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Distributed Model Predictive Control for Railway Traffic

Management

Bart Kersbergen, Ton van den Boom, and Bart De Schutter∗

February 15, 2025

Abstract

Every day small delays occur in almost all railway networks. Such small delays are often called
“disturbances” in literature. In order to deal with disturbances dispatchers reschedule and reroute trains,
or break connections. We call this the railway management problem. In this paper we describe how the
railway management problem can be solved using centralized model predictive control (MPC) and we
propose several distributed model predictive control (DMPC) methods to solve the railway management
problem for entire (national) railway networks. Furthermore, we propose an optimization method to
determine a good partitioning of the network in an arbitrary number of sub-networks that is used for
the DMPC methods. The DMPC methods are extensively tested in a case study using a model of the
Dutch railway network and the trains of the Nederlandse Spoorwegen. From the case study it is clear
that the DMPC methods can solve the railway traffic management problem, with the same reduction in
delays, much faster than the centralized MPC method.

1 Introduction

In many countries in the world large, complex, and very busy railway networks have been built. Especially
in North and West Europe, China, and Japan the railway networks are used near their maximum capacity.
As a result, very little buffer time is available to recover from delays.

Every day small delays occur in almost all railway networks. Such small delays are often called “distur-
bances” in literature. In order to deal with disturbances dispatchers reschedule and reroute trains, or break
connections. Currently most dispatchers take these decisions based on their experience, a given set of ground
rules, and a limited overview of the network situation. To be able to handle disruptions trains may need
to be canceled, or they may need to be rerouted through the entire network. These changes affect the
rolling stock circulation and the personnel schedules. As a result, the rolling stock circulation needs to be
recomputed and adjustments to the personnel schedules need to be made. Large perturbations, such as
trains breaking down and tracks being blocked, causing trains to be canceled, are often called “disruptions”
in literature. In this paper we focus on railway traffic management for disturbances, and therefore we will
not consider the rolling stock circulation or the personnel schedules. For an overview of those research areas,
literature on disruption management, and integrated approaches combining several of these research areas
the reader is referred to the survey paper of Cacchiani et al. (2014). The literature on methods to railway
traffic management for disturbances can, for the most part, be split up into two groups based on the size of
the problem instances that are considered: there are approaches that focus on a small part of the railway
network and there are approaches that take the entire (national) network into account. We will call railway
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management for small parts of the railway network “local control” and railway management for the entire
network “global control”. Our work in the paper will focus on global control.

Most of the research on railway traffic management is on local control. There we will first look at the
literature on this subject. In recent years many approaches for local railway traffic management have been
proposed such as the methods of Caimi et al. (2012), Corman et al. (2010a, 2012b), D’Ariano and Pranzo
(2009), D’Ariano et al. (2007), Meng and Zhou (2014), Murali et al. (2015), Pellegrini et al. (2014), Quaglietta
et al. (2013) and Rodriguez (2007).

Caimi et al. (2012) developed a railway traffic management method that tries to schedule and route all
trains in an area in and around a large station. A model predictive control approach with a microscopic
model of the railway operations is used based on blocking times. At each point where rescheduling of a
train is possible, a set of possible blocking times for different routes and departure times at platforms or
arrival times at the boundaries of the area are considered for that train. As many trains as possible are then
assigned a route with corresponding blocking times such that all safety and operational constraints are still
respected. The objective is to optimize the passenger satisfaction, measured by punctuality and reliability.
The resulting optimization problem is a binary linear programming problem.

In the work of Pellegrini et al. (2014) the authors propose a mixed integer linear programming (MILP)
approach to reschedule and reroute trains. They model the infrastructure with as many details possible.
They even model the track circuits a block section is build up from separately so they can model sectional
release in the railway traffic management and compare it to block or route release. Optimizations can
be performed subsequently over a long time horizon, and the decisions resulting from each optimization
are implemented as they are produced, resulting in a so-called receding or rolling horizon. They propose
two objective functions for the MILP approach, namely minimizing the maximum secondary delay and
minimizing the total (secondary) delay. They test their approach for two case studies: the triangle of
Gagny and the Lille-Flandres station for different prediction horizon lengths. The first case study is used to
determine the difference in delay reduction for the sectional and route release approaches. The second case
study is used to test the real-life applicability of the approach. They try to determine the optimal solution
for the various delay scenarios and horizon lengths. In many of the cases it proves to be quite difficult to
determine the optimal solution, but in most cases good solutions can be found within 3 minutes. Our work
differs from this work in several ways. The goal here is to reduce the delays in small areas such as stations,
whereas we aim to reduce the delays on a network wide scale. As a result we do not consider rerouting, we
consider station areas a black boxes where we know the arrival and departure times, but not the routes, or
the layout of the station.

Meng and Zhou (2014) developed a method for the simultaneous rerouting and rescheduling of railway
traffic for an N-track network. The network is described per block section and in each block section only
one train can be present at the same time. They propose a novel Lagrangian relaxation solution framework
to decompose the problem into easier to solve dual subproblems and then further decompose the problem
into a set of single train routing and scheduling problems that can be solved in sequence. The solutions of
the dual problems can be transformed into feasible solutions for the original problem.

Murali et al. (2015) present a macroscopic modeling strategy for medium sized railway networks for freight
trains. They also propose a method to reduce the complexity of the model by aggregating portions of the
network into single nodes. They formulate the routing and scheduling problem as an integer programming
(IP) problem and propose two methods to find (partial feasible) solutions to the IP-problem called PFSLPR
and PFSRC. For PFSLPR the IP-problem is solved using LP-relaxation. The solution of the LP-relaxation
is rounded of to find an integer solution giving the routes and the departure times at the origin stations.
With the PFSRC approach the possible routes are limited by adding constraints that enforce a periodic
route schedule. The resulting problem is a mixed integer linear programming-problem. Solving it gives the
routes for the trains and with the routes the maximal matching problem can be solved to find the departure
times. The authors use a genetic algorithm to improve the solutions found with the two approaches. The
computation performance and quality of the solutions of the approaches is compared for a set of networks
with a different number of trains. Finally the original model is compared to the aggregated model for
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different levels of aggregation.

Rodriguez (2007) proposes a method for the routing and scheduling of trains through an area around the
Pierrefitte-Gonesse junction north of Paris. Rodriguez uses a microscopic simulation to model the train and
driver behavior and describes the routing and scheduling problem as a constraint programming problem.
For the given case study the reduction of the delays ranges from 63 to 96%.

In the work of D’Ariano and Pranzo (2009), D’Ariano et al. (2007) the railway operation is also modeled
as a microscopic model based on blocking times with an Alternative Graph (AG) approach. In their AG
approach for every train occupying a block section a node is created in a graph. The nodes of a single train
are then connected to each other through running time constraints and for every pair of trains occupying the
same block section headway/separation constraints are added. If the order in which the trains can occupy
the block sections can be changed with rescheduling actions, then a pair of alternative arcs defining the two
orders in which the trains can occupy the block section are added to the graph. A new schedule for the
railway traffic is found when for each pair of alternative arcs only one arc is chosen and no circuits of positive
length are present in the graph. The graph has an extra node to which all nodes are connected and the
weights of the arcs from all nodes to this extra node are chosen such that minimizing the maximum weight
of all paths from the starting to the ending node corresponds to minimizing the maximum consecutive delay.
To solve this problem the authors use their own branch and bound algorithm.

Corman et al. (2010a, 2012b) have extended the work of D’Ariano et al. (2007) to also consider breaking
connections and locally rerouting trains. They consider the effects of breaking connections by determining
the maximum consecutive delay for different sets of maintained connections. The decrease of the maximum
consecutive delay is then weighed against the number of broken connections. For the local rerouting they
consider a fixed set of alternative routes through station areas for the trains and determine the optimal
routes, train orders, and event times of the trains using the branch and bound algorithm of D’Ariano and
Pranzo (2009), D’Ariano et al. (2007).

Quaglietta et al. (2013) propose a framework to evaluate the stability of the solutions found by the railway
traffic management of D’Ariano and Pranzo (2009), D’Ariano et al. (2007) in the case of dynamically changing
delays in the network. To do this they develop a closed-loop framework where the railway traffic management
algorithm is coupled to a microscopic simulation tool called EGTRAIN(Quaglietta, 2011). In the framework
the optimizations are performed consecutively with a fixed time window in between them, and the new
schedules resulting from each optimization are implemented after each optimization, resulting in receding or
rolling horizon. They test this for the corridor Utrecht-Den Bosch of the Dutch railway network. From their
case study they show that larger prediction horizons result in more delay reduction but also result in less
stable solutions: there are more changes in the schedule between two consecutive optimizations. For their
case study increasing the prediction horizon past 30 minutes does not yield a higher delay reduction.

In most cases the methods for local control use microscopic models. By using microscopic models they can
model the routes, the signaling and safety system, and the speed profiles of the trains. In some cases they
can even change the routes and adjust the speed profiles of the trains. Because of the use of microscopic
models they must consider relatively small networks to be able to find solutions quickly. Therefore these
methods are not directly applicable for global railway traffic management and we should look at different
methods.

Several researchers extended their work to, or developed new methods for larger networks, such as Corman
et al. (2010b, 2012a, 2014), Kanai et al. (2011), Kecman et al. (2013), Kersbergen et al. (2014a), Törnquist
(2007), Törnquist and Persson (2007), and Törnquist-Krasemann (2012).

Corman et al. (2010b, 2012a) and Corman et al. (2014) extend their previous work to multiple areas using
a supervisory controller that coordinates between the areas. For smaller instances and a limited number of
areas the proposed bi-level approach works well, but once the prediction horizon becomes larger and the
number of areas increases a good feasible solution can not always be found. In this paper we propose a flat
distributed approach (single level), where the distributed controllers coordinate with each other directly and
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ensure feasibility without the need of a supervisory controller. As we mentioned before another difference is
that we model the network at a macroscopic level, whereas the models used in Corman et al. (2010b, 2012a)
and Corman et al. (2014) use a microscopic model. Furthermore we use a general MILP approach and not
a AG approach with a custom-made branch and bound algorithm optimized for minimizing the maximum
consecutive delay.

Törnquist and Persson (2007) propose a railway traffic management method for large network instances,
covering a part of the Swedish railway network in the south of the country. Specifically they consider a
network with multiple parallel tracks that can be used between stations. They assume that there are no
restrictions on the tracks the trains can use. They propose a mixed integer programming (MIP) problem
to schedule the trains and to divide them over the tracks such that the delays are minimized. For some
instances the MIP solver cannot find a feasible solution within the available time. To solve this problem
Törnquist(Törnquist, 2007) proposes a heuristic method to solve the problems. She implements a receding
horizon to be able to deal with long time horizons such as an entire day. She considers three different cost
functions: Minimize total final delay, minimize total accumulated delay, and minimize total delay cost. With
the heuristic approach most scenarios can be solved very quickly, but some still take a very long time (some
more than 1 hour). Törnquist-Krasemann (2012) extends the model and solution procedures to also consider
the available routes through the stations limiting the number of available tracks for each train.

Kecman et al. (2013) use the same AG approach as Corman et al. (2010b, 2012a,b, 2014), D’Ariano and
Pranzo (2009), D’Ariano et al. (2007) but now for macroscopic models with different levels of details. The
AG is specifically designed such that the maximum consecutive delay can be minimized using the branch
and bound algorithm of D’Ariano et al. (2007). This branch and bound algorithm is specifically designed
to minimize the weight of the longest path and the AG is adjusted such that the weight of the longest path
corresponds to the maximum consecutive delays.

Kanai et al. (2011) propose a tabu search method to determine the connections of the trains for the entire
network. The goal is to minimize the passenger disutility and to achieve this goal various linear and non-
linear objective functions are proposed. By simulating the railway traffic and the passenger behavior they
are able to determine the passenger disutility for a given set of connections. They test their tabu search on
a case study consisting of a part of the Japanese railway consisting of 41 stations and 40 trains. For this
test case the process time of the algorithm was about 6 minutes in all scenarios using a PC with an Intel
Core2Duo CPU.

Kersbergen et al. (2014a) propose a macroscopic model of the railway traffic that can be described as a
switching max-plus-linear system. Due to the macroscopic model they are able to model the entire Dutch
Network, although in that paper they do not consider all trains. They write the online railway traffic
management problem as a MILP problem and solve it using various MILP solvers.

The methods in these papers all consider larger networks, but most still do not consider a complete (national)
railway network, or only consider a subset of all the trains in the network. Even for the railway networks
they currently consider computing a good solution to the railway traffic management problem in a short
time remains a challenge. Besides these papers many more papers have been published on the subject of
local and in some cases global railway traffic management and several review papers on this subject have
recently been published: see e.g. Cacchiani et al. (2014), Corman and Meng (2015), and Fang et al. (2015).
The authors of these review papers conclude that much research has been done in the recent years on
railway traffic management, but most of it has been on small networks or parts of a network. There is a
need for railway traffic management methods for large-scale networks and possible directions are the use of
macroscopic models and multi-level or distributed control.

We will therefore propose our own control methods to solve the global railway traffic management problem
in this paper. We assume that at a local level another controller is active determines the routes and possibly
arrival and departure times at local points in the network to ensure the feasibility of the global solution, or in
case this is not possible sends feedback to the global controller such that the global problem is updated and
can be solved again. To solve the global railway traffic management problem we will look at model predictive
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control (MPC) approaches. MPC is a control methodology that, at discrete time instants, determines the
control inputs for the system that minimize a cost function based on a prediction of the evolution of the
state of the system under control. The prediction is done over a predefined prediction window using a model
of the system under control. In almost all of the papers on railway traffic management some form of model
predictive control (MPC) is used.

MPC can be characterized by five components:

1) A model of the system (and of the disturbances).
The model is used to predict the effects of the control inputs on the evolution of the system over
a given prediction window and to determine the control actions that minimize or maximize a given
performance index. For railway traffic management the model is used to predict the future arrival and
departure times based on the dispatching actions, current delays, infrastructure, the train dynamics,
and in some cases the routes of trains through the stations. In most cases no model is used to predict
the future delays; instead, only the known delays are used.

2) A cost function.
The cost function is a function of the predicted state evolution, a reference signal and the control
inputs. It is used as a measure to evaluate the quality of the control actions and is chosen by the
designer of the controller. For railway traffic management the cost function is usually a measure of the
delays in the network, such as the maximum train/passenger delay or the sum of (passenger) delays.

3) Constraints.
One of the differentiating characteristics of MPC is that it can directly handle constraints. These
constraints can be on the input, the output, or the state of the system, e.g. to limit the rate of change
in the output, or to limit the range or shape of the input. Examples of operational constraints are:
a maximum on the arrival time of a train at a certain station, or a minimum velocity (or maximum
running time) that should be maintained.

4) Optimization.
At each time instant the controller receives information about the system, usually the state or the
output, and uses that information and a model of the system under control to predict the effects
of the control inputs on the evolution of the state (or output) of the system. The evolution of the
state is only predicted over a finite window determined by the prediction horizon. Furthermore the
control inputs are also only determined over a finite window determined by the control horizon. For
online railway traffic management the optimization determines the dispatching actions that reduce the
delays in the future (arrival and) departure times of the trains based on the current situation in the
network by determining the effects of the current delays and the dispatching actions on those arrival
and departure times.

5) A receding horizon.
Once the controller has determined the control input(s) at each time instant it only implements the
first part of the control inputs. It then waits till the next time instant, receives updated information
from the system and recomputes the control inputs for the optimization problem at that time instant.
At each time instant the optimization is based on a prediction done over a finite window and since this
window starts at the current time instant, it shifts at every time instant. It is called a receding horizon
because of the moving window and the implementation of only the first parts of the control inputs.

MPC for linear models was first described and successfully applied in the late 1970s and early 1980s by
Richalet et al. (1978) and Cutler and Ramaker (1980) in the chemical process industry. In the next decades
MPC was applied successfully many more times and extended to include non-linear models (see Garćıa et al.
(1989), Morari and Lee (1999), Qin and Badgwell (2003) and the references therein). In the early 2000s a
further extension of MPC to max-plus-linear discrete-event systems was made by De Schutter and van den
Boom (2001, 2003).
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The aim of this paper is to propose a method that can be used for global railway traffic management. The
main challenge is the size of the resulting optimization problem and the time it requires to be solved. Most of
the literature on railway traffic management only considers local control and for those papers that consider
larger networks most still do no consider a complete (national) network, but only large parts of it. Even for
those partial networks the computation time remains a challenge. Therefore we propose to look at distributed
model predictive control (DMPC) (Camponogara et al., 2002, Dunbar, 2007, Farina and Scattolini, 2012,
Richards and How, 2007) to reduce the computation time. With DMPC there is no supervisory controller:
instead the model predictive controllers solving the dispatching problems for the subnetworks communicate
and coordinate with each other to reach a global feasible solution in a shorter time than the global model
predictive controller. For an overview of DMPC methods the interested reader is referred to Maestre and
Negenborn (2013).

To improve the work of Kersbergen et al. (2014b, 2015) we introduce a new method based on mixed integer
quadratic programming (MIQP) to determine the partitions of the railway network. The network partitioning
is directly used to determine the parts of the network that each of the distributed model predictive controllers
optimize. A good partition of the railway network should results in lower computation times of the DMPC
approaches and a better result. Therefore it is important to determine a good partition of the railway
network. Furthermore, we determine partitions of the network for 2, 3, 4, 6, and 8 parts to find the best
number of parts the network should be split into. We test all of these partitions in an extensive case study
where the controllers are tested in closed-loop simulation (with the receding horizon principle implemented)
with delays randomly added to the simulation model.

This paper is organized as follows. In Section 2 we explain how MPC is applied to solve the railway traffic
management problem. In Section 4 we explain the distributed model predictive control approaches and in
Section 3 we describe the method that we use to determine the partitioning of the network. In Section 5 we
give an extensive case study on the performance of the different approaches to railway traffic management
considered in this paper. We draw conclusions and give recommendations for future work in Section 5.

2 MPC for on-line railway traffic management

The components of MPC for the application of on-line railway traffic management will be explained in detail
in the following subsections. First we will describe the model used in the model predictive controller. This
model can be used to predict the future arrival and departure times of the trains.

2.1 Modeling of railway traffic and network

For the model used in the model predictive controller we describe the railway traffic and network as a
discrete-event system. The events of the system are the arrivals and departures of the trains at stations and
junctions and crossings outside the station areas. The resulting model is a macroscopic model where the
stations are modeled as single nodes with sufficient capacity to accommodate all trains that arrive at the
stations. The station layout and routes through the station are therefore not modeled. The tracks between
stations are modeled as single links. In this paper we will only describe those elements of the model that
are necessary to understand how the railway traffic is modeled. For a complete description of the model the
reader is referred to Kersbergen et al. (2014a).

The events (arrivals and departures) are connected to each other through several constraints that model
the signaling system, the movement of the trains through the network, and operational conditions such as
scheduled departure and arrival times and possible transfers between trains. We define a train run as a train
departing from one station, traversing a track, and arriving at the next station. Each train run has its own
index and the indices of the associated arrival and departure events correspond to the index of the train run,
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then for train run i the departure time is given by di and the arrival time is given by ai. There are six types
of constraints connecting the events of the train run to other events:

• Running time constraints
A running time constraint describes the traversal of a train over the track and relates the arrival time
of a train run to its departure time:

ai ≥ di + τr,i, (1)

where τr,i is the minimum required time for the train of train run i to traverse the track.

• Continuity constraints
A continuity constraint connects two trains of the same line to each other, e.g. a ‘physical’ train driving
from one station to the next and then continuing on to a third station. This also includes trains turning
or changing lines at their end station:

di ≥ api
+ τd,i, (2)

where pi and i are two consecutive train runs of the same ‘physical’ train, τd,i is the minimum time
the train remains at the station, junction, or crossing.

• Headway constraints
Headway constraints define the order in which trains traverse tracks and they indirectly define the
minimum distance between trains. This is done by relating the arrival and departure times of one
train to the arrival and departure times of the other trains traversing the same track. The headway
times can be chosen such that, as long as there are no unexpected delays on the tracks, none of the
trains run into a yellow or red signal and have to break, or they may be based on regulations set by
the industry.

For two ‘physical’ trains with train runs i and j respectively traversing the track in the same direction
we have

di ≥ dj + τh,d,i,j (3)

ai ≥ aj + τh,a,i,j , (4)

where τh,d,i,j is the minimum safe headway time between departure times dj and di, and τh,a,i,j is the
minimum safe headway time between arrival times aj and ai.

In case the order of departures of two trains on the same track can be changed at the station the
headway constraints need to be adjusted to reflect that possibility. This can be done by replacing the
previous headway constraints with:

di ≥ dj + τh,d,i,j + uh,i,jβ (5)

ai ≥ aj + τh,a,i,j + uh,i,jβ (6)

dj ≥ di + τh,d,j,i + (1− uh,i,j)β (7)

aj ≥ ai + τh,a,j,i + (1− uh,i,j)β, (8)

where uh,i,j ∈ {0, 1} is a binary variable and β ≪ 0 is a large negative number. Notice that by setting
the binary variable to 0 a large negative value is added to the last two constraints rendering them
ineffective (for all (relevant) values of the continuous variables the constraints are satisfied). By setting
the binary variable to 1 the first two constraints are rendered ineffective and the last two constraints
determine the order of the trains.

If two ‘physical’ trains with train runs i and l respectively traverse the same track in the opposite
direction the headway or separation constraint becomes:

di ≥ al + τs,i,l, (9)
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where τs,i,l is the minimum safe separation time between the arrival of the train of train run l and the
departure of the train of train run i.

When it is possible to change the order of the trains traversing the track in opposite direction this
headway constraint should be replaced by:

di ≥ al + τs,i,l + us,i,lβ (10)

dl ≥ ai + τs,l,i + (1− us,i,l)β, (11)

where us,i,l ∈ {0, 1} is a binary variable and β ≪ 0 is a large negative number.

• Timetable constraints
Since the passenger railways operate according to a timetable, none of the trains are allowed to depart
before their scheduled departure times and in some cases they may not arrive before their scheduled
arrival times either. This requirement can be modeled by adding timetable constraints:

di ≥ rd,i (12)

ai ≥ ra,i, (13)

where rd,i and ra,i are the scheduled departure and arrival time respectively for train run i. Timetable
constraints for the arrival times may not always be present.

• Connection constraints
At some stations passengers may transfer to another train. Transfers that are guaranteed, are modeled
by connection constraints. Connection constraints ensure that passengers can change trains at stations
by defining a relation between the departure time of one train and the arrival time of the train from
which the passengers transfer. In case a transfer from the train of train run m to the train of train run
i is guaranteed a connection constraint must be defined that ensures this transfer:

di ≥ am + τc,i,m, (14)

where τc,i,m is the time the passengers have to transfer from the train of train run m to the train of
train run i.

If connection constraints can be broken this can be modeled by

di ≥ am + τc,i,m + uc,i,mβ, (15)

where uc,i,m ∈ {c, 0, 1} is a binary variable and β ≪ 0 is a large negative number.

• Coupling constraints:
At some stations two ‘physical’ trains arrive and must be coupled such that they can continue as one
‘physical’ train. We do not model the coupled train as one ‘physical’ train, but as two ‘physical’ trains
that arrive and depart at the same time. To ensure that they arrive and depart at the same time we
define coupling constraints. Consider the train of train run i and let the train of train run o be the
train to which train of train run i should be coupled to. For these trains the coupling constraints are:

di ≥ do (16)

do ≥ di (17)

ai ≥ ao (18)

ao ≥ ai, (19)

Let a and d contain all arrival and departure times respectively and let x =
[

d⊤ a⊤
]⊤

be the vector
containing all event times.
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Then all of these constraints can be described by one of the following general forms:

xi ≥ ηi (20)

xi ≥ xj + ηi,j (21)

xi ≥ xj + ηi,j + ui,jβ (22)

xi ≥ xj + ηi,j + (1− ui,j)β, (23)

where ui,j is one of the three different types of binary variables uh,i,j , us,i,j , or uc,i,j , and ηi, ηi,j ∈ R are
constant values, that are either a process times, planned arrival or departure times, or just zero.

We assume that the trains arrive and depart as soon as all constraints are satisfied. With this model we can
predict the future arrival and departure times and the effects of the binary variables on these times for all
trains over a whole day. For the model predictive controller at each time instant t(κ) we limit this to a given
prediction and control horizon. The prediction and control horizon at time instant t(κ) are explained next.

For the model predictive controller the model of the railway traffic is built up for a very large time window,
much larger than the prediction horizon, and at each time instant only the part of the model needed for the
optimization at that time is used. Let x then be the vector containing all event times for the entire time
window and let u be the vector containing all binary variables of the model.

2.2 Prediction and control horizon

Let us denote the time instants by t(κ), for κ = 0, 1, . . .. The time between time instants t(κ) can vary
or be constant. We will use a fixed time step between time instants resulting in the following equation:
t(κ + 1) = t(κ) + τS, where τS is the sampling time. To be able to describe the control problem at time
instant t(κ) we first need to define the prediction and control horizon. After that we explain how the events
and control inputs that are in the prediction and control window can be determined for each time instant
t(κ) and how that information is used to determine the part of the model that is needed for the optimization
at t(κ).

The prediction horizon determines the length of the prediction window and therefore the events for which
the event time must be determined. The prediction horizon determines the number of time steps in the
prediction window and is denoted by p. The prediction window is then defined to be the time window
(t(κ), t(κ) + pτS].

The control horizon determines the length of the control window and therefore for which events the binary
variables can be adjusted. The control horizon determines the number of time steps in the control window
and is denoted by c, with c ≤ p. The control window is then defined to be the time window (t(κ), t(κ)+ cτS].

2.2.1 Events and control variables in the prediction and control horizon

Let X (κ) be a vector containing all event time variables of x for which the event times are scheduled or
expected to occur in the prediction window at time instant t(κ). These events have not yet occurred and
are predicted to occur within the time interval (t(κ), t(κ) + pτS].

Not all binary variables can be changed at each time instant. To determine the control variables that can be
changed at t(κ) consider the constraints in (1)–(19). Each constraint relates two events to each other. Let
U(κ) be a vector containing all binary variables that can be changed by the optimization problem at time
instant t(κ). A control variable is in U(κ) if the value of the right-hand side of a constraint depends on that
control variable and if at least one of the two events of the constraint is in the control window and the other
is in the control or prediction window.
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All events, and their associated control variables that occurred before t(κ) are assumed to be in the past
and their event times are assumed to be known. The control variables that are only associated to the events
that are predicted at t(κ) to occur within the time interval (t(κ), t(κ) + cτS] are set to their nominal value,
which is zero1.

2.2.2 Modeling constraints

The model of the railway traffic is built up for an entire day. For the optimization at time instant t(κ)
only those constraints that are needed to determine the event times in X (κ) have to be considered. The
constraints for which the left-hand side contains an event time in X (κ), and the right-hand side contains an
event time in X (κ) or an event time that is in the past are the constraints that are needed at time instant
t(κ).

The constraints can be rewritten in matrix form by moving the event times and binary variables to the
left-hand side and the process times and constants to the right-hand side.

For example the constraints (5)–(8) can be rewritten to:

di − dj − uh,i,jβ ≥ τh,d,i,j

ai − aj − uh,i,jβ ≥ τh,a,i,j

dj − di + uh,i,jβ ≥ τh,d,j,i + β

aj − ai + uh,i,jβ ≥ τh,a,j,i + β,

and are given in matrix form by:









−1 1 0 0 β

0 0 −1 1 β

1 −1 0 0 −β

0 0 1 −1 −β





















di
dj
ai
aj

uh,i,j













≤









−τh,d,i,j
−τh,a,i,j

−(τh,d,j,i + β)
−(τh,a,j,i + β)









.

2.3 Cost function

Before the possible cost functions are proposed, first the definition for delay should be given:

Definition 1. Delay

For any event xi with a scheduled event time ri the delay is defined as the deviation from its scheduled event

time ri:

xd

i = xi − ri, (24)

where xd

i is the delay of event xi.

Since all of these events have a scheduled event time, they also have a timetable constraint, therefore xi ≥ ri
and xd

i (k) ≥ 0. Define ι(κ) as the vector containing the scheduled arrival or departure times of the events
in the prediction horizon at t(κ). Define X d(κ) as the delays of the events in X (κ). Finally define 11×m

as a 1 by m vector containing only ones and 01×m as a 1 by m vector containing only zeroes. With these
definition the cost function can be defined.

For railway traffic management the goal is almost always to minimize the delays; so it makes sense that the
performance criterion reflects this. Obvious choices for the performance criterion would be the minimization

1When the control variables are zero the trains run over the tracks in the nominal order, all connections are maintained,
and all trains run on the tracks they were originally planned on; only the arrival and departure times are adjusted to avoid
conflicts.
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of the sum of all delays, or the sum of arrival delays, minimization of the maximum delay, or minimizing the
passenger delays if detailed passenger information is available. The sum of all delays would translate to the
following cost function of the optimization:

J(κ) = 11×nX (κ) · X d(κ) + ̺11×nU (κ) · U(κ)

= 11×nX (κ) · (X (κ)− ι(κ)) + ̺11×nU (κ) · U(κ)

= 11×nX (κ) · X (κ) + ̺11×nU (κ) · U(κ)− 11×nX (κ) · ι(κ),

where ρ is a small positive value used to ensure that the minimum number of changes are made to the
schedule when multiple solution result in the same value for the sum of delays, nX (κ) is the number of event
times in X (κ), and nU is the number of binary variables in U(κ). The preference for solutions with minimal
changes compared to the schedule is based on the idea that at some point in the future all trains should run
according to the schedule again and that means that any change made to the schedule must also be reversed
at some point, therefore we prefer solutions with less changes if the delays are the same for the solutions.
Note that for a given time step κ, 11×nX (κ) · ι(κ) is a constant value and as the goal is to minimize the cost
function, this constant term does not influence the solution and can thus be removed from the cost function.
This means that minimizing the sum of delays is the same as minimizing the sum of event times.

For the sum of arrival delays this results in the cost function:

J(κ) = [11×na(κ) 01×nd(κ)] ·

[

Xa(κ)
Xd(κ)

]

+ ̺11×nU (κ) · U(κ),

where 01×nd(κ) is a vector containing only zeros of length nd(κ), nd(κ) is the number of departure times in
X (κ), na(κ) is the number of arrival times in X (κ), Xa(κ) is the vector containing the arrival times, and
Xd(κ) is the vector containing the departure times. For the sum of departure delays the zero and one vector
in the cost function should be switched.

Another possibility is to minimize the maximum (arrival/departure) delay. For this a new continuous variable
Xmax needs to be added to the optimization problem that is the maximum of all (arrival/departure) delays.
This can be achieved by adding a set of constraints for the maximum of all delays:

Xmax ≥ Xi(κ)− ιi(κ) for all Xi(κ) ∈ X (κ).

For the arrival delays the set of constraints would be

Xmax ≥ Xa,i(κ)− ιa,i(κ) for all Xa,i(κ) ∈ X (κ).

For the departure delays the set of constraints would be:

Xmax ≥ Xd,i(κ)− ιa,i(κ) for all Xd,i(κ) ∈ X (κ).

The cost function would then be:

J(κ) = Xmax + ̺11×nU (κ) · U(κ).

2.4 Optimization problem

With the events, control variables, and constraints that are required for the optimization at time instant
t(κ) determined, and with the cost function defined, the optimization problem can be written as a mixed
integer linear programming (MILP) problem:

min
z(κ)

c⊤(κ) z(κ) (25)

s.t. A(κ) z(κ) ≤ b(κ), (26)
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where

z(κ) =

[

X (κ)
U(κ)

]

.

Equation (25) contains the cost function that needs to be minimized, where c(κ) is a weighting vector, and
(26) contains the mixed-integer-linear constraints in matrix form.

Now that the optimization problem at time instant t(κ) of the MPC approach has been defined we can look
at distributed model predictive control approaches.

3 Model-based partitioning

For the DMPC methods we will present in the next section we assume that the constraint matrix of the
centralized MPC problem can be reordered such that the matrix can be structured in the following way:

min
z(κ)

[

c̃⊤1 (κ) c̃⊤2 (κ) . . . c̃⊤nsub
(κ)

] [

z̃⊤1 (κ) z̃⊤2 (κ) . . . z̃⊤nsub
(κ)

]⊤

s.t.













A1,1(κ) A1,2(κ) . . . A1,nsub
(κ)

A2,1(κ)
. . . A2,nsub

(κ)
...

. . .
...

Ansub,1(κ) Ansub,2(κ) . . . Ansub,nsub
(κ)























z̃1(κ)
z̃2(κ)
...

z̃nsub
(κ)











≤











b̃1(κ)

b̃2(κ)
...

b̃nsub
(κ)











.

This structure can then be used to define the subproblems of the DMPC problems as we will show in the
next section. In this section we present a mixed integer quadratic (MIQP) optimization problem that can
determine this reordering or partitioning of the constraint matrix for a given number of desired parts. This
partitioning is done off-line based on the constraints matrix of the centralized MPC problem. In the proposed
approach the off-line partitioning method is described next. We first reorder the rows and columns of the
constraint matrix A in (25) and reorder the variables in vector z such that the structure of A gets as close
as possible to a block-diagonal structure. The number of blocks depends on the choice of the number of
subsystems which is denoted by nsub and should be chosen by the designer before the start of the reordering.

This reordering is based on the following goals:

• The constraints that cannot be placed in the block-diagonal structure should only depend on continuous
variables.

• Each diagonal block has its own unique set of binary and continuous variables it depends on, there is no
overlap between those sets, and the union of the sets contains all the binary and continuous variables.

• The number of constraints that cannot be placed in the block-diagonal structure should be minimized.

• The size of the blocks should be of the same order of magnitude.

• The difference in the number of binary variables and continuous variables each block depends on should
be minimized.

If running time constraints are outside one of the diagonal blocks in the constraint matrix, then the headway
constraints between the arrival and departures of the trains, which depend on the same binary variables,
will be in two different blocks, and as a result those two blocks depend on the same binary variables, which
means the second goal would not be achieved. Therefore running time constraints should be in the block-
diagonal structure to ensure the first two goals. Furthermore headway, separation, and breakable connection
constraints all depend on binary variables, and therefore should not be outside the block-diagonal structure
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to ensure the first two goals. Only continuity, coupling, and unbreakable connection constraints remain. By
only allowing continuity and unbreakable connection constraints to be outside the block-diagonal structure,
the first two goals can be achieved.

For the railway model this means that the constraints describing the trains traversing a track, the headway,
and separation constraints between the trains on that track should all be in the same block. Since coupling
constraints describe relations between the same events as headway constraints (arrivals or departures of
trains on the same track) they too should be in the same block.

The steps to reorder the constraint matrix such that it has nsub diagonal blocks are as follows:

1) Group the variables and constraints per track, resulting in nT sets of constraints and variables, where
nT is the number of tracks in the model. The continuity constraints are added to the group in which
the variable of the departure time of the continuity constraint is in.

2) Merge all sets that are connected via a breakable connection constraint, resulting in nT2 remaining
sets2. Denote these sets of constraints as CONi for i = 1, . . . , nT2.

3) Solve a mixed integer quadratic programming (MIQP) problem that minimizes the sum of the maximum
difference in the number of constraints of the nsub subproblems and minimizes the number of constraints
connecting the nsub subproblems. The values of the binary variables determine for each of the nT2 sets
to which of the nsub subproblem they are assigned to.

The MIQP problem can be set up as follows:

• Define nsub continuous variables, denoted by Si for i = 1, . . . , nsub that represent the number of
constraints each subproblem has.

• Define one continuous variable Smax that is the maximum difference between the values Si for i =
1, . . . , nsub.

In order for Smax to be equal to the maximum difference between the values Si for i = 1, . . . , nsub the
following set of constraints is used:

Smax ≥ Si − Sj for i ∈ {1, . . . , nsub}, j ∈ {1, . . . , nsub} \ {i}.

• For each constraint set CONj , j = 1, . . . , nT2 define nsub binary variables denoted by υj,i, for i =
1, . . . , nsub. If binary variable υj,i = 1, then the set CONj is part of block i of the reordered constraint
matrix.

• Define the cost function as

J = ̺Smax −

nT2
∑

j=1

nT2
∑

k=1

nsub
∑

i=1

υj,iQj,kυk,i,

where ̺ is a tuning parameter that determines the importance of minimizing Smax. The element
Qj,k has the value equal to the number of constraints connecting set CONk to set CONj . For each
combination of two sets CONj and CONk the cost function reduces in value equal to Qj,k if and only
if both sets are in the same subproblem. The cost function thus reduces in value for every constraint
connecting two sets if both sets are in the same subproblem. This corresponds to the number of
connecting constraints that are put in one of the diagonal blocks due to the partitioning. The cost
function is thus a combination of a weighted Smax (the maximum difference in the number of constraints
between subproblems) and the sum of connecting constraints that are no longer outside the diagonal
blocks.

2The number of subsystems nsub can therefore at most be nT2
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• To ensure each constraint set is assigned to exactly one block of the constraint matrix the following
set of constraints is used:

nsub
∑

i=1

υj,i = 1 for j = 1, . . . , nT2.

• The number of constraints each block has is determined by the following constraints:

Si =

nT2
∑

j=1

υj,isj for i ∈ {1, . . . , nsub},

where sj is the number of constraints of constraint set CONj .

With this optimization we can determine for the event time variables of each track to which diagonal block
they belong and reorder the constraint matrix into nsub diagonal blocks with nearly empty non-diagonal
blocks.

To illustrate the reordering and partitioning procedure consider the following example:

• A network consisting of 5 stations connected in a straight line via 4 tracks.

• The trains only drive in one direction over the four tracks.

• There are 2 trains in total driving over all four tracks.

• The trains do not drive according to a schedule (there are no timetable constraints)

• The goal is to partition the network into two parts.

Let train 1 be modeled by a1, a2, a3, a4, d1, d2, d3, d4, which are the subsequent arrival and departure events
at the 5 stations. There is no arrival event at the first station and no departure event at the last station.
The running time constraints for train 1 are given by

a1 ≥d1 + τr,1 a2 ≥d2 + τr,2

a3 ≥d3 + τr,3 a4 ≥d4 + τr,4.

The continuity constraints are given by

d2 ≥a1 + τd,2 d3 ≥a2 + τd,3

d4 ≥a3 + τd,4.

Let train 2 be modeled by a5, a6, a7, a8, d5, d6, d7, d8, which are the subsequent arrival and departure events
at the 5 stations. There is no arrival event at the first station and no departure event at the last station.
The running time constraints for train 1 are given by

a5 ≥d5 + τr,5 a6 ≥d6 + τr,6

a7 ≥d7 + τr,7 a8 ≥d8 + τr,8.

The continuity constraints are given by

d6 ≥a5 + τd,6 d7 ≥a6 + τd,7

d8 ≥a7 + τd,6.
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The headway constraints between the two trains are given by

d5 ≥d1 + τh,d,5,1 + uh,5,1β d1 ≥d5 + τh,d,1,5 + (1− uh,5,1)β

a5 ≥a1 + τh,a,5,1 + uh,5,1β a1 ≥a5 + τh,a,1,5 + (1− uh,5,1)β

d6 ≥d2 + τh,d,6,2 + uh,6,2β d2 ≥d6 + τh,d,2,6 + (1− uh,6,2)β

a6 ≥a2 + τh,a,6,2 + uh,6,2β a2 ≥a6 + τh,a,2,6 + (1− uh,2,6)β

d7 ≥d3 + τh,d,7,3 + uh,7,3β d3 ≥d7 + τh,d,3,7 + (1− uh,7,3)β

a7 ≥a3 + τh,a,7,3 + uh,7,3β a3 ≥a7 + τh,a,3,7 + (1− uh,7,3)β

d8 ≥d4 + τh,d,8,4 + uh,8,4β d4 ≥d8 + τh,d,4,8 + (1− uh,8,4)β

a8 ≥a4 + τh,a,8,4 + uh,8,4β a4 ≥a8 + τh,a,4,8 + (1− uh,8,4)β.

There are no connection constraints, timetable constraints, or coupling constraints in this example.

The first step of the reordering and partitioning process is to order the events per track. There are 4
tracks, so that results in four sets of constraints. The variables for the four sets are: {a1, a5, d1, d5, uh,5,1},
{a2, a6, d2, d6, uh,6,2}, {a3, a7, d3, d7, uh,7,3}, and {a4, a8, d4, d8, uh,8,4}, resulting in the following set of con-
straints for track 1:

a1 ≥d1 + τr,1 a5 ≥d5 + τr,5

d5 ≥d1 + τh,d,5,1 + uh,5,1β d1 ≥d5 + τh,d,1,5 + (1− uh,5,1)β

a5 ≥a1 + τh,a,5,1 + uh,5,1β a1 ≥a5 + τh,a,1,5 + (1− uh,5,1)β,

for track 2:

a2 ≥d2 + τr,2 a6 ≥d6 + τr,6

d6 ≥d2 + τh,d,6,2 + uh,6,2β d2 ≥d6 + τh,d,2,6 + (1− uh,6,2)β

a6 ≥a2 + τh,a,6,2 + uh,6,2β a2 ≥a6 + τh,a,2,6 + (1− uh,2,6)β

d6 ≥a5 + τd,6,

for track 3:

a3 ≥d3 + τr,3 a7 ≥d7 + τr,7

d7 ≥d3 + τh,d,7,3 + uh,7,3β d3 ≥d7 + τh,d,3,7 + (1− uh,7,3)β

a7 ≥a3 + τh,a,7,3 + uh,7,3β a3 ≥a7 + τh,a,3,7 + (1− uh,7,3)β

d7 ≥a6 + τd,7,

and for track 4:

a4 ≥d4 + τr,4 a8 ≥d8 + τr,8

d8 ≥d4 + τh,d,8,4 + uh,8,4β d4 ≥d8 + τh,d,4,8 + (1− uh,8,4)β

a8 ≥a4 + τh,a,8,4 + uh,8,4β a4 ≥a8 + τh,a,4,8 + (1− uh,8,4)β

d8 ≥a7 + τd,6.

Since we have no connection constraints step 2 of the reordering process can be skipped and these sets can
be described by CON1, CON2, CON3, and CON4. Now we can set up the MIQP problem to reduce the
number of sets to two.

• First define 2 variables S1 and S2 that represent the number of variables each resulting set has.

• Define the variable Smax and define the constraints such that it is the maximum difference between S1

and S2:

Smax ≥ S1 − S2 Smax ≥ S2 − S1.

15



• For each constraint set CONj , j = 1, 2, 3, 4 define 2 binary variables denoted by υj,i, for i = 1, 2,
resulting in 8 binary variables υ1,1, υ1,2, υ2,1, υ2,2, υ3,1, υ3,2, υ4,1, and υ4,2.

• Define the cost function as

J = ̺Smax −

4
∑

j=1

4
∑

k=1

2
∑

i=1

υj,iQj,kυk,i,

where ̺ is a tuning parameter that determines the importance of minimizing Smax. In this example
we chose ρ = 0.5 and the matrix Q is given by

Q =









0 2 0 0
0 0 2 0
0 0 0 2
0 0 0 0









,

since there are 2 continuity constraints connecting set 1 to set 2, 2 continuity constraints connecting
set 2 to set 3, and 12 continuity constraints connecting set 3 to set 4.

• To ensure each constraint set is assigned to exactly one block of the constraint matrix the following
set of constraints is used:

υ1,1 + υ1,2 = 1 υ2,1 + υ2,2 = 1

υ3,1 + υ3,2 = 1 υ4,1 + υ4,2 = 1

• The number of constraints each block has is determined by the following constraints:

S1 = υ1,1s1 + υ2,1s2 + υ3,1s3 + υ4,1s4

S2 = υ1,2s1 + υ2,2s2 + υ3,2s3 + υ4,2s4,

where s1 = 6, s1 = 8, s1 = 8, and s1 = 8 are the number of constraints per set.

Now the MIQP is fully described for the example and can be solved. The optimal solution is found as

υ1,1 = 1 υ1,2 = 0

υ2,1 = 1 υ2,2 = 0

υ3,1 = 0 υ3,2 = 1

υ4,1 = 0 υ4,2 = 1

S1 = 14 S2 = 16

Smax = 2 J = −3

This means that the sets of track 1 and track 2 should be combined and the sets for track 3 and track 4
should be combined resulting in the following two sets of constraints:

a1 ≥d1 + τr,1 a5 ≥d5 + τr,5

d5 ≥d1 + τh,d,5,1 + uh,5,1β d1 ≥d5 + τh,d,1,5 + (1− uh,5,1)β

a5 ≥a1 + τh,a,5,1 + uh,5,1β a1 ≥a5 + τh,a,1,5 + (1− uh,5,1)β

a2 ≥d2 + τr,2 a6 ≥d6 + τr,6

d6 ≥d2 + τh,d,6,2 + uh,6,2β d2 ≥d6 + τh,d,2,6 + (1− uh,6,2)β

a6 ≥a2 + τh,a,6,2 + uh,6,2β a2 ≥a6 + τh,a,2,6 + (1− uh,2,6)β

d6 ≥a5 + τd,6 d2 ≥a1 + τd,2,
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and:

d7 ≥a6 + τd,7 d3 ≥a2 + τd,3

d8 ≥a7 + τd,6 d4 ≥a3 + τd,4

a3 ≥d3 + τr,3 a7 ≥d7 + τr,7

d7 ≥d3 + τh,d,7,3 + uh,7,3β d3 ≥d7 + τh,d,3,7 + (1− uh,7,3)β

a7 ≥a3 + τh,a,7,3 + uh,7,3β a3 ≥a7 + τh,a,3,7 + (1− uh,7,3)β

a4 ≥d4 + τr,4 a8 ≥d8 + τr,8

d8 ≥d4 + τh,d,8,4 + uh,8,4β d4 ≥d8 + τh,d,4,8 + (1− uh,8,4)β

a8 ≥a4 + τh,a,8,4 + uh,8,4β a4 ≥a8 + τh,a,4,8 + (1− uh,8,4)β,

with only two constraints, denoted in bold, connecting the two sets.

4 Distributed Model Predictive Control

For very large and complex systems the optimization problem resulting from a centralized MPC approach
may not be solvable within the time available, or the solution returned may be far from optimal. A solution
for this problem can be to use distributed model predictive control (DMPC) (Camponogara et al., 2002,
Dunbar, 2007, Farina and Scattolini, 2012, Richards and How, 2007). Most DMPC approaches have been
developed for continuous or discrete-time systems (Maestre and Negenborn, 2013). Since our model is
a discrete-event model, and these DMPC approaches make use of continuous or discrete time stability
and robustness theories to ensure convergence, these DMPC approaches cannot be directly applied to our
problem. Instead, we introduce our own DMPC methods for discrete event systems.

In DMPC the system is partitioned into a number of subsystems and each subsystem is controlled by its
own model predictive controller. Each controller therefore has to solve its own optimization or subproblem.
In the case of railway traffic management each subsystem consists of a subset of all stations and tracks and
the trains on that part of the network and the controller of the subsystem can only control that part of the
network. In that part of the network the local controller can take any dispatching action. In the rest of the
network the other controllers decide the schedule.

The advantage of partitioning the system into subsystems is that the optimization problem that must be
solved to find the control inputs for the subsystems can in general be solved much faster since it is smaller
and less complex than the optimization problem used to determine the control inputs for the centralized
MPC method. The downside is that the obtained control inputs may be suboptimal for the complete system.
In Section 3 we will explain the partitioning method, but first we will discuss the DMPC methods.

In the previous section we have shown that the constraint matrix can be reordered such that the optimization
problem at time instant t(κ) of the MPC problem can be written as

min
z(κ)

[

c̃⊤1 (κ) c̃⊤2 (κ) . . . c̃⊤nsub
(κ)

] [

z̃⊤1 (κ) z̃⊤2 (κ) . . . z̃⊤nsub
(κ)

]⊤
(27)

s.t.













A1,1(κ) A1,2(κ) . . . A1,nsub
(κ)

A2,1(κ)
. . . A2,nsub

(κ)
...

. . .
...

Ansub,1(κ) Ansub,2(κ) . . . Ansub,nsub
(κ)























z̃1(κ)
z̃2(κ)
...

z̃nsub
(κ)











≤











b̃1(κ)

b̃2(κ)
...

b̃nsub
(κ)











, (28)

where c̃i(κ), z̃i(κ), b̃i(κ) for i ∈ {1, . . . , nsub} are vectors of appropriate size, Ai,j(κ) for i ∈ {1, . . . , nsub}, j ∈

17



{1, . . . , nsub} are matrices of appropriate size, and

z̃i(κ) =
[

X̃⊤
i (κ) Ũ⊤

i (κ)
]⊤

Ai,i(κ) =
[

Ai,i,x(κ) Ai,i,U (κ)
]

Ai,j(κ) =
[

Ai,j,x(κ) 0(κ)
]

,

for i ∈ {1, . . . , nsub} and j ∈ {1, . . . , nsub} \ {i}, and where X̃i(κ) and Ũi(κ) are vectors of appropriate size.
The matrices Ai,i(κ) are split up into a part Ai,i,x(κ) that is multiplied by X̃i(κ), and a part Ai,i,U (κ) that

is multiplied by Ũi(κ) in (28). The matrices Ai,j(κ) are also split up into two parts. One part Ai,j,x(κ) is

multiplied by X̃j(κ) in (28). The part that is multiplied by Ũj(κ) in (28) is guaranteed to be a zero matrix.
In Section 3 we show how we can reorder the constraint matrix such that it gets the assumed structure.

4.1 Distributed method 1

Based on the reordered constraint matrix two methods for solving the problem in a distributed manner are
developed. The resulting structure of matrix shows that there are only a few constraints connecting each of
the blocks, so there is very little interaction between the variables of each block. Therefore it makes sense
to develop DMPC methods based on this block structure.

For the first method each subproblem models the arrival and departures of all trains in the network, but
it can only reorder the trains in one part of the network. Each subproblem optimizes the centralized cost
function while considering all constraints of the centralized problem, but for subproblem i at time instant
t(κ) only X (κ) and Ũi(κ) can be used to optimize the cost function. By using the same cost function
as the centralized problem, each subproblem considers the effects of its dispatching actions on the entire
network. By limiting the binary variables that can be changed to Ui(κ) the subproblem is computationally
less complex to solve than the centralized problem. As a result the MILP problem can be solved much faster.
The subproblems are then solved in sequence. When solving a subproblem the binary variables of the other
subproblems are fixed to the value found when their respective subproblems were solved previously. Since
all subproblems share the same cost function, the cost function of the centralized problem is reduced every
time a subproblem is solved. This continues until none of the subproblems can improve the cost function
anymore. Note that a feasible initial solution can always be found since a feasible solution is the solution
where no dispatching actions are taken; more specifically, all binary variables will be zero, and the trains
would just continue to drive as regular and no order would be changed or connections broken. Another
possibility would be to use a heuristic method such as first-come, first-served to find an initial solution.

To summarize the method:

The overall problem is split into nsub subproblems. The i-th subproblem can be written as3:

min
X (κ),Ũi(κ)

c⊤(κ) z(κ)

s.t. A(κ) z(κ) ≤ b(κ)

Ũj(κ) = Ûj(κ) for j 6= i.

where Ûj(κ) is the vector containing the binary variables of subproblem j found in a previous iteration. The
steps to determine the solution are:

1) Define the iteration counter l = 0. Define an initial estimate for the solution of the centralized MPC
z(κ) denoted by ẑl(κ).

3Recall that z(κ) is split up into nsub sub-vectors z̃i(κ), and Ũi(κ) are the binary variables in z̃i(κ) and are part of z(κ).
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2) Use ẑl(κ) as an initial solution for subproblem i:

min
X (κ),Ũi(κ)

c⊤(κ) z(κ)

s.t. A(κ) z(κ) ≤ b(κ)

Ũj(κ) = Û l
j(κ) for j 6= i.

and solve it. Increase the iteration counter by one: l = l + 1 and denote the solution as ẑl(κ).

3) Repeat step 2 for the other subproblems.

4) Repeat steps 2 and 3 until ||ẑl(κ)− ẑl−nsub(κ)|| < ∆, where ∆ is a very small value.

Since a feasible initial estimate can always be found, and all subproblems consider the centralized problem,
but can only change a limited number of binary variables, a feasible solution for the centralized problem
will always be found in step 2. Furthermore every feasible solution found can and will be used as a starting
solution for the next subproblem. Therefore, every subproblem either improves the found solution or cannot
find a better solution than the current solution. If no better solution than the current solution is found,
the current solution is used for the next subproblem. Once no subproblem can improve the solution the
algorithm stops. We call this method “DMPC method 1”.

Recall the example in Section 3 of the two trains traversing the four tracks. For DMPC method 1 the
constraints of subproblem 1 can be written as:

d1 − a1 ≤− τr,1 d5 − a5 ≤− τr,5

d1 − d5 + uh,5,1β ≤− τh,d,5,1 d5 − d1 − uh,5,1β ≤− τh,d,1,5 − β

a1 − a5 + uh,5,1β ≤− τh,a,5,1 a5 − a1 − uh,5,1β ≤− τh,a,1,5 − β

d2 − a2 ≤− τr,2 d6 − a6 ≤− τr,6

d2 − d6 + uh,6,2β ≤− τh,d,6,2 d6 − d2 − uh,6,2β ≤− τh,d,2,6 − β

a2 − a6 + uh,6,2β ≤− τh,a,6,2 a6 − a2 − uh,2,6β ≤− τh,a,2,6 − β

a5 − d6 ≤− τd,6 a6 − d7 ≤− τd,7

a7 − d8 ≤− τd,6 a1 − d2 ≤− τd,2

a2 − d3 ≤− τd,3 a3 − d4 ≤− τd,4

d3 − a3 ≤− τr,3 d7 − a7 ≤− τr,7

d3 − d7 + uh,7,3β ≤− τh,d,7,3 d7 − d3 − uh,7,3β ≤− τh,d,3,7 − β

a3 − a7 + uh,7,3β ≤− τh,a,7,3 a7 − a3 − uh,7,3β ≤− τh,a,3,7 − β

d4 − a4 ≤− τr,4 d8 − a8 ≤− τr,8

d4 − d8 + uh,8,4 ≤− τh,d,8,4 d8 − d4 − uh,8,4 ≤− τh,d,4,8 − β

a4 − a8 + uh,8,4 ≤− τh,a,8,4 a8 − a4 − uh,8,4 ≤− τh,a,4,8 − β

uh,8,4 = u
l
h,8,4

uh,7,3 = u
l
h,7,3,

where ul
h,7,3, u

l
h,8,4 are the values of the binary variables determined in the l-th iteration of the DMPC

method. The variables that can be adjusted by the optimization are
{a1, a2, a3, a4, d1, d2, d3, d4, uh,5,1, uh,6,2, a5, a6, a7, a8, d5, d6, d7, d8}. The only variables it cannot change are
uh,7,3 and uh,8,4, these are determined by subproblem 2 and are considered constant during the optimization
of subproblem 1 as is shown in the last two equality constraints (shown in bold). The constraints for
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subproblem 2 are written as:

d1 − a1 ≤− τr,1 d5 − a5 ≤− τr,5

d1 − d5 + uh,5,1β ≤− τh,d,5,1 d5 − d1 − uh,5,1β ≤− τh,d,1,5 − β

a1 − a5 + uh,5,1β ≤− τh,a,5,1 a5 − a1 − uh,5,1β ≤− τh,a,1,5 − β

d2 − a2 ≤− τr,2 d6 − a6 ≤− τr,6

d2 − d6 + uh,6,2β ≤− τh,d,6,2 d6 − d2 − uh,6,2β ≤− τh,d,2,6 − β

a2 − a6 + uh,6,2β ≤− τh,a,6,2 a6 − a2 − uh,2,6β ≤− τh,a,2,6 − β

a5 − d6 ≤− τd,6 a6 − d7 ≤− τd,7

a7 − d8 ≤− τd,6 a1 − d2 ≤− τd,2

a2 − d3 ≤− τd,3 a3 − d4 ≤− τd,4

d3 − a3 ≤− τr,3 d7 − a7 ≤− τr,7

d3 − d7 + uh,7,3β ≤− τh,d,7,3 d7 − d3 − uh,7,3β ≤− τh,d,3,7 − β

a3 − a7 + uh,7,3β ≤− τh,a,7,3 a7 − a3 − uh,7,3β ≤− τh,a,3,7 − β

d4 − a4 ≤− τr,4 d8 − a8 ≤− τr,8

d4 − d8 + uh,8,4 ≤− τh,d,8,4 d8 − d4 − uh,8,4 ≤− τh,d,4,8 − β

a4 − a8 + uh,8,4 ≤− τh,a,8,4 a8 − a4 − uh,8,4 ≤− τh,a,4,8 − β

uh,5,1 = u
l
h,5,1

uh,6,2 = u
l
h,6,2,

where ul
h,5,1, u

l
h,6,2 are the values of the binary variables determined in the l-th iteration of the DMPC

method. The variables that can be adjusted by the optimization are
{a1, a2, a3, a4, d1, d2, d3, d4, a5, a6, a7, a8, d5, d6, d7, d8, uh,7,3, uh,8,4}. The only variables it cannot change are
uh,5,1 and uh,6,2, these are determined by subproblem 1 and are considered constant during the optimization
of subproblem 2, as shown in the last two equality constraints (shown in bold).

Clearly both subproblems consider all constraints of the global MPC, only a few constraints are added such
that the variables the subproblem cannot adjust are constant and have a value. Because each subproblem
has all constraints it always find a feasible global solution and the consequences for the entire network of
reordering trains in a part of the network are modeled.

You could say subproblem 1 can only change the order of the trains on tracks 1 and 2, the order of the trains
on tracks 3 and 4 are predetermined by an outside factor (subproblem 2). It can however change all arrival
and departure times, as long as it respects the specified order of the trains on tracks 3 and 4.

For subproblem 2 the opposite is true, it can only change the order of the trains on tracks 3 and 4. The
order of the trains on track 1 and 2 are determined by an outside factor (subproblem 1). Subproblem 2 can
also change all arrival and departure times, as long as it respects the specified order of the trains on tracks
1 and 2.

4.2 Distributed method 2

Since the number of constraints of each subproblem for DMPC method 1 is equal to the number of constraints
for the central MPC problem, for very large systems the speed-up in computation time may still not enough.
For very large systems increasing the number of subproblem is not a solution either, since the number of
constraints remains the same. Therefore another DMPC approach is proposed.

For the second DMPC method each subproblem only models the arrivals and departures of the trains in the
part of the network it can control, it does not consider the effects of its control actions on the arrival and
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departure times of the trains outside its area of control. Therefore each subproblem only considers a part
of the MPC problem in (28). It only optimizes the continuous and binary variables of one of the diagonal
blocks. Each subproblem can then be written as:

min
z̃i(κ)

c̃⊤i (κ) z̃i(κ) (29)

s.t. Ai,i(κ)z̃i(κ) ≤ bi(κ)−
∑

j∈{1,...,nsub}\{i}

Ai,j(κ)z̃j(κ), (30)

where z̃j(κ), for j ∈ {1, . . . , nsub} \ {i} is fixed in this subproblem and determined by the other local model
predictive controllers.

The steps to determine a feasible centralized solution are:

1) Define an initial estimate for the solution of the centralized MPC z(κ) denoted by ẑ(κ), define the
iteration counter l = 0, and define ˆ̃zli(κ) = ẑi(κ) for i = 1, . . . , nsub.

2) For subproblem i, given by (29)–(30), assume z̃j(κ) for j ∈ {1, . . . , nsub} \ {i} is known and equal to
ˆ̃zl+1
j (κ) and solve subproblem i for i = 1. Denote the solution as ˆ̃zli(κ).

3) Repeat step 2 for i = 2, . . . , nsub.

4) Increase the iteration counter by one: l = l + 1 and repeat steps 2 and 3 until |ˆ̃zli(κ) − ˆ̃zl−1
i (κ)| < ∆

for all subproblems (i = 1, . . . , nsub), where ∆ is a very small value. If there is no convergence within
itermax iterations then lock the binary variables Ũ(κ) to their last determined values and determine
the corresponding continuous variables X̃ (κ).

A feasible solution can always be found in step 2, since taking no dispatching actions will always result in a
feasible solution; the delays however may be much higher in that case compared to the optimal solution.

The advantage of this method is that the subproblems are even smaller and can be solved faster. However
since all subproblems only consider a part of the network, the subproblems have no way of taking into
account the effects of their control actions on the other subproblems. It is therefore likely that the solutions
found will be worse than those found with DMPC method 1. We will simply call this “DMPC method 2”.

Recall the example in Section 3 of the two trains traversing the four tracks. For DMPC method 2 the
constraints of subproblem 1 can be written as:

d1 − a1 ≤− τr,1 d5 − a5 ≤− τr,5

d1 − d5 + uh,5,1β ≤− τh,d,5,1 d5 − d1 − uh,5,1β ≤− τh,d,1,5 − β

a1 − a5 + uh,5,1β ≤− τh,a,5,1 a5 − a1 − uh,5,1β ≤− τh,a,1,5 − β

d2 − a2 ≤− τr,2 d6 − a6 ≤− τr,6

d2 − d6 + uh,6,2β ≤− τh,d,6,2 d6 − d2 − uh,6,2β ≤− τh,d,2,6 − β

a2 − a6 + uh,6,2β ≤− τh,a,6,2 a6 − a2 − uh,2,6β ≤− τh,a,2,6 − β

a5 − d6 ≤− τd,6 a1 − d2 ≤− τd,2

where all the variables that can be adjusted by the optimization are on the left-hand side of the equa-
tions. These variables are: {a1, a2, a5, a6, d1, d2, d5, d6, uh,5,1, uh,6,2}. The variables it cannot change are
{a3, a4, d3, d4, a7, a8, d7, d8, uh,7,3, uh,8,4}, these are determined by subproblem 2. The constraints for sub-
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problem 2 are written as:

−d7 ≤−τd,7 − a6 a7 − d8 ≤− τd,6

−d3 ≤−τd,3 − a2 a3 − d4 ≤− τd,4

d3 − a3 ≤− τr,3 d7 − a7 ≤− τr,7

d3 − d7 + uh,7,3β ≤− τh,d,7,3 d7 − d3 − uh,7,3β ≤− τh,d,3,7 − β

a3 − a7 + uh,7,3β ≤− τh,a,7,3 a7 − a3 − uh,7,3β ≤− τh,a,3,7 − β

d4 − a4 ≤− τr,4 d8 − a8 ≤− τr,8

d4 − d8 + uh,8,4 ≤− τh,d,8,4 d8 − d4 − uh,8,4 ≤− τh,d,4,8 − β

a4 − a8 + uh,8,4 ≤− τh,a,8,4 a8 − a4 − uh,8,4 ≤− τh,a,4,8 − β,

where all the variables that can be adjusted by the optimization are on the left-hand side of the equa-
tions. These variables are: {a3, a4, d3, d4, a7, a8, d7, d8, uh,7,3, uh,8,4}. The variables it cannot change are
{a3, a4, d3, d4, a7, a8, d7, d8, uh,7,3, uh,8,4}, these are determined by subproblem 1. The two constraints in
bold show how subproblem 2 depends on the result of subproblem 1. In these two constraints a variable
of subproblem 1 is in the right-hand side of the constraint and during the optimization of subproblem it is
considered as a constant.

From the constraint sets it is clear that only a subset of the constraints of the global MPC problem are
considered. Only the constraints that are needed to determine the variables the subproblem can change are
given. The rest of the constraints are left out and the variables it cannot change are put in the right-hand side
of the constraints and are considered constant. As a result each subproblem only considers the consequences
of its decisions on the tracks it controls and not the rest of the network.

In this case subproblem 1 can adjust the order and the arrival and departure times of the trains on tracks
1 and 2, but has no knowledge at all about the effects on the arrival and departure times of the trains on
tracks 3 and 4. Subproblem 2 can only adjust the order and the arrival and departure times of the trains on
tracks 3 and 4, furthermore it depends on the arrival times of train runs 2 and 6 which it cannot influence.
Also subproblem 2 has no knowledge at all about the effects on the arrival and departure times of the trains
on tracks 1 and 2. In this example subproblem 2 does not affect subproblem 1, since the trains only run in
one direction and there are no trains going from tracks 3 and 4 to tracks 1 and 2.

4.3 Adjusting cost functions

For the second DMPC method in this section the local model predictive controllers do not consider the delay
propagation to the other parts of the network and as a result the train orders at the border of their area of
control tend to be suboptimal for the total network, since a large part of the effects of the order changes are
only noticed in the next area. To reduce the delay propagation from one area controlled by a local model
predictive controller to another area we will improve the second method by adjusting the weights of the
events of the trains leaving to another area. The weights are adjusted only at the start of the optimization
at time instants t(κ), κ = 0, 1, . . .. The weights that need to be adjusted can be found easily. For the local
model predictive controller i the indices of the weights of the MILP problem in c̃i(κ) that we want to adjust
can be determined by finding the variables of MILP problem i that are connected to MILP problem j for
j ∈ {1, . . . , nsub} \ {i} through a constraint.

If we look at how MILP problem i is defined in (29)–(30) it is clear that the indices of the variables of MILP
problem j on which MILP problem i depends coincide with the indices of the non-zero columns in Aj,i(κ).
Then for MILP problem j for j ∈ {1, . . . , nsub} \ {i} the indices of c̃j(κ) that need to be adjusted therefore
coincide with the indices of the non-zero columns of Aj,i(κ) for i = 1, . . . , nsub. Denote these weights by
c̃outj (κ) and denote the corresponding variables as z̃outj (κ).

By increasing the weights c̃outj (κ) the local controllers are forced to focus on reducing the delays of the
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corresponding events, and by doing so possibly reduce the delay propagation to the other areas, at the cost
of the total delay in the local area. There are many possible choices for the values of the weights c̃outj (κ). In
this paper we will consider two different choices:

• Increase the values of weights c̃outj (κ) with the same factor.

• Increase the values of weights c̃outj (κ) based on the number of continuous variables the corresponding
trains have in the other MILP problems.

The first option is to simply choose a factor with which to increase all weights c̃outj (κ). Our choice is to
double the weights. The reason for this is that every continuous variable corresponding to these weights
is connected to at least one continuous variable in one of the other MILP problems, and the dependency
between the delays of these two continuous variables is very high. We call this method “DMPC method 3”.

For the second option we need to determine for every train leaving the area which events are used to model
this train in the other areas. This corresponds to the continuous variables that are connected through
continuity and running time constraints to the variables z̃outj (κ). Denote z̃outj,k (κ) as the k-th element of

vector z̃outj (κ) and denote the set containing the continuous variables in the other subproblems connected to
z̃outj,k (κ) through continuity and running time constraints by Zout

j,k (κ). For every variable in the vector z̃outj (κ)

the weight c̃outj,k (κ) is then set to:

c̃outj,k (κ) = c̃outj,k (κ) +
∑

l:zl(κ)∈Zout

j,k
(κ)

cl(κ), (31)

which is the sum of the weights of the standard cost function of the continuous variables in Zout
j,k (κ) plus the

weight on z̃outj,k (κ). We call this method “DMPC method 4”. In the next section we will show what effects
these changes to the cost function have on the quality of the solution found with the DMPC methods and
what influence they have on the computation time.

4.4 Summary of the DMPC methods

We will compare the MPC and the four DMPC methods based on whether they can reorder the trains local ly
(only in 1 part of the network) or global ly (the entire network), if they can reschedule the trains local ly (only
in the part of the network where they can also reorder) or global ly (in the entire network, as long as they
satisfy the given order of the trains if it is fixed), and whether or not the weights on the trains leaving the
controlled part of the network have their default value, increased by a factor, or relative to the number of
continuous variables. The comparison is given in Table 1

(Place Table 1 about here)

5 Case Study

In this section we compare the performance of the centralized MPC method to the four DMPC methods.
We use a model of the railway network that is based on the Dutch railway network with the timetable of
20114. The train lines, their line type, and their frequencies are shown in Appendix A. The cost function
of the centralized MPC is the sum of all delays with a small weight on the binary variables: c(κ)⊤ z(κ) =

4The complete timetable is too large to include in this paper and is no longer available online. Since there have been very
few major changes in the timetable in the last years the reader can get a general idea of the timetable from the 2015 timetable.
The timetable of 2015 can be found (in Dutch) at http://www.ns.nl/reizigers/reisinformatie/informatie/informatie-tijdens-uw-
reis/download-dienstregeling-2014-2015.html.
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[11×nx(κ) 0.0001 ·11×nU (κ)]

[

x(κ)
U(κ)

]

, where 11×m is a 1 by m vector containing only ones, nx(κ) is the number

of continuous variables at time instant t(κ), and nU is the number of binary variables at time instant t(κ).
The number of trains, constraints, and continuous and binary variables for different time windows of the
timetable of the complete constraint set are given in Table 2.

(Place Table 2 about here)

The personal computer we use has these specifications: AMD Phenom II X4 960T at 3.00GHz with 16GB
memory running 64bit Windows 7 with Matlab 2013b and we have solved the MILP optimization problems
with Gurobi 5.6.0.

Using the method described in Section 3 we have determined partitions of 2, 3, 4, 6, and 8 parts for the
DMPC methods using a value of ρ = 0.005. The partitions can be seen in Figure 1 (b)-(f) and the number
of constraints, and binary and continuous variables per constraint set or part are given in Table 3.

(Place Figure 1 about here) (Place Table 3 about here)

100 scenarios were generated, in each scenario the scheduled arrival and departure times for a 3 hour window
were considered. Depending on the delays between 180 and 200 optimizations are done per scenario. We
delay 10% of the trains with a randomly generated delay according to a Weibull (Weibull, 1951, Yuan, 2006)
distribution with scale parameter 5 and shape parameter 0.8, resulting in a delay scenario comparable to an
average day in The Netherlands (ProRail).

At the start there are no delays. As a result during the first 30 minutes the amount of delays increases, after
that it stabilizes. Therefore, we do not consider the computation times of the optimizations for the first 30
minutes. Depending on the length of the prediction horizon the size of the optimization problems decreases
near the end of the 3 hour window, and therefore we only consider the computation times up to the 130th
minute, leaving us with 100 computation times for each scenario, or 10000 computation times in total, for
each method, and for each partition.

The controllers have to update the schedule every minute and are operating in a closed loop such that at
every time instant new information is gathered from the simulation model and new delays are “detected”
(or introduced) and the controllers have to compute a new schedule at every time instant. Once the new
schedule has been determined only the dispatching actions that apply to the events that will occur in the
minute after the current time instant are implemented. For each scenario we have solved the rescheduling
problem for the centralized MPC method and the four DMPC methods for the five different partitions for
prediction horizons of length 30, 45, 60, and 75 minutes.

For methods based on MPC at each step the solution, or control input, should be determined and imple-
mented well before the new information is received and the next step starts. In this case study we assume we
get new information every minute and therefore the schedule is recomputed every minute. Because of that
the computation time should be well below one minute, an acceptable maximum computation time would
be 20 seconds.

5.1 Computation times

First consider the computation times of the centralized MPC method as given in Figure 2. Most of the
time the new schedule is computed well within 20 seconds, but for the prediction horizons of 45, 60, and
75 minutes, some computation times are already above 60 seconds with a maximum of 158 seconds for
the prediction horizon of 45 minutes. For a prediction horizon of 60 minutes this increases to 736 seconds
and for a prediction horizon of 75 minutes the maximum becomes 1009 seconds. Because of the maximum
computation time the implementations of the centralized MPC with a prediction horizon of 45, 60, and 75
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minutes are currently not suitable for on-line railway traffic management.

(Place Figure 2 about here)

Next consider the computation times of DMPC method 1 as shown in Figure 3 and given in Table 4. For
the prediction horizons of 30 minutes increasing the number of parts in the partition above 3 parts only
increases the computation time. This is because solving the optimization problem of the centralized MPC
method is already relatively easy; therefore, the computation time for each subproblem of DMPC method
1 is only slightly shorter than the centralized MPC method and with an increased number of parts in the
partition the number of iterations the DMPC method needs to perform increases, resulting in an increase in
computation time instead of a decrease. Since the optimization problem becomes harder to solve for larger
prediction horizons, the number of parts for which the computation time still reduces is higher for larger
prediction horizons. Only for prediction horizons of 60 and 75 minutes with a partitioning into 2 parts
the maximum computation time goes above 60 seconds, with a maximum of 67 seconds for a prediction
horizon of 60 minutes and 2 parts, and 103 seconds for a prediction horizon of 75 minutes and 2 parts. For a
prediction horizon of 75 minutes the maximum computation time is above 20 seconds for all partitions. For
a prediction horizon of 60 minutes only the partition with 2 parts has a maximum computation time above
20 seconds. For the prediction horizons of 30 and 45 minutes the maximum computation time is below 20
seconds for all partitions.

(Place Figure 3 about here) (Place Table 4 about here)

Since DMPC methods 2, 3, and 4 are nearly identical methods, only their cost function is different, their
computation times are also similar, as shown in Figures 4-6 respectively. Compared to the computation
times of DMPC method 1 there are clear differences. For DMPC methods 2, 3, and 4 increasing the number
of parts in the partition decreases the computation time for all lengths of the prediction horizon tested and
all partitions, except for DMPC 4, with a prediction horizon of 60 minutes and 8 parts in the partition and
with a prediction horizon of 75 minutes and 4 parts in the partition. In both of these cases the maximum
computation time is slightly higher than for some of the other partitions with less parts. The cause of
the decrease in computation time is that each subproblem only contains of a part of the constraints of
the centralized problem with no overlap in constraints of the subproblems. Thus increasing the number of
subproblems reduces the number of constraints of each subproblem. This is in contrast with the subproblems
of DMPC method 1, where each subproblem contains all constraints of the centralized problem. Therefore,
increasing the number of subproblems does not reduce the number of the constraints of each subproblem.

For DMPC method 2 the maximum computation time is above 60 seconds in only two cases: for a prediction
horizon of 60 minutes and the partition into 2 parts with a maximum of 65 seconds, and for a prediction
horizon of 75 minutes and the partition into 2 parts with a maximum of 118 seconds. There is only one case
where the maximum computation time is between 20 and 60 seconds: a prediction horizon of 75 minutes and
the partition in 3 parts with a maximum of 24 seconds. All other combinations of partitions and prediction
horizon lengths have a maximum computation time below 20 seconds and can be used for on-line railway
traffic management.

(Place Figure 4 about here)

For DMPC method 3 the maximum computation time is above 60 seconds in only one case: A prediction
horizon of 60 minutes and the partition in 2 parts with a maximum of 120 seconds. There are two cases
where the computation time is between 20 and 60 seconds: A prediction horizon of 75 minutes and the
partitions in 2 and 3 parts with maximum computation times of 44 and 24 seconds respectively. All other
combinations of prediction horizon lengths and partitions are below 20 seconds and therefore suitable for
on-line railway traffic management. It is unexpected that the maximum computation time of the prediction
horizon of 75 minutes with the partition in 2 parts is lower than the maximum computation time with the
prediction horizon of 60 minutes and the partition in 2 parts. The longer prediction horizon in general makes
the problems harder to solve, but even though we ran 10000 simulations for each of the possible combinations
of prediction horizon length and number of subproblems the maximum computation time may decrease when
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increasing the prediction horizon due to the binary nature of the problems. Therefore, no strict conclusions
can be drawn about the maximum computation time, which is some cases may still exceed the computation
times we have found. We can only say that it is highly unlikely that the maximum computation time is
higher than the maximum we have determined under the similar delay scenarios.

(Place Figure 5 about here)

Finally for DMPC method 4 there are again two cases where the maximum computation time is above 60
seconds: the prediction horizon of 60 seconds with the partition in 2 parts with a maximum computation
time of 76 seconds and for the prediction horizon of 75 minutes with the partition in 2 parts with a maximum
computation time of 70 seconds. Only for the case of the prediction horizon of 75 minutes and the partition
in 4 parts the maximum computation time is between 20 and 60 seconds. For all other cases the maximum
computation time is below 20 seconds.

(Place Figure 6 about here)

Next we will discuss the delay reduction achieved with the various (D)MPC methods proposed.

5.2 Delay reduction

In order to determine the delay reduction achieved with the various control methods we compare the total
delay (in delay minutes) of the 100 scenarios combined for all methods, prediction horizon lengths, and
partitions to the nominal case. In the nominal case no train orders are changed: only the arrival and
departure times are changed to satisfy the headway constraints. We determine the reduction in delays
compared to the nominal case for all cases in percent of the total delay (delay minutes, not the number of
delayed trains) of the nominal case. For the centralized MPC approach the delay reduction is given in the
bar plot in Figure 7.

(Place Figure 7 about here)

For the DMPC approaches the delay reduction is given in the bar plots in Figure 8 for the various prediction
horizon lengths and partitions.

(Place Figure 8 about here)

All the data is also given in Table 5.

(Place Table 5 about here)

It is clear that DMPC method 4 always outperforms methods 2 and 3 in terms of delay reduction. Recall
that the difference in computation time between DMPC methods 2, 3, and 4 is negligible. Therefore, we will
not consider DMPC methods 2 and 3 in the rest of the discussion.

In Figure 9 the delay reduction is plotted against the maximum computation for DMPC methods 1 and 4
and the centralized MPC method. Ideally the (D)MPC methods have a very high delay reduction and only
require a very short computation time. Such methods would be found in the upper left part of the figure.
The methods with the highest reduction in delays for the given computation time are connected via the
dashed line. When we try to minimize the computation time and maximize the delay reduction, then these
are the Pareto optimal solutions.

As is clear from this figure, the DMPC methods can achieve a similar delay reduction in a much less time
compared to the centralized MPC method. In most cases DMPC method 4 is even slightly faster than
DMPC 1.
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(Place Figure 9 about here)

Furthermore it is clear that by increasing the prediction horizon the delays are reduced more. The effects
of increasing the prediction horizon further diminishes when the prediction horizon is longer: from 30 to
45 minutes the delay reduction for the centralized MPC is improved from 17.9% to 20.0%, from 45 to 60
minutes it is already slightly lower with an improvement to 21.6%, and from 60 to 75 minutes the delay
reduction is only increased to 21.9%, an 0.3% increase. For the DMPC approaches we see similar results.
An explanation for this is that the further ahead the controller predicts the future arrival and departure
times, the less accurate those departure and arrival times become. As a result most of the future arrival and
departure times will be changed at future time instants when new information becomes available and better
predictions can be made. Furthermore, many trains reach their final destination or turning station within
75 minutes, and at the turning station the trains usually have more buffer time, so any delay they still have
at that point is almost completely reduced to zero. As a result the delays do not propagate much further in
time than 60 to 75 minutes.

When we only consider the delay reduction and not the computation time, the centralized MPC with a
prediction horizon of 75 minutes reduces the delays the most: 21.9%. Of the DMPC methods, DMPC method
4 with a prediction horizon of 75 minutes and partitioned into 2 parts has the highest delay reduction: 21.8%.
The difference in delay reduction between the two is almost negligible, but the difference in computation
time is substantial; the average computation time needed for DMPC method is 3.38 times lower than for the
centralized MPC method and the maximum computation time is 14.5 times lower.

When we consider a limit on the maximum computation time of 20 seconds DMPCmethod 1 with a prediction
horizon of 60 minutes and partitioned into 4 parts and DMPC method 4 with a prediction horizon of 75
minutes and partitioned into 3 parts have the best results. DMPC method 4 has a slightly lower average
computation time, but a higher maximum computation time. Both methods achieve a 21.4% reduction in
delays, which is the highest of all methods with a maximum computation time below 20 seconds. In most
cases DMPC 4 is slightly faster and achieves the same delay reduction and therefore DMPC method 4 is
recommended.

6 Discussion and conclusions

One of the remaining challenges for on-line railway traffic management is global control, where a new
schedule is determined for the entire network, instead of a small part of the network. The main challenge is
the computation time needed to find a new and improved schedule. In this paper we have introduced four
distributed model predictive control (DMPC) approaches to solve the problem of global on-line rescheduling
of railway traffic. With the use of a distributed approach a new schedule for the entire railway network can
be found much faster than with a centralized approach. To determine how the network should be split up for
the distributed approach we introduced an optimization-based off-line method that partitions the centralized
rescheduling problem into a set of subproblems that can be used in the DMPC approaches.

To test the proposed DMPC approaches an extensive case studies was performed. In the case study a model
of the Dutch railway network containing all Nederlandse Spoorwegen (Dutch Railways) trains as described
in the timetable of 2011 was used. The centralized problem was partitioned into 2, 3, 4, 6, and 8 parts for
the DMPC approaches and tested for prediction horizons of 30, 45, 60, and 75 minutes. The performance
of the controllers was compared for a three-hour window, where the controller was in a closed loop. Each
minute a new optimization had to be solved and implemented. The total delay in this three hour window
was compared for all four approaches, for all five partitions, and four prediction horizon lengths, for 100
scenarios.

With the MPC method the delay can be reduced the most, but the increased delay reduction comes at a steep
price in terms of computation time, requiring up to 1000 seconds to find the optimal solution. Furthermore
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it is clear that increasing the prediction horizon further than 60 minutes only yields minor improvements
while the computation time does increase steadily. DMPC1 method requires much less time to find its best
solution. At most 103 seconds. The decreased computation time comes at a small price in terms of delay
reduction. For DMPC1 increasing the number of parts of the partition does not improve the computation
time much. For the large prediction horizons the worst case computation time decreased when partitioning
the network in up to 6 parts, but on average the computation time does not improve. For DMPC2-4 on
average the computation time is even better than of DMPC1, and increasing the number of parts does
improves the computation time even up to 8 parts. The delay reduction is a little worse than DMPC1. So
for the highest delay reduction the MPC method is the best. DMPC2-4 require the least computation time
to find their optimal solution. DMPC1 is slightly slower than DMPC2-4 but has a slightly higher delay
reduction. In most cases either DMPC1 or DMPC4 are recommended, but if computation time is no issue
at all then MPC will yield the best results.

In the case study and the rest of the paper we only considered cost functions that represent a measure for
the delays of trains, but for the passengers it would be better to focus on the delays the passengers incur. To
achieve this extensive information on the passengers and their behavior would be needed. With the recent
introduction of smart cards to pay for the railway tickets, railway operators have gained a new source of
information to estimate the number of passengers in the trains and several researchers have been working
on using this data to estimate the passenger flows (Asakura et al., 2012, Kusakabe et al., 2010, van der
Hurk et al., 2015). With this research the cost functions can be changed from a measure of train delays to a
measure of passenger delays. As future research changing the cost function from a measure of train delays
to a measure of passenger delays would be very interesting.

The methods and models we used in the method assume there are only disturbances in the network and no
disruptions, but in reality disruptions happen on a nearly daily basis. We would therefore like to extend our
research into disruption management as well.

Acknowledgments

This research is supported by the Dutch Technology Foundation STW, project 11025 “Model-Predictive
Railway Traffic Management; A Framework for Closed-Loop Control of Large-Scale Railway Systems”. STW
is part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the
Ministry of Economic Affairs.

References

Y. Asakura, T. Iryo, Y. Nakajima, and T. Kusakabe, 2012. Estimation of behavioural change of railway
passengers using smart card data. Public Transport, 4(1),1–16.

V. Cacchiani, D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf, and J. Wagenaar, 2014. An overview
of recovery models and algorithms for real-time railway rescheduling. Transportation Research Part B:
Methodological, 63,15–37.
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A Train lines and their frequencies

The train lines and their frequencies are shown in Table 6. Each line is in both directions and the frequency
is per direction.

(Place Table 6 about here)
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List of Table captions:

1. Comparison of the properties of the proposed control methods.

2. Number of trains, constraints, and continuous and binary variables for 30, 45, 60, and 75 minutes of
the timetable.

3. Number of constraints, and continuous and binary variables for one hour of the timetable per constraint
set.

4. Computation time in seconds of the MPC and DMPC methods for the case study. The first row
indicates the length of the prediction horizon. The number of parts the network was divided into for
the DMPC methods is given in brackets after the name of the DMPC method. The average (avg),
minimum (min), and maximum (max) computation times are given.

5. Delay reduction in % for the centralized MPC and the DMPC methods. The number of parts the
network was divided into for the DMPC methods is given in brackets after the name of the DMPC
method.

6. Train lines and their frequencies for the 2011 timetable of the Dutch Network. InterCity (IC) trains
are interregional trains and Sprinters (SP) are local trains.
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List of Figure captions:

1. Model of the Dutch Network (a), and the partitions used for DMPC, partitioned in 2 (b), 3 (c), 4 (d),
6 (e), and 8 (f) parts. Each part is marked with a different line style.

2. Computation time needed for the centralized model predictive control approach with a prediction
horizon of 30, 45, 60, and 75 minutes.

3. Computation time needed for DMPC method 1 with a prediction horizon of 30, 45, 60, and 75 minutes
for the partitions in 2, 3, 4, 6, and 8 parts. The number of minutes of the prediction horizon are given
by “Pred (min)” below the figure and the number of parts is given by “Sub (#)”.

4. Computation time needed for DMPC method 2 with a prediction horizon of 30, 45, 60, and 75 minutes
for the partitions in 2, 3, 4, 6, and 8 parts. The number of minutes of the prediction horizon are given
by “Pred (min)” below the figure and the number of parts is given by “Sub (#)”.

5. Computation time needed for DMPC method 3 with a prediction horizon of 30, 45, 60, and 75 minutes
for the partitions in 2, 3, 4, 6, and 8 parts. The number of minutes of the prediction horizon are given
by “Pred (min)” below the figure and the number of parts is given by “Sub (#)”.

6. Computation time needed for DMPC method 4 with a prediction horizon of 30, 45, 60, and 75 minutes
for the partitions in 2, 3, 4, 6, and 8 parts. The number of minutes of the prediction horizon are given
by “Pred (min)” below the figure and the number of parts is given by “Sub (#)”.

7. Reduction of the delays in percentage compared to the nominal case for the centralized MPC approach
for the case study.

8. Reduction of the delays in percentage compared to the nominal case for (a) DMPC approach 1, (b)
DMPC approach 2, (c) DMPC approach 3, and (d) DMPC approach 4 for the partitions in 2, 3, 4, 6,
and 8 parts.

9. Reduction of the delays in percentage plotted against the maximum computation for DMPC method 1,
DMPC method 4, and the MPC method for the partitions in 2, 3, 4, 6, and 8 parts, and the prediction
horizons of 30, 45, 60, and 75 minutes. The dashed line shows the Pareto frontier connecting the Pareto
optimal methods.
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Table 1: Comparison of the properties of the proposed control methods.

Method Reorder Reschedule Border weights
MPC Global Global Default
DMPC1 Local Global Default
DMPC2 Local Local Default
DMPC3 Local Local Factor
DMPC4 Local Local Relative
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Table 2: Number of trains, constraints, and continuous and binary variables for 30, 45, 60, and 75 minutes
of the timetable.

Horizon 30 45 60 75
Trains 163 244 326 408
Continuous variables 960 1430 1930 2401
Binary variables 559 1457 2744 4325
Constraints 9397 15275 22050 29094
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Table 3: Number of constraints, and continuous and binary variables for one hour of the timetable per
constraint set.

Parts
Continuous variables 924 1006

2 Binary variables 1420 1324
Constraints 11154 10896
Continuous variables 774 580 576

3 Binary variables 876 894 974
Constraints 7426 7016 7608
Continuous variables 476 448 504 502

4 Binary variables 714 706 652 672
Constraints 5632 5522 5360 5536
Continuous variables 416 252 312 264 358 328

6 Binary variables 470 460 492 482 406 434
Constraints 3972 3492 3912 3696 3454 3524
Continuous variables 224 316 214 308 292 168 256 152

8 Binary variables 360 362 310 338 380 314 336 344
Constraints 2800 3050 2524 2956 3096 2364 2732 2528
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Table 4: Computation time in seconds of the MPC and DMPC methods for the case study. The first row
indicates the length of the prediction horizon. The number of parts the network was divided into for the
DMPC methods is given in brackets after the name of the DMPC method. The average (avg), minimum
(min), and maximum (max) computation times are given.

30 min 45 min 60 min 75 min
avg min max avg min max avg min max avg min max

MPC 0.31 0.12 4.34 1.93 0.30 158 5.60 0.48 736 11.8 0.75 1009

DMPC1 (2) 0.41 0.19 1.79 1.24 0.45 11.8 2.88 0.90 67.4 5.50 1.16 103
DMPC1 (3) 0.53 0.30 1.34 1.46 0.62 5.05 2.78 1.06 18.5 4.73 1.22 52.4
DMPC1 (4) 0.66 0.35 1.39 1.65 0.81 4.71 3.01 1.18 11.3 5.22 1.57 47.5
DMPC1 (6) 0.89 0.52 1.72 2.15 1.18 5.44 4.17 1.99 14.5 6.20 2.34 26.8
DMPC1 (8) 1.12 0.69 2.85 2.54 1.36 6.92 4.80 2.42 15.1 7.32 2.86 32.0

DMPC2 (2) 0.23 0.09 1.06 0.86 0.23 12.4 1.99 0.38 64.9 3.47 0.54 118
DMPC2 (3) 0.20 0.08 0.56 0.70 0.22 3.20 1.43 0.37 12.2 2.24 0.44 28.1
DMPC2 (4) 0.19 0.08 0.46 0.53 0.18 2.40 1.03 0.31 5.57 1.70 0.35 13.0
DMPC2 (6) 0.17 0.08 0.40 0.45 0.17 1.63 0.78 0.25 4.95 1.20 0.34 7.54
DMPC2 (8) 0.16 0.08 0.38 0.38 0.15 1.05 0.64 0.23 2.38 0.98 0.25 5.84

DMPC3 (2) 0.23 0.08 1.02 0.85 0.23 16.5 1.99 0.46 120 3.42 0.54 43.9
DMPC3 (3) 0.20 0.08 0.93 0.70 0.22 3.24 1.47 0.37 13.0 2.32 0.44 24.5
DMPC3 (4) 0.19 0.08 0.58 0.53 0.18 2.03 1.06 0.31 5.59 1.75 0.40 11.3
DMPC3 (6) 0.17 0.08 0.56 0.45 0.17 1.79 0.79 0.25 3.41 1.22 0.31 9.24
DMPC3 (8) 0.16 0.08 0.36 0.37 0.15 1.44 0.64 0.23 3.36 0.97 0.24 7.37

DMPC4 (2) 0.23 0.08 1.17 0.86 0.23 12.6 2.06 0.46 75.6 3.49 0.54 69.6
DMPC4 (3) 0.20 0.08 0.90 0.67 0.22 4.89 1.47 0.37 10.6 2.39 0.45 19.0
DMPC4 (4) 0.19 0.08 0.49 0.53 0.18 2.74 1.09 0.28 6.07 1.82 0.32 21.7
DMPC4 (6) 0.17 0.08 0.57 0.44 0.16 2.58 0.79 0.25 5.48 1.25 0.33 10.5
DMPC4 (8) 0.16 0.08 0.34 0.37 0.15 1.06 0.63 0.23 9.82 0.94 0.24 5.81
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Table 5: Delay reduction in % for the centralized MPC and the DMPC methods. The number of parts the
network was divided into for the DMPC methods is given in brackets after the name of the DMPC method.

30 min 45 min 60 min 75 min

MPC 17.9% 20.0% 21.6% 21.9%
DMPC 1 (2) 17.9% 20.2% 21.5% 21.7%
DMPC 1 (3) 17.7% 19.9% 21.2% 21.4%
DMPC 1 (4) 17.9% 20.0% 21.4% 21.6%
DMPC 1 (6) 17.6% 19.6% 21.0% 21.1%
DMPC 1 (8) 18.0% 20.0% 21.2% 21.4%
DMPC 2 (2) 17.4% 19.2% 20.6% 20.8%
DMPC 2 (3) 17.1% 17.8% 20.1% 20.2%
DMPC 2 (4) 16.1% 17.4% 18.6% 18.5%
DMPC 2 (6) 16.1% 16.7% 18.9% 19.0%
DMPC 2 (8) 16.3% 17.2% 19.2% 19.2%
DMPC 3 (2) 17.8% 19.9% 21.2% 21.4%
DMPC 3 (3) 17.7% 18.5% 20.7% 20.8%
DMPC 3 (4) 17.2% 18.9% 20.0% 20.0%
DMPC 3 (6) 17.0% 17.8% 19.8% 19.8%
DMPC 3 (8) 16.9% 18.2% 20.1% 20.2%
DMPC 4 (2) 17.9% 20.2% 21.6% 21.8%
DMPC 4 (3) 17.8% 19.9% 21.3% 21.4%
DMPC 4 (4) 17.8% 20.1% 21.2% 21.4%
DMPC 4 (6) 17.7% 19.6% 21.1% 21.1%
DMPC 4 (8) 17.7% 19.9% 21.0% 21.0%
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Table 6: Train lines and their frequencies for the 2011 timetable of
the Dutch Network. InterCity (IC) trains are interregional trains
and Sprinters (SP) are local trains.

Train line Train type Frequency

Alkmaar - Maastricht CS IC every 30 minutes
Arnhem - Ede-Wageningen SP every 60 minutes
Arnhem - Zutphen SP every 30 minutes
Amsterdam CS - Almere Oostvaarders SP every 30 minutes
Amsterdam CS - Amersfoort SP every 30 minutes
Amsterdam CS - Breda SP every 30 minutes
Amsterdam CS - Den Haag CS IC every 30 minutes
Amsterdam CS - Dordrecht IC every 60 minutes
Amsterdam CS - Haarlem SP every 30 minutes
Amsterdam CS - Hoofddorp SP every 30 minutes
Amsterdam CS - Lelystad Centrum IC every 30 minutes
Amsterdam CS - Rotterdam CS IC every 60 minutes
Amsterdam CS - Roosendaal IC every 60 minutes
Amsterdam CS - Uitgeest (Haarlem) SP every 30 minutes
Amsterdam CS - Uitgeest (Zaandam) SP every 30 minutes
Amsterdam CS - Vlissingen IC every 60 minutes
Apeldoorn - Enschede SP every 30 minutes
Breukelen - Rhenen SP every 30 minutes
Den Haag CS - Breda SP every 30 minutes
Den Haag CS - Enschede IC every 60 minutes
Den Haag CS - Groningen IC every 60 minutes
Den Haag CS - Gouda Goverwelle SP every 30 minutes
Den Haag CS - Haarlem SP every 30 minutes
Den Haag CS - Hoorn SP every 30 minutes
Den Haag CS - Lelystad Centrum IC every 30 minutes
Den Haag CS - Lelystad Centrum SP every 30 minutes
Den Haag CS - Utrecht CS IC every 30 minutes
Den Haag CS - Utrecht CS SP every 30 minutes
Den Haag CS - Venlo IC every 30 minutes
Den Haag CS - Roosendaal SP every 30 minutes
Den Helder - Nijmegen IC every 30 minutes
Enkhuizen - Amersfoort IC every 30 minutes
Eindhoven - Weert SP every 30 minutes
Eindhoven - Tilburg SP every 30 minutes
Groningen - Zwolle IC every 60 minutes
’s Hertogenbosch - Nijmegen SP every 30 minutes
’s Hertogenbosch - Deurne SP every 30 minutes
Hoorn - Hoofddorp SP every 30 minutes
Roermond - Maastricht Randwyck SP every 30 minutes
Roosendaal - Vlissingen IC every 60 minutes
Roosendaal - Zwolle SP every 30 minutes
Rotterdam CS - Amersfoort IC every 30 minutes
Rotterdam CS - Deventer IC every 60 minutes
Rotterdam CS - Leeuwarden IC every 60 minutes
Rotterdam CS - Uitgeest SP every 30 minutes
Schiphol - Groningen IC every 60 minutes
Schiphol - Eindhoven IC every 30 minutes
Schiphol - Enschede IC every 60 minutes

Continued on next page
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Table 6 – continued from previous page

Train line Train type Frequency

Schiphol - Leeuwarden IC every 60 minutes
Schiphol - Nijmegen IC every 30 minutes
Sittard - Heerlen IC every 30 minutes
Sittard - Heerlen SP every 30 minutes
Utrecht CS - Almere Centrum IC every 30 minutes
Utrecht CS - Breda SP every 30 minutes
Utrecht CS - Breukelen SP every 30 minutes
Utrecht CS - Hoofddorp SP every 30 minutes
Utrecht CS - Tiel SP every 30 minutes
Utrecht CS - Zwolle SP every 30 minutes
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(b)
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(a)

(f)(e)

Figure 1: Model of the Dutch Network (a), and the partitions used for DMPC, partitioned in 2 (b), 3 (c), 4
(d), 6 (e), and 8 (f) parts. Each part is marked with a different line style.
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Figure 2: Computation time needed for the centralized model predictive control approach with a prediction
horizon of 30, 45, 60, and 75 minutes.
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Figure 3: Computation time needed for DMPC method 1 with a prediction horizon of 30, 45, 60, and 75
minutes for the partitions in 2, 3, 4, 6, and 8 parts. The number of minutes of the prediction horizon are
given by “Pred (min)” below the figure and the number of parts is given by “Sub (#)”.
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Figure 4: Computation time needed for DMPC method 2 with a prediction horizon of 30, 45, 60, and 75
minutes for the partitions in 2, 3, 4, 6, and 8 parts. The number of minutes of the prediction horizon are
given by “Pred (min)” below the figure and the number of parts is given by “Sub (#)”.
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Figure 5: Computation time needed for DMPC method 3 with a prediction horizon of 30, 45, 60, and 75
minutes for the partitions in 2, 3, 4, 6, and 8 parts. The number of minutes of the prediction horizon are
given by “Pred (min)” below the figure and the number of parts is given by “Sub (#)”.
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Figure 6: Computation time needed for DMPC method 4 with a prediction horizon of 30, 45, 60, and 75
minutes for the partitions in 2, 3, 4, 6, and 8 parts. The number of minutes of the prediction horizon are
given by “Pred (min)” below the figure and the number of parts is given by “Sub (#)”.
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Figure 7: Reduction of the delays in percentage compared to the nominal case for the centralized MPC
approach for the case study.
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Figure 8: Reduction of the delays in percentage compared to the nominal case for (a) DMPC approach 1,
(b) DMPC approach 2, (c) DMPC approach 3, and (d) DMPC approach 4 for the partitions in 2, 3, 4, 6,
and 8 parts.
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Figure 9: Reduction of the delays in percentage plotted against the maximum computation for DMPC
method 1, DMPC method 4, and the MPC method for the partitions in 2, 3, 4, 6, and 8 parts, and the
prediction horizons of 30, 45, 60, and 75 minutes. The dashed line shows the Pareto frontier connecting the
Pareto optimal methods.
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