×p
ε .

Consider a multi-input multi-output MPL system

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k), (1)

y(k) = C ⊗ x(k) (2)

where k is the event counter, x(k) ∈ R
nx
ε is the state,

u(k) ∈ R
nu
ε is the input, y(k) ∈ R

ny
ε is the output, and

where A ∈ R
nx×nx
ε , B ∈ R

nx×nu
ε , and C ∈ R

ny×nx
ε

are the system matrices. Let ŷ(k + j|k), j = 0, 1, . . . be
the estimate of the output at event step k + j based
on the information available at event step k. Given a
prediction horizon Np, the estimation of the evolution
of the MPL system from event step k up to k +Np − 1
can be presented as follows

ỹ(k) = H ⊗ ũ(k)⊕ g(k) (3)

with ỹ(k) = [ŷT (k|k) . . . ŷT (k + Np − 1|k)]T , ũ(k) =
[uT (k) . . . uT (k+Np−1)]T for appropriateH, g(k) (see
[9] for details of H, g(k)).

3 The MPC problem for MPL systems

The MPC framework has been extended to MPL sys-
tems [9]. The considered objective function J consists of
the weighted sum of an output cost and an input cost:

J = Jout + λJin with λ > 0. Moreover, different objec-
tive functions can be designed for different goals. In this
paper, we consider four different output cost functions
and two input cost functions.

We include both a tardiness and an earliness penalty
in the output cost functions with parameters to express
the trade-off between the two kinds of penalty. In this
paper, parameters αp, βp, p = 1, . . . , ny with αp, βp ≥ 0,
αp + βp > 0 are introduced as weighting coefficients for
the tardiness and earliness penalties with respect to a ref-

erence signal r. Denote Φj,p,k = max
(

αp

(

ŷp(k + j|k)−

rp(k+ j)
)

, βp

(

rp(k+ j)− ŷp(k+ j|k)
)

)

. The four output

cost functions are: J1,1
out(k) =

Np−1
∑

j=0

ny
∑

p=1

Φj,p,k, J
1,∞
out (k) =

Np−1
∑

j=0

max
p=1,...,ny

Φj,p,k, J
∞,1
out (k) = max

j=0,...,Np−1

ny
∑

p=1

Φj,p,k,

J
∞,∞
out (k) = max

j=0,...,Np−1
max

p=1,...,ny

Φj,p,k. It is easy to show

that Jout,1 and Jout,2 in [9] are special cases of J1,1
out. In

[9] the following input cost functions are introduced:

J
1
in(k) = −

Np−1
∑

j=0

nu
∑

q=1

uq(k + j), (4)

J
2
in(k) = −

∥

∥ũ(k)
∥

∥

2

2
. (5)

For an explanation and discussion of the input cost func-
tions, we refer the reader to [9]. Let ∆u be the input
rate: ∆u(k) = u(k) − u(k − 1). In MPL-MPC, a con-
trol horizon Nc with Nc < Np is often introduced and
the control input rate is taken to be constant from event
step k+Nc on. Thus, the use ofNc reduces the computa-
tional burden. For an in-depth discussion about tuning
of Nc, we refer the reader to [21]. Consequently, we as-
sume ∆u(k+ j) = ∆u(k+Nc − 1), j = Nc, . . . , Np − 1.
Denote ū(k− 1) = [uT (k− 1) · · ·uT (k− 1)]T and define
L ∈ R

Npnu×Ncnu as

L =



































Inu 0 · · · 0 0

Inu Inu · · · 0 0

...
...

. . .
...

...

Inu Inu · · · Inu Inu

Inu Inu · · · Inu 2Inu

...
...

. . .
...

...

Inu Inu · · · Inu (Np −Nc + 1)Inu





























































Ncnu















(Np −Nc)nu

(6)
with Inu

the nu × nu identity matrix. Then
ũ(k) = L∆ũ(k) + ū(k − 1), (7)

where ∆ũ(k) = [∆uT (k) . . . ∆uT (k +Nc − 1)]T .

Using (3) to eliminate ỹ from Jout, the eliminated J only
depends on ũ now. Then using (7) to replace ũ by ∆ũ,
the resulting J only depends on ∆ũ, denoted as J∆.
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Simple bound constraints on the input rate are common
in practice, meaning that there is a minimum and a max-
imum separation between input events:

a ≤ ∆ũ(k) ≤ b, (8)

with a, b real vectors of size Ncnu × 1.

Therefore, we finally obtain the following MPL-MPC
problem, for given σ, τ ∈ {1,∞}, ω ∈ {1, 2}:

min
∆ũ(k)

J
σ,τ,ω

∆ (k) = J
σ,τ
out (k) + λJ

ω
in(k) (9)

subject to (8). A finite optimal solution of the MPL-
MPC problem exists if the feasible set is bounded and
closed and the objective function is finite for finite argu-
ments. These conditions hold in general.

4 Optimistic optimization

Optimistic optimization can be used for nonlinear op-
timization problem with the objective function that is
deterministic [17] or stochastic [20]. It was used for the
consensus problem of agents with nonlinear dynamics
[5]. Optimistic planning [6,13,16] is a class of algorithms
related to optimistic optimization.

To introduce optimistic optimization generically, we con-
sider a minimization of a general deterministic function
f over a feasible setX . The implementation of optimistic
optimization is based on a hierarchical partitioning ofX .
For any integer h ∈ {0, 1, . . .}, X is partitioned into Kh

sets, called cells Xh,d with d = 0, . . . ,Kh − 1. This par-
titioning may be represented by a tree where each cell
Xh,d corresponds to a node (h, d) of the tree such that
each node (h, d) possessesK child nodes {(h+1, dk)}

K
k=1.

In addition, the set of {Xh+1,dk}Kk=1 forms a partition of
the parent cell Xh,d. The root node of the tree (i.e. the
cell X0,0) corresponds to the whole domain X . To each
cell Xh,d, we assign a representative point xh,d ∈ Xh,d,
where f may be evaluated. To use optimistic optimiza-
tion, some requirements should be satisfied [17].

Definition 1 (Semi-metric). A semi-metric on a
set X is a function ℓ : X × X → R

+
0 satisfy-

ing: 1) ∀x, y ∈ X , ℓ(x, y) = ℓ(y, x) ≥ 0; and 2)
∀x, y ∈ X , ℓ(x, y) = 0 if and only if x = y.
Requirement 1. There exists a semi-metric ℓ on X .
Requirement 2. There exists at least one global opti-
mizer x∗ ∈ X of f (i.e. f(x∗) = min

x∈X
f(x)) and for all

x ∈ X , f(x)− f(x∗) ≤ ℓ(x, x∗).
Requirement 3. There exists a decreasing sequence
{δ(h)}∞h=0 with δ(h) > 0, such that for any depth
h ∈ {0, 1, . . .}, for any cell Xh,d at depth h, we have
supx∈Xh,d ℓ(x, xh,d) ≤ δ(h), where δ(h) is called the
maximum diameter of the cells at depth h.
Requirement 4. There exists a scalar ν > 0 such that
any cell Xh,d at any depth h contains an ℓ-ball of radius
νδ(h) centered in xh,d.

The requirements guarantee bounds on the suboptimal-
ity with respect to the global optimum and on the com-
putational budget. In particular, Requirements 1 and 2
regard the semi-metric ℓ and the local property of the
objective function near the optimum with respect to ℓ.
Requirements 3 and 4 guarantee that the partitioning of
the feasible set generates well-shaped cells that shrink
with further partitioning.

5 Optimistic optimization for the MPL-MPC
problem

In this section, we show that Requirements 1-4 hold
for the MPL-MPC problem (9) with σ = τ = ω =

1, i.e. J1,1,1
∆ = J

1,1
out + λJ1

in. Other cases that can be
proved similarly are included in the appendix. Let X =
{∆ũ(k)|a ≤ ∆ũ(k) ≤ b}. Before proceeding further, we
first present the following result.

Theorem 1 Let ∆ũ(k) is an arbitrary input rate se-
quence and∆ũ∗(k) be the optimal input rate sequence for
problem (9). Then it holds that

J
1,1,1
∆ (∆ũ)− J

1,1,1
∆ (∆ũ

∗)

≤

ny
∑

p=1

max(αp, βp)

Np−1
∑

j=0

max
i=1,...,(j+1)nu

∣

∣

∣
Li,·(∆ũ−∆ũ

∗)
∣

∣

∣

+ λ‖L(∆ũ−∆ũ
∗)‖1 (10)

where αp, βp are as defined in Section 3 and Li,· is the
i-th row of L in (6).
Proof. Assume that ỹ(k) is the estimate of the output
sequence corresponding to ∆ũ(k) and ỹ∗(k) is defined
similarly corresponding to ∆ũ∗(k). Let p̃ = jny+p, thus
ỹp̃(k) = ŷp(k + j|k), ỹ∗p̃(k) = ŷ∗p(k + j|k) and r̃p̃(k) =

rp(k+ j), for p = 1, . . . , ny, j = 0, . . . , Np − 1. It is easy
to verify that, for any x, y, z ∈ R, max

(

α(x− z), β(z −

x)
)

−max
(

α(y−z), β(z−y)
)

≤ max(α, β)|x−y|, where
α, β are non-negative real numbers. Hence,

J
1,1
out(∆ũ)− J

1,1
out(∆ũ

∗)

≤

Np−1
∑

j=0

ny
∑

p=1

max(αp, βp)
∣

∣ỹp̃(k)− ỹ
∗

p̃(k)
∣

∣.
(11)

From (3), we have ỹp̃(k) = max
(

Hp̃,·⊗ ũ(k), gp̃(k)
)

and

ỹ∗p̃(k) = max
(

Hp̃,· ⊗ ũ∗(k), gp̃(k)
)

, where Hp̃,· is the p̃-

th row of H and ũ(k) and ũ∗(k) are the respective input
sequences corresponding to ∆ũ(k) and ∆ũ∗(k). Thus,

∣

∣ỹp̃(k)− ỹ
∗

p̃(k)
∣

∣ ≤
∣

∣Hp̃,· ⊗ ũ(k)−Hp̃,· ⊗ ũ
∗(k)

∣

∣. (12)

Denote

Hp̃,· ⊗ ũ(k) = max
w=1,...,(j+1)nu

(

Hp̃w + ũw(k)
)

,

= Hp̃w0
+ ũw0

(k),

Hp̃,· ⊗ ũ
∗(k) = max

z=1,...,(j+1)nu

(

Hp̃z + ũ
∗

z(k)
)

= Hp̃z0 − ũ
∗

z0
(k)

≥ Hp̃w0
− ũ

∗

w0
(k). (13)
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Then
∣

∣Hp̃,· ⊗ ũ(k)−Hp̃,· ⊗ ũ
∗(k)

∣

∣

=
∣

∣Hp̃w0
+ ũw0

(k)−Hp̃z0 − ũ
∗

z0
(k)

∣

∣

(13)

≤
∣

∣Hp̃w0
+ ũw0

(k)−Hp̃w0
− ũ

∗

w0
(k)

∣

∣

≤
∣

∣ũw0
(k)− ũ

∗

w0
(k)

∣

∣

≤ max
i=1,...,(j+1)nu

∣

∣ũi(k)− ũ
∗

i (k)
∣

∣

(7)

≤ max
i=1,...,(j+1)nu

∣

∣

∣
Li,·(∆ũ(k)−∆ũ

∗(k))
∣

∣

∣
. (14)

From (11), (12) and (14), we have

J
1,1
out(∆ũ)− J

1,1
out(∆ũ

∗)

≤

ny
∑

p=1

max(αp, βp)

Np−1
∑

j=0

max
i=1,...,(j+1)nu

∣

∣

∣
Li,·(∆ũ−∆ũ

∗)
∣

∣

∣
.

(15)
On the other hand,

J
1
in(∆ũ)− J

1
in(∆ũ

∗) =

Npnu
∑

i=1

[

ũ
∗

i (k)− ũi(k)
]

≤ ‖ũ(k)− ũ
∗(k)‖1

≤ ‖L(∆ũ(k)−∆ũ
∗(k))‖1. (16)

From (15)-(16), we deduce that (10) holds. ✷

Based on Theorem 1, we can define ℓ1,1,1 : X×X → R
+,

such that for any ∆ũ(k),∆ṽ(k) ∈ X ,

ℓ
1,1,1(∆ũ(k),∆ṽ(k))

:= ℓ
1,1
out(∆ũ(k),∆ṽ(k)) + λℓ

1
in(∆ũ(k),∆ṽ(k)) (17)

with

ℓ
1,1
out(∆ũ(k),∆ṽ(k)) =
ny
∑

p=1

max(αp, βp)

Np−1
∑

j=0

max
i=1,...,(j+1)nu

∣

∣

∣
Li,·(∆ũ(k)−∆ṽ(k))

∣

∣

∣
,

ℓ
1
in(∆ũ(k),∆ṽ(k)) = ‖L(∆ũ(k)−∆ṽ(k))‖1

where λ > 0 and αp, βp are as defined in Section 3. Be-
cause L is not singular, it is easy to verify that the func-
tion ℓ defined by (17) is a semi-metric on X . Therefore,
Requirements 1-2 are satisfied for σ = τ = ω = 1.

For the partitioning of X = {∆ũ(k)|a ≤ ∆ũ(k) ≤ b},
we take the center of X as the starting point (i.e. the
root node of the tree). At each iteration, we bisect each
dimension of X ; so the number of branches K equals
2Ncnu . From (8), we have, for any ∆ũ(k) ∈ Xh,d with
its center denoted as ∆ũh,d(k),

‖∆ũ(k)−∆ũ
h,d(k)‖∞ ≤

1

2h+1
‖b− a‖∞, (18)

‖∆ũ(k)−∆ũ
h,d(k)‖1 ≤

1

2h+1
‖b− a‖1. (19)

Optimistic optimization expands a leave with the best

b-value bh,d
def
= f(xh,d) − δ(h) by adding its K children

to the current tree (i.e. splitting the corresponding cell
intoK sub-cells). We now derive the expression δ1,1,1(h)
for δ(h) corresponding to ℓ1,1,1.

Theorem 2 Define

δ1,1,1(h) =
1

2h+1

[

δ
1,1
out + λδ1in

]

(20)

for h ∈ {0, 1, . . .} with

δ
1,1
out =

Np(Np + 1)‖b− a‖∞
2

ny
∑

p=1

max(αp, βp), (21)

δ
1
in = ‖L(b− a)‖1. (22)

Then for any h ∈ {0, 1, . . .}, d ∈ {0, . . . ,Kh−1}, it holds
that sup∆ũ(k)∈Xh,d ℓ1,1,1(∆ũ(k),∆ũh,d(k)) ≤ δ1,1,1(h),

where ∆ũh,d(k) is the center of cell Xh,d.

Proof. For any ∆ũ(k) ∈ Xh,d, we have 1

ℓ
1,1
out(∆ũ(k),∆ũ

h,d(k))

≤

ny
∑

p=1

max(αp, βp)

Np−1
∑

j=0

[

max
i=1,...,(j+1)nu

‖Li,·‖1

‖∆ũ(k)−∆ũ
h,d(k)‖∞

]

(18)

≤

ny
∑

p=1

max(αp, βp)
Np(Np + 1)

2

‖b− a‖∞
2h+1

(21)

≤
1

2h+1
δ
1,1
out,

and

ℓ
1
in(∆ũ(k),∆ũ

h,d(k))
(19)

≤
1

2h+1
‖L(b− a)‖1

(22)

≤
1

2h+1
δ
1
in.

Thus if we define δ1,1,1(h) as in (20), then

sup
∆ũ(k)∈Xh,d

ℓ1,1,1(∆ũ(k),∆ũh,d(k)) ≤ δ1,1,1(h). ✷

Theorem 3 Choose ν1,1,1 such that

0 < ν1,1,1 ≤

ρ min
i=1,...,Ncnu

(bi − ai)

δ
1,1
out + λδ1in

.

Then any cellXh,d at any depth h contains an ℓ-ball Bh,d

of radius ν1,1,1δ1,1,1(h) centered in ∆ũh,d where 0 < ρ <

1 and δ1,1,1(h), δ1,1out, δ
1
in are as defined in (20)-(22).

Proof. According to Theorem 2, we can define a de-
creasing sequence {δ1,1,1(h)}∞h=0 as in (20). Select a real
number ρ with 0 < ρ < 1. From (8), the ℓ-ball Bh,d

of radius ν1,1,1δ1,1,1(h) centered in ∆ũh,d is inside the
cell Xh,d, if we choose ν1,1,1 such that ν1,1,1δ1,1,1(h) ≤

ρ

min
i=1,...,Ncnu

(bi − ai)

2h+1 . Then ν can be chosen as

ν1,1,1 ≤

ρ min
i=1,...,Ncnu

(bi − ai)

δ
1,1
out + λδ1in

. ✷

1 For every x, y ∈ R
n, we have |xT y| ≤ ‖x‖1‖y‖∞.
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Up to now, we have proved that the Requirements 1-
4 are satisfied for σ = τ = ω = 1. In a similar way,
we can obtain corresponding results for other cases. The
dedicated semi-metrics ℓ and the δ(h) expressions for
different σ, τ, ω are presented in the appendix, where

ℓσ,τ,ω = ℓ
σ,τ
out + λℓωin and δσ,τ,ω(h) = 1

2h+1

[

δ
σ,τ
out + λδωin

]

.

Remark 1.The computational complexity of optimistic
optimization in our implementation is exponential in the
control horizon Nc. On the other hand, the MPL-MPC
problem can also be formulated as an MILP problem
[9,3]. The number of auxiliary binary variables that are
used to convert the max operator into linear equations
is proportional to the prediction horizonNp. As a result,
the complexity of state-of-the-art MILP algorithms is in
the worst case exponential in Np [19]. Therefore, opti-
mistic optimization will be more efficient if Nc ≪ Np.

6 Examples

In this section, we illustrate the approach and the state-
ment in Remark 1 with random experiments and an ap-
plication to an industrial manufacturing system.

6.1 Random systems

Consider the MPL system (1)-(2) with nu = ny = 1. We
will consider nx = 5, 10, 20. To verify the statement in
Remark 1, we will perform experiments for Nc = 3, 4, 5
and Np = Nc +1, . . . , 60. Assume that λ = 0.01, u(0) =
0, σ = τ = ω = 1, and −15 ≤ ∆u(k) ≤ 15 for all k.
The elements of A,B,C, x(0) are selected as random in-
tegers uniformly distributed in the interval [0, 10], but
some elements of A,B,C, x(0) may be equal to ε with
a probability 0.2. The increments of the reference se-
quence r are random integers uniformly distributed in
the interval [0, 10]. For each nx ∈ {5, 10, 20}, we gen-
erate 20 random (A,B,C, x(0)) combinations. For each
choice of (A,B,C, x(0)), we generate 10 random refer-

ence sequences {r(k)}
Np

k=1. We compare the efficiency of
our method with the MILP solvers cplex and glpk for
solving the problem (9). This comparison is fair because
our method and the MILP solvers are all implemented
in object code. The computational budget of optimistic
optimization is set to 200 node expansions. The cplex

solver is from the Tomlab toolbox and the glpk solver is
from the Multi-Parametric Toolbox. All experiments are
performed in Matlab. The CPU time for each method
are plotted using logarithmic scale in Figure 1. We can
see that, in Figure 1(a), for Nc = 3, the mean CPU time
curves of optimistic optimization (oo) and the MILP
solvers intersect at Np = 6. For Nc = 4 and Nc = 5, the
intersections of the mean CPU time curves for oo and
for the MILP solvers occur at respectively Np = 9 and
Np = 14 as shown in Figure 1(b-c). Thus optimistic op-
timization is faster than MILP when Np is about two

or three times as large as Nc. We can also see that the
computation time of the MILP solvers is exponential in
Np, while Np has no significant influence on the compu-
tation time of optimistic optimization.

We also compute the relative error between the objec-
tive function value obtained by optimistic optimization
and the best value among the MILP solvers (see Fig-
ure 1(d)). The difference between the objective function
values provided by the MILP solvers are negligible, so
it is not plotted. For each nx and each combination of
A,B,C, x(0) and r(k), the relative error of optimistic op-
timization is computed. The plotted relative errors are
the average values over all instances. We can see that for
each value of Nc considered, the average relative errors
are less than 3.5× 10−3.

6.2 Industrial manufacturing system

Now we consider the manufacturing unit for producing
rubber tubes for automobile equipment presented in [23].
The dynamic behavior of this system is described by an
MPL system with 19 states, 2 inputs, and 1 output (see
[23] for details). Let Nc = 2. We run experiments for
Np = Nc + 1, . . . , 40 with λ = 0.0001, σ = τ = ω = 1,
u(0) = [0 0]T and 2 ≤ ∆ui(k) ≤ 8, i = 1, 2, for all
k. The increments of the reference sequence r are ran-
dom integers uniformly distributed in the interval [2, 10].
We use optimistic optimization and the cplex solver to
solve the corresponding MPL-MPC problem (The glpk
solver is not used for comparison because cplex is much
faster than glpk when solving the resulting MILP prob-
lem for this example). The computational budget of op-
timistic optimization is set to 700 node expansions. Fig-
ure 2 shows the CPU time for optimistic optimization
and cplex and the relative error between the values of

J
1,1,1
∆ provided by both methods. We can see that opti-

mistic optimization is faster than cplex after Np = 14
and the relative error between the objective function val-
ues is less than 9%.

7 Conclusions

We have considered model predictive control for max-
plus linear systems which usually results in a nonsmooth
nonconvex optimization problem. We have extended op-
timistic optimization to solve the given problem and
derived expressions for the required parameters. Based
on the theoretical analysis, we found that the complex-
ity of the proposed approach increases exponentially in
the control horizon instead of the prediction horizon.
Moreover, the worst-case complexity of the mixed inte-
ger linear programming (MILP) method is exponential
in the prediction horizon. As illustrated by the numeri-
cal results, optimistic optimization is more efficient than
MILP when the prediction horizon is large and the con-
trol horizon is small.
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We only considered the simple bounds on the input rate.
The case with general linear constraints on inputs and
outputs will be considered in the future. We will also
consider leveraging the nonexpansivity property of max-
plus linear systems to further reduce the complexity and
to get tighten expressions for the parameters of Require-
ments 1-4.
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Appendix

The main results in Section 5 are for the case σ = τ =
ω = 1. Now we present the dedicated results for other
cases. The proofs are similar.
1) σ = 1, τ = ∞

ℓ
1,∞
out (∆ũ(k),∆ṽ(k)) =

[

max
p=1,...,ny

max(αp, βp)

Np−1
∑

j=0

max
i=1,...,(j+1)nu

∣

∣

∣
Li,·(∆ũ(k)−∆ṽ(k))

∣

∣

∣

]

,

δ
1,∞
out =

Np(Np + 1)‖b− a‖∞
2

max
p=1,...,ny

max(αp, βp).

2) σ = ∞, τ = 1

ℓ
∞,1
out (∆ũ(k),∆ṽ(k)) =

[

ny
∑

p=1

max(αp, βp)

max
j=0,...,Np−1

max
i=1,...,(j+1)nu

∣

∣

∣
Li,·(∆ũ(k)−∆ṽ(k))

∣

∣

∣

]

,

δ
∞,1
out = Np‖b− a‖∞

ny
∑

p=1

max(αp, βp).

3) σ = ∞, τ = ∞

ℓ
∞,∞
out (∆ũ(k),∆ṽ(k)) =

[

max
p=1,...,ny

max(αp, βp)

max
j=0,...,Np−1

max
i=1,...,(j+1)nu

∣

∣

∣
Li,·(∆ũ(k)−∆ṽ(k))

∣

∣

∣

]

,

δ
∞,∞
out = Np‖b− a‖∞ max

p=1,...,ny

max(αp, βp).

4) ω = 2

ℓ2in(∆ũ(k),∆ṽ(k)) = 2
∥

∥Lb+ū(k−1)
∥

∥

2

∥

∥L(∆ũ(k)−∆ṽ(k))
∥

∥

2
,

δ2in = 2
∥

∥Lb+ ū(k − 1)
∥

∥

2

∥

∥L(b− a)
∥

∥

2
.
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