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Parameterized Dynamic Routing of a Fleet of

Cybercars ⋆
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Abstract: Due to the nonlinearity of the dynamics of vehicles and the discrete nature of the route
decision variables, the dynamic routing problem for a large number of vehicles is computationally very
hard to solve. In this paper, two efficient parameterized control methods are proposed for the dynamic
routing of a fleet of cybercars in a road network only open to cybercars. With the proposed parameterized
control methods, the updates of the routes of cybercars are parameterized and then optimized over the
parameters with respect to the overall performance of the cybercar system for a representative set of
scenarios. After tuning the parameters, the proposed parameterized control methods are implemented
online with fixed parameters. Moreover, the two proposed parameterized control methods are well-
structured and scalable, and therefore can be applied to road networks with arbitrary topologies. The
effectiveness of the proposed parameterized control methods is shown in a numerical simulation study.

Keywords: Dynamic routing; Transportation Control; Intelligent transportation systems.

1. INTRODUCTION

In recent years, the numbers of private cars in many big cities
all around the world have greatly increased. Although much
effort has been spent on improving the infrastructure, such
as building more roads and installing more advanced traffic
information systems, the highly disorganized behaviors of the
human drivers are still causing severe problems, such as fre-
quent congestion, high numbers of accidents, increasing energy
consumption and pollution, and high levels of noise, etc. Due to
these severe problems, the quality of life and the environment
in big cities has been degraded.

Although public transportation systems (e.g., buses, trams and
subways) have been considered capable of solving these prob-
lems, due to prefixed time schedules and routes, public trans-
portation systems inherently cannot offer the same level of
personal mobility to passengers as private cars. Therefore, even
though public transportation systems have been continuously
improved, people that are in favor of personal mobility still
prefer using private cars. As a result, the problems caused by
the increasing use of private cars in big cities are still largely
unsolved.

A novel and promising approach for personal mobility, emerg-
ing as an alternative solution to the use of private cars, is to
use a cybernetic transportation system, which is an intelligent
transportation system providing on-demand and door-to-door
service, see e.g., Parent and Texier (1993); Parent (1997, 2007);
Naranjo et al. (2009). More specifically, a cybernetic trans-
portation system is exclusively formed by cybercars, which are
small-sized and automated vehicles typically accommodating 3
to 6 seated passengers. Cybercars have a high flexibility and
reactivity, providing on-demand and door-to-door transporta-
tion service. Hence, a cybernetic transportation system offers
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better urban mobility than conventional public transportation
systems, see Parent (2010). Besides, cybercars are powered by
electricity, which is more efficient and less polluting than fossil
fuels. Actually, according to Awasthi et al. (2011), cybercars
are even competitive on a per passenger-km basis compared
with public transportation in terms of energy consumption. In
addition, since electric motors generate much less noise than
gasoline motors, using a cybernetic transportation system will
greatly reduce the noise levels in the urban environment. So
far, several projects, such as CyberCars see Parent et al. (2003),
CyberCars2, CyberC3 see Yang et al. (2006), have been ded-
icated to the development and dissemination of a cybernetic
transportation system.

According to Bishop (2005), the fast development of automated
driving technologies, such as adaptive cruise control, automated
lane change and path following, etc, has enabled individual
vehicles to drive autonomously. However, due to the absence
of efficient strategies for the control of a fleet of cybercars,
cybernetic transportation systems are still not widely used on
a large scale basis.

Actually, the fleet control problem of cybercars has already
been considered in the literature. More specifically, in Awasthi
et al. (2011), the problem was considered conceptually from a
centralized point of view and then a centralized fleet manage-
ment system of cybercars was proposed. In Berger et al. (2011),
a new concept of control that merges centralized and decen-
tralized control approaches, was proposed for the fleet control
problem of cybercars. However, that paper just discussed how
the new concept can help in dealing with disturbances from
the environment, but it did not introduce a specific control
algorithm. In our previous work, see Luo et al. (2014), we
proposed a discrete-time model for the dynamics and the energy
consumption of cybercars and we formulated a specific instance
of the fleet control problem of cybercars, i.e., the dynamic rout-
ing problem. However, we did not propose an efficient control
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Fig. 1. Cybernetic transportation network

method to solve the problem. With respect to the literature,
in this paper, we propose efficient control methods for the
dynamic routing problem of cybercars.

In fact, the dynamics of cybercars are highly nonlinear and the
routes of cybercars are discrete. This leads to the fact that the
dynamical routing problem of a fleet of cybercars is actually
a mixed integer nonlinear programming problem, which is
computationally very hard to solve. For this reason, instead of
computing the optimal routes of cybercars directly, we propose
to use efficient control methods in which the route selection
process is parameterized, and then optimize the parameters of
the control methods with respect to the performance, e.g., total
time spent and total energy consumption, of cybercars.

This paper is organized as follows. In Section 2, we present
the general description of the dynamic routing problem of a
fleet of cybercars. In Section 3, the discrete-time model of the
dynamics and the energy consumption of cybercars used in this
paper is described. In Section 4, two parameterized control
methods are proposed for the dynamic routing of cybercars.
In Section 5, a simple numerical case study is presented to
demonstrate the effectiveness of the proposed control methods.
Finally, in Section 6, we summarize the results of this paper and
present some ideas for future work.

2. THE DYNAMIC ROUTING PROBLEM OF
CYBERCARS

A cybernetic transportation network is a road network only
open to cybercars. Conceptually, a cybernetic transportation
network can be represented by a graph like the one shown in
Figure 1, where each road is represented by a directed link
and each intersection is represented by a node. In addition, we
consider that each link is divided into a number of segments and
each segment has a length typically in the range of 50 to 100 m.

We assume that there are higher-level controllers deciding
schedules (including starting time, departure point and desti-
nation) for all cybercars and only focus on the dynamic routing
problem of all cybercars from their departure points to their
destinations. We assume that, at any time, the traffic density (i.e.
the number of cybercars per unit of length) in each segment de-
termines the speeds of all the cybercars running in that segment.
We also assume each segment has a maximum capacity, which
is the maximum allowed number of cybercars in the segment at
the same time. Note that at any time, if the number of cybercars
in a segment reaches or exceeds the maximum capacity, that

segment will be blocked and no more cybercars are allowed
to enter the blocked segment. In addition, we assume that all
cybercars have the same length and the same mass. Finally, we
assume that within a simulation time interval, no cybercar can
cover a distance longer than the length of a segment.

By taking the real-time conditions (i.e., the positions of cyber-
cars, the number of cybercars in each segment and the blocked
or unblocked state of each segment) of the network into ac-
count, we aim to update the routes of cybercars dynamically
so that the overall system performance, i.e., a weighted sum
of the total time spent and the total energy consumption of all
cybercars in the network, is optimized.

3. DISCRETE-TIME MODELING

Given the current states of the cybercars and the network, a
model of the dynamics of cybercars the network can be used to
predict the future states of the cybercars and the network, which
can then be used in the route selection process for cybercars.

When the departure time for a cybercar arrives, the cybercar
will enter the network. After that, at each simulation time
step, with the current states of all cybercars and the current
conditions of the network given, the states of the cybercars
and the conditions of the network at the next step need to be
updated, and the energy consumption of cybercars at this step
need to be calculated. In this paper, the discrete-time model
for the dynamics and the energy consumption of cybercars
presented in Luo et al. (2014) is used. Summarily, this model
consists of three parts:

• update of states of a single cybercar
• update of states of the network
• computation of energy consumption of a single cybercar

Given the routes of all cybercars, the discrete-time model can
be used to compute the total time spent and the total energy
consumption by all cybercars in the network.

4. PARAMETERIZED CONTROL METHODS

The main idea of a parameterized control method is to parame-
terizing the control decision-making process and then tune the
parameters off-line by solving an optimization problem consid-
ering the performance of the control method on a number of
representative scenarios, see Oung and D’Andrea (2012) and
Tarău et al. (2010). After that, for any specific scenario, the
control decisions are made on-line by using the parameterized
control method with fixed parameters.

In the dynamic routing of cybercars, at each control cycle,
the parameterized control methods update the route of each
cybercar by selecting a route using a parameterized control law
from a limited set of possible routes. More specifically, a finite
set of possible routes for each cybercar from its current position
to its destination can be generated by using shortest route
algorithms, e.g., Dijkstra’s Algorithm presented in Dijkstra
(1959). Besides, the whole network is divided into a set G of
subnetworks and in different subnetworks the parameterized
control law uses different values of parameters.

4.1 Generating a limited set of possible routes from one node
to another

Given a static network with a fixed cost on each link, a shortest
route algorithm is able to find a predefined number of minimal



cost routes from one node to another. More specifically, in
this paper given the topology of the cybernetic transportation
network, before a shortest route algorithm is called to generate
the limited sets of possible routes for cybercars, the cost on each
link j, which will be used by the shortest route algorithm, is
determined by:

c j = α
Llink, j

Llink,ave

+β
1

Tlink,ave

Msegment( j)

∑
m=1

Lm, j

fm, j

(

ρm, j(k)
) (1)

where Llink, j denotes the length of link j, Llink,ave denotes the
average of Llink, j over all links, Tlink,ave denotes the average link
travel time over all links, Lm, j denotes the length of the m-th
segment of link j, Msegment( j) denotes the number of segments
in link j, ρm, j(k) denotes the current traffic density in the m-th
segment of link j, the function fm, j(·) describe how the speeds
of cybercars in the m-th segment of link j depend on the traffic
density in that segment, α and β are given constants.

Based on the fundamental flow-density curve for automated
traffic presented in Bose and Ioannou (2003), one way to define
fm, j(·) is given by

fm, j

(

ρm, j(k)
)

=











vfree,m, j, if ρm, j(k)≤ ρcrit,m, j

1

hcon,m, j

( 1

ρm, j(k)
−Lveh

)

, if ρm, j(k)> ρcrit,m, j

(2)

where vfree,m, j and hcon,m, j respectively denote the free flow
speed and the constant time headway of cybercars in the m-
th segment of link j, Lveh denotes the length of a cybercar, and
ρcrit,m, j denotes the critical traffic density of the m-th segment
of link j, which is given by

ρcrit,m, j =
1

hconvfree,m, j +Lveh

(3)

The way to determine Tlink,ave is given by:

v̄free =
∑

Mlink
j=1 ∑

Msegment( j)
m=1 vfree,m, j

∑
Mlink
j=1 Msegment( j)

(4)

Tlink,ave =
Llink,ave

v̄free/2
(5)

where Mlink denotes the number of links in the network. Note
that v̄free represents the average free flow speed over all seg-
ments in all links, and we assume that the average speed of a
cybercar is half of v̄free.

4.2 Parameterized control method 1

We define Ri(k) as the limited set of possible routes of cybercar
i generated at time kT , as described in Section 4.1. After that,
for each r ∈ Ri(k), we define Lroute(r) as the length of route r,
Troute(r) as the estimated travel time on route r, and Nroute(r)
as the estimated number of cybercars on route r. Note that for
the time-dependent variables such as Troute(r) and Nroute(r), the
index k is dropped for the sake of simplicity.

Since the length of each link is fixed, the length of the route
r can be easily calculated by summing up of the lengths of all
the links belonging to route r. However, even if a route r is
given, the travel time and the number of cybercars on that route
are still time-dependent. Therefore, at any time when Troute(r)
and Nroute(r) are used, they have to be calculated based on the
current states of all cybercars and of the network.

In this paper, we propose two approaches to estimate Troute(r)
and Nroute(r). More specifically, at time step k, given the current
states of all cybercars and of the network, for each r ∈ Ri(k),
Troute(r) and Nroute(r) are estimated as follows:

• Approach 1: Only use the current state of the network:

Troute(r) = ∑
j∈r

Msegment( j)

∑
m=1

Lm, j

fm, j

(

ρm, j(k)
) (6)

Nroute(r) = ∑
j∈r

Msegment( j)

∑
m=1

Nm, j(k) (7)

where ρm, j(k) and Nm, j(k) respectively denote the traffic
density and number of cybercars in the m-th segment of
link j at time step k.

• Approach 2: Predict the future states of the network as-
suming all cybercars follow the current routes and using
the current states of the cybercars and the work and the
simulation model:

ρ̄m, j =
Np

∑
l=1

ρm, j(k+ l)

Np
(8)

Troute(r) = ∑
j∈r

Msegment( j)

∑
m=1

Lm, j

fm, j

(

ρ̄m, j

) (9)

Nroute(r) = ∑
j∈r

Msegment( j)

∑
m=1

Np

∑
l=1

Nm, j(k+ l)

Np
(10)

where Np denotes the prediction horizon, ρ̄m, j denotes the
average traffic density on the m-th segment of link j over
the prediction horizon.

Next, at time step k, for each cybercar i in subnetwork g ∈ G ,
we define such a function for each r ∈ Ri(k):

ϕi

(

r,θg

)

= θg,1 ·
Lroute(r)

Lroute,ave,i
+θg,2 ·

Troute(r)

Troute,ave,i
+

+θg,3 ·
Nroute(r)

Nroute,ave,i +κ
(11)

where θg,1, θg,2 and θg,3 are the parameters for subnetwork
g and Lroute,ave,i, Troute,ave,i, and Nroute,ave,i are respectively the
average of Lroute(r), Troute(r), and Nroute(r) over all r ∈ Ri(k)
for cybercar i, and κ is a small positive number added to the
denominator of the last term in (11) to prevent division by 0.

Finally, based on (11), the route of each cybercar i in subnet-
work g at time step k is selected as:

r∗ = arg min
r∈Ri(k)

ϕi

(

r,θg

)

(12)

where θg = [ θg,1 θg,2 θg,3 ]
T

.

4.3 Parameterized control method 2

In this method, we first define Hn as the set of outgoing links
from node n and Rn,d(k) as the limited set of possible routes
from node n to node d generated at time kT , as described in
Section 4.1. After that, for each j ∈ Hn, we define L j as the
length of link j, and Tlink, j and Nlink, j as the estimated travel
time and estimated number of cybercars on link j, respectively.
Note that for the time-dependent variables such as Tlink, j and
Nlink, j, the index k is dropped for the sake of simplicity.

We propose two approaches to estimate Tlink, j and Nlink, j. More
specifically, at time step k, given the current states of all



cybercars and the current conditions of the network, Tlink, j and
Nlink, j are estimated as follows:

• Approach 1: Only use the current state of the network:

Tlink, j =
Msegment( j)

∑
m=1

Lm, j

fm, j

(

ρm, j(k)
) (13)

Nlink, j =
Msegment( j)

∑
m=1

Nm, j(k) (14)

• Approach 2: Predict the future states of the network as-
suming all cybercars follow the current routes and using
the current states of the cybercars and the work and the
simulation model:

ρ̄m, j =
Np

∑
l=1

ρm, j(k+ l)

Np
(15)

Tlink, j =
Msegment( j)

∑
m=1

Lm, j

fm, j

(

ρ̄m, j

) (16)

Nlink, j =
Msegment( j)

∑
m=1

Np

∑
l=1

Nm, j(k+ l)

Np
(17)

Next, for each j ∈Hn, we define r̃ j,di
as the shortest time route 1

from the end of link j to the destination node di. After that, for
each cybercar i in an incoming link of node n with the link in
subnetwork g, we define the following function:

ϕi,n

(

j,θg

)

= θg,1 ·
Llink, j +Lroute(r̃ j,di

)

Lave,n,di

+θg,2 ·
Tlink, j +Troute(r̃ j,di

)

Tave,n,di

+θg,3 ·
Nlink, j +Nroute(r̃ j,di

)

Nave,n,di
+κ

(18)

where di denotes the destination of cybercar i, θg,1, θg,2 and
θg,3 are parameters for subnetwork g, and Lave,n,di

, Tave,n,di
, and

Nave,n,di
are respectively the average of Lroute(r), Troute(r), and

Nroute(r) over all r ∈ Rn,di
(k).

Finally, the route of each cybercar i in an incoming link of node
n and in subnetwork g is selected as follows:

• selecting the outgoing link from node n as:

j∗ = arg min
j∈Hn

ϕi,n

(

j,θg

)

(19)

where θg = [ θg,1 θg,2 θg,3 ]
T

.
• the entire route of cybercar i from node n to its destination

di is selected as:

r∗ = { j∗}∪{r̃ j∗,di
} (20)

which means the updated route of cybercar i consists of
the outgoing link j∗ of node n and the shortest time route
r̃ j∗,di

from the end of j∗ to the destination di of cybercar i.

4.4 Tuning the parameters for parameterized control methods

After parameterizing the route selection process, we need to
tune the parameters of the proposed parameterized control
methods. This is done as follows.

1 A shortest time route from one node to another can be found by using the

link cost equation (1) with α = 0 for each link.

Table 1. Flows of cybercars that are allowed to
update routes

Flow index Origin node Destination node Percentage

1 5 7 40%

2 1 10 15%

3 8 3 15%

4 2 11 15%

5 9 4 15%

Firstly, given the starting times, the origins and the destinations
of all cybercars, the overall of performance of a cybernetic
transportation system is defined as

J = w1 ·
JTTS

JTTS,typical

+w2 ·
JTEC

JTEC,typical

(21)

where JTTS and JTEC respectively denote the total time spent
and the total energy consumption by all cybercars, JTTS,typical

and JTEC,typical respectively denote the typical values 2 of the
total time spent and the total energy consumption by all cyber-
cars in one simulated period, w1 and w2 are weights.

After that, we define a scenario as a case where the starting
times, the origins and the destinations of all cybercars are given.
Then, the performance of a parameterized control method on
a specific scenario of the dynamic routing of cybercars is
evaluated by

Jo(θθθ) = w1 ·
JTTS,o

JTTS,typical

+w2 ·
JTEC,o

JTEC,typical

(22)

where o denotes the index of the scenario, and θθθ =
[

θ T
1 θ T

2 ...
]T

.

Finally, given a number Nscenario of representative scenarios, the
parameters θθθ of the parameterized control method are tuned by
minimizing the sum of Jo(θθθ) over the representative scenarios.
More specifically, the parameters θθθ are tuned by solving the
following nonlinear programming (NLP) problem:

min
θθθ

Nscenario

∑
o=1

Jo(θθθ) (23)

s.t. model equations

which is nonconvex and can be solved by multi runs of nu-
merical algorithms, e.g. genetic algorithm, simulated anneal-
ing, pattern search and sequential quadratic programming, see
Bertsekas (1999).

5. SIMULATION STUDY

We now illustrate the proposed control methods using a simu-
lation study. In the simulations, we consider the network shown
in Figure 2, where there are 3 subnetworks, 11 nodes and 18
links. Each link is 200 meters long and has 4 segments, with
each segment 50 meters long. We generated 30 scenarios, of
which 20 are used for tuning the parameters of the proposed
control methods and the other 10 are used for evaluating the
performance of the proposed control methods.

For every scenario, we set a number Ncar,enabled of cybercars that
are allowed to update routes and generate a random number
Ncar,fixed of cybercars with fixed routes. After that, the total
number of cybercars are divided into 9 flows, which are sum-
marized in Table 1 and Table 2.

2 These values are e.g., the values of total time spent and total energy consump-

tion of all cybercars in a numerical simulation where the routes of all cybercars

are fixed or a simple route control strategy (e.g., fastest route) is used.



Table 2. Flows of cybercars with fixed routes

Flow index Origin node Destination node Percentage

6 2 3 20%

7 9 10 20%

8 2 10 30%

9 9 3 30%

1 2 3

5 6

8 9 10

2 5

11

3

7

6

10

4

7

11

8 9

1 4

12

13 14

15

16 17

18

subnetwork 1 subnetwork 2 subnetwork 3

Fig. 2. Road network used in simulation study

As routing control only starts playing a role if the network is
fully loaded, we define the departure times of cybercars for
each of the origin-destination flows as follows. For each of the
flows 1, 2 and 3, the departure time of the first cybercar is a
random number uniformly distributed in the interval [0.8,1.6].
In order to create congestion we let the first cybercar of flows
4 and 5 depart later than that of flows 1, 2, and 3, by adding
on offset of 40 s. So the departure time of the first cybercar in
each of the flows 4 and 5 is 40+a, where a is a random number
uniformly distributed in [0.8,1.6]. For the subsequent cybercars
in flows 1 to 5 the time interval between the departure times
of two consecutive cybercars is a random number uniformly
distributed in [0.8,1.6].

Besides, for each flow of cybercars with fixed routes, the
departure time of the first cybercar is 1.2 + b, where b a
random number uniformly distributed in [10,20]. After that, the
time interval between the departure times of two consecutive
cybercars is 1.2 s.

The other parameters used in the simulations are: T = 1s, w1 =
0.7, w2 = 0.3, Np = 20, JTTS,typical = 73202s and JTEC,typical =
11.6767 kWh, vfree,m, j = 60 km/h for all m and all j, the length
of each cybercar Lveh = 3.2 m, the mass of each cybercar is
M = 1000 kg, the efficiency of the electric motor ηmotor =
0.85, the round-trip energy recovery coefficient of the electric
motor is γrecover = 0.38. Besides, the time interval between
two consecutive control steps is Tc = 20s. The simulations are
performed using Matlab 2013b on a cluster computer consisting
of 4 blades with 2 eight-core E5-2643 processors, and 3.3
GHz clock rate and 64 GiB memory per blade. We tuned the
parameters for the two proposed parameterized control methods
for both two different approaches for estimating the travel time
and the number of cybercars on a route.

For simplicity of representation, we refer to the proposed pa-
rameterized dynamic routing methods as follows:

• C1: Parameterized control method 1 with Approach 1
• C2: Parameterized control method 1 with Approach 2
• C3: Parameterized control method 2 with Approach 1
• C4: Parameterized control method 2 with Approach 2

For tuning the parameters of each of the four combinations, we
run the solver fmincon of the Matlab Optimization Toolbox with

Table 3. Scenarios for tuning the parameters

Scenario index Ncar,enabled Ncar,fixed

1 200 155

2 200 170

3 215 117

4 215 192

5 230 100

6 230 171

7 245 149

8 245 189

9 260 134

10 260 109

11 275 109

12 275 107

13 290 183

14 290 101

15 305 140

16 305 156

17 320 170

18 320 149

19 335 129

20 335 153

Table 4. CPU times (s) for tuning the parameters

C1 C2 C3 C4

93838 107510 122890 143540

Table 5. Scenarios for evaluating the performance
of the parameterized control methods

Testing scenario index Ncar,enabled Ncar,fixed

t1 200 146

t2 215 184

t3 230 120

t4 245 174

t5 260 109

t6 275 168

t7 290 117

t8 305 122

t9 320 119

t10 335 142

the interior point algorithm 60 times and use a random starting
point each time to solve the nonlinear programming problem
(23). The 20 scenarios used for tuning the parameters of C1,
C2, C3, and C4 are summarized in Table 3. Besides, the CPU
times for tuning parameters are given in Table 4.

After tuning the parameters, we evaluate the performance of
C1, C2, C3, and C4 on 10 different testing scenarios sum-
marized in Table 5. Note that these 10 testing scenarios are
different from the 20 scenarios used to tune the parameters of
the proposed parameterized control methods.

In order to show the effectiveness of the proposed parameter-
ized control methods, we compare the performance of the pro-
posed parameterized control methods on the testing scenarios
summarized in Table 5 with those of the following three greedy
control methods using Dijkstra’s Algorithm:

• G1: shortest distance routing method, which uses (1) with
α = 1 and β = 0.

• G2: shortest time routing method, which uses (1) with
α = 0 and β = 1.

• G3: combined distance and time routing method, which
uses (1) with α = 0.3 and β = 0.7.



Table 6. Average online computation times (s) of
the control methods

C1 C2 C3 C4 G1 G2 G3

0.5102 1.7339 2.2240 3.7941 0.1410 0.0625 0.0403

Table 7. Performance improvements of the other
control methods with respect to G3, where a posi-

tive number indicates better performance

Scenario C1 C2 C3 C4 G1 G2

t1 -4.04% -3.48% -6.30% -3.13% -3.60% -7.46%

t2 -1.77% -1.39% -0.98% -2.17% -7.17% -2.89%

t3 7.26% 4.27% 6.12% 4.27% -3.43% 1.97%

t4 2.55% 8.21% 1.50% 4.97% 1.34% -0.72%

t5 2.26% 10.34% 2.27% 3.49% -6.30% -1.45%

t6 3.53% 3.48% 2.37% 5.96% -6.40% -0.18%

t7 -0.01% 0.81% 0.20% -2.42% -9.70% -4.38%

t8 -0.28% 2.84% -0.76% 1.40% -7.80% -0.36%

t9 1.19% 5.27% -0.21% 5.66% -2.83% -0.54%

t10 1.86% 1.64% 1.72% -2.66% -10.74% -0.35%

Average 1.29% 3.20% 0.59% 1.54% -5.66% -1.50%

The average online computation times of all control methods
over the testing scenarios are given in Table 6.

Since G3 has the best performance among all the greedy control
methods, we use G3 as the benchmark and calculate the perfor-
mance improvement of the other control methods on the testing
scenarios. More specifically, the performance improvement of
a routing method on a specific scenario compared with that of
G3 on the same scenario is given by

performance improvement =
JG3 − J

JG3

The results of the comparison are summarized in Table 7. Note
that a positive number in a cell of Table 7 indicates that the
corresponding control method performs better than G3 on the
corresponding scenario and vice versa.

It is seen from the simulation results that on the average, the
proposed parameterized control methods perform better on the
testing scenarios than the greedy control methods. Besides, the
parameterized control methods that use predicted states (i.e.,
using estimation approach 2) of the network perform better than
those use only the current states of the network at each control
step. In addition, C2 performs best on the testing scenarios
with better performance on 8 out of the 10 testing scenarios
compared with G3. Finally, C2 has an average performance
improvement of 3.20% over all the testing scenarios compared
with G3.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the dynamic routing problem
of a fleet of cybercars through a cybernetic transportation net-
work that is only open to cybercars. In particular, based on a
discrete-time model of the dynamics of the cybercars and of the
network, we proposed two efficient, well-structured and scal-
able parameterized control methods to solve the problem such
that the system performance combining the total time spent and
the total energy consumption by the cybercars is optimized.
Besides, we have assessed the performance of the proposed
parameterized control methods experimentally by comparing
them with those of greedy control methods on testing scenarios
in simulation study. Simulation results highlight the effective-
ness the of the parameterized control methods.

In our future work, we will compare the performance of the pro-
posed parameterized control methods with those of centralized
MPC and distributed MPC.
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