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Abstract: This paper develops a defect-based risk analysis methodology for estimating rail
failure risk. The methodology relies on an evolution model addressing the severity level of
rail surface defect, called squat. The risk of rail failure is assessed by analysing squat failure
probability using a probabilistic analysis of the squat cracks. For this purpose, a Bayesian
inference method is employed to capture a robust model of squat failure probability when the
squat becomes severe. Moreover, an experimental correlation between squat visual length and
squat crack depth is obtained in order to define four severity categories. Relying on the failure
probability and the severity categories of the squats, risk of future failure is categorised in three
different scenarios (optimistic, average and pessimistic). To show the practicality and efficiency
of the proposed methodology, a real example is illustrated.
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1. INTRODUCTION

In the recent years, railways has been promoted in the
whole world as a means of reducing road traffic congestion
and emission levels. In order to keep the trains running
without disruptions, an efficient maintenance policy based
on risk assessment of the different components of the
infrastructure is essential to anticipate problems before
they occur.

Among all railway infrastructures, the track plays an im-
portant role in the entire railway system. In the Nether-
lands almost half of the maintenance budget is allocated
to track maintenance (Zoeteman, 2014). The purpose of
the budget is to keep the track at a high reliability level.
Moreover, a robust track maintenance plan can facilitate
infrastructure management by capturing a set of realistic
cases of component degradation. Then, the infrastructure
manager would be able to define which scenarios are the
most relevant to consider and how to manage the track
maintenance in a maintenance time horizon. As a high
percentage of the railway system failures occur in the
tracks, analysing the failure risk caused by surface defects
is crucial for the track maintenance plan (Burstow et al.,
2002; Zhao et al., 2006; Liu et al., 2001; Hassankiadeh,
2011). The idea of this paper is to analyse the effect of one
common defect in railway networks called squat. To assess
a defect-based risk, two major factors must be taken into
account. First, the track stochastic variables such as the
growth rate of defects where the rail structure deteriorates

as the traffic passes along the rails. Second, the spatial
characteristics of the track since the track characteristics
vary in space. The idea is to capture the evolution rate of
the squat when the growth can affect the track reliability
and where the track is prone to rail failure. Moreover, in
extreme cases, the squat could pose a safety threat due to
potential derailment (Prescott et al., 2013).

In this paper, risk of rail failure is assessed relying on a
probabilistic approach using a Bayesian inference method.
The Bayesian approach provides robust inferences together
with a more realistic treatment of growth rate uncertain-
ties. A few studies have been carried out on the application
of Bayesian methods in safety of railway infrastructures.
Andrade et al. (2015) employ Hierarchical Bayesian mod-
els to predict the evolution of the main quality indicators
related to railway track geometry degradation including
the standard deviation of longitudinal level defects and
the standard deviation of horizontal alignment defects.
The goal is to use the modelled indicators in planning of
track maintenance operations. An investigation on rail-
way ballast failures is done by Lam et al. (2014) using
Bayesian inference to analyse uncertainty induced by mea-
surement errors of vibrations in the ballast failure zones.
Two integrated frameworks for track degradation and rail
maintenance decisions are proposed relying on Bayesian
networks in (Bouillaut el al. 2008; Mahboob, 2014). A
nonparametric Bayesian approach with a Dirichlet Process
Mixture Model is used to facilitate reliability analysis in
a railway system by Mokhtarian et al. (2013). Train acci-



Fig. 1. Example of severe squats on a rail

dent consequences can be modelled by Bayesian networks
where human errors and track degradation are addressed
(Bearfield et al., 2005, Marsh, 2004; Castillo at al., 2015).
This paper is organised as follows. In Section 2, a short
background on the squats is presented. Section 3 addresses
the Bayesian model of rail failure. Section 4 presents the
risk assessment model together with a real-life example.
Finally, in Section 5, conclusions are presented.

2. SQUAT IN RAILWAY INFRASTRUCTURES

Surface defects can affect track availability. Those rolling
contact fatigue (RCF) defects can be classified as rail
corrugation, squats, head checks, shatter cracking, vertical
splits, head horizontal splits, and wheel burns (Magel,
2001). Appearance of those defects results in the increase
of maintenance operations needed, more frequent track
monitoring required, and rail failure when not detected
in time in the worst case.

In this paper, we investigate squats, which are surface-
initiated defects. The squats are observed in tracks, either
ballast tracks or slab tracks, and in all possible traffic
volumes (Kaewunruen et al., 2014). Fig. 1 shows a refer-
ence photo of severe squats with cracks already propagated
beneath the rail surface.

Typically, the squats evolve from indentations into defects
with surface cracks growing along the depth beneath the
rail surface (Li et al., 2010). Once the squat gets severe
in terms of crack depth and visual length, the train ride
quality and safety become considerably low (Remennikov
and Kaewunruen, 2008). In practice, squats can be de-
tected and analysed using different methods, such as in-
spection using human inspectors, on-board measurements
via photo/video records, axle box acceleration (ABA) mea-
surements, and other non-destructive testing (NDT), such
as ultrasonic and eddy current testing. While axle box
acceleration (ABA) measurements are efficient in detecting
both early stage and severe squats (Molodova et al. 2014;
Li et al. 2015), in this paper the focus is the analysis of
severe defects in terms of crack lengths. Thus, we rely on
ultrasonic and surface photos of the defects.

Ultrasonic (US) testing is currently one of the most exten-
sively employed automatic inspection technique for squats.
This method can only be used to reliably detect cracks
with depths higher than 4 mm, depending on the instru-

ments. When a rail includes squats with cracks larger than
4 mm, the evolution of the defects generates a potential
risk of the rail failure. This paper employs US measure-
ments to model crack growth of squat. In the next two
sections, the rail failure probability model is presented.

3. BAYESIAN MODEL FOR RAIL FAILURE

Bayesian methods are widely used as a statistic technique
to evaluate robustness in stochastic data behaviours in
particular, for analysis of hazard rates with a small number
of data samples. Potential benefits of the Bayesian ap-
proach in comparison with the usual Maximum Likelihood
Estimate (MLE) method are computationally explained
by Ahn et al. (2007). The MLE is an effective tool to
estimate hazard rate as long as a sufficient amount of
data is available. Using the MLE, a single point value for
the failure rate, which maximises the likelihood function,
can be estimated. However, our prior beliefs about the
likely values for the failure rates are not injected into the
estimation model with the MLE. In contrast to the MLE,
Bayesian inference treats failure rates as random variables.
Thus, the difference is that in the Bayesian model, the
estimation output is a probability density function rather
than a single point as in the MLE.

In Bayesian inference, prior knowledge and beliefs about
unknown parameters are represented by the probability
density distribution π0(λ), and statistical observations y
have the likelihood f(y|λ) where λ is the failure rate. Then,
according to Bayes’ theorem, the posterior distribution of
rail failure probability is expressed as:

π (λ|y) = f (y|λ)π0(λ)

f(y)
∝ f (y|λ)π0(λ) (1)

Let us assume that the failure probability is constructed
by considering a nonlinear regression model over the crack
depth. The data include observations of the crack depth,
the number of cracks with the same depth, and the
number of cracks with the growth above 4 mm (see Fig.
2). The nonlinear regression model shows the likelihood
distribution of parameters a (intercept) and b (slope) in
the Bayesian inference model:

f(y|(a, b)) = exp(−1/(a+ b · y)) (2)

where y is the crack depth. When no prior information
is available about the values of parameters a and b, we
assume uniform prior distributions (Faghih-Roohi et al.,
2014):

π0(a) = Uniform (A1, A2) (3)

π0(b) = Uniform (B1, B2) (4)

By Bayes’ theorem, the joint posterior distribution of
the model parameters is proportional to the product
of the likelihood and the priors. Monte Carlo methods
are often used in Bayesian data analysis to describe
the posterior distribution. The objective is to generate
random samples from the posterior distribution and use
them when it is not possible to compute analytically the
posterior distribution. For this purpose, a slice sampling
algorithm is chosen to obtainN samples of the distribution
with an arbitrary density function (Neal, 2003). The slice
sampling algorithm is a type of a Markov Chain Monte
Carlo (MCMC) algorithm. Among all the MCMCmethods
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Fig. 2. The cracks length over 4 mm versus crack growth.
Numbers indicate the occurrence of the data point.

such as Gibbs sampling, and the Metropolis–Hastings
algorithm, slice sampling is easier to implement as only
the posterior needs to be specified (Gilks, 1996).

4. FAILURE RISK ASSESSMENT

4.1 Rail Failure Probability

In this section, the risk model is presented. First, failure
probability is calculated by considering squats with over
4 mm in crack depth measured by US. The probability of
failure indicate how likely is a squat to develop into a rail
break in the future. To evaluate the failure probability, we
consider squats with crack depths ranging from 1 mm to 9
mm. By measuring the depths every one year, we see how
many cracks have reached depth of 4 mm or even more, and
how the cracks growth over time. Then, we enumerate the
squats with the same growth and crack depth, to capture
the typical behaviour of squats in the particular track. Fig.
2 shows the occurrence of cracks of more than 4 mm over
a track segment of around 2.35 kilometres during a period
of 4 years. The Mega Gross Tone (MGT) is equal to 3.719
per year in this track. The data collected in the Fig. 2
is used to estimate the Bayesian parameters, a and b, in
order to capture the failure rate. The idea is to use crack
depths for several different squats over time to calculate
growth with regards to number of the squats with same
growth in depth.

The posterior distribution of the regression parameters
(a, b) is calculated based on the MCMC simulation gener-
ated in one thousand samples. Fig. 3 and Fig. 4 show how
the parameters (a, b) vary over the samples. The posterior
distributions show updated state of the mean value and
the level of the uncertainty of the model parameters. As
seen in the figures, the purpose is to check for convergence
using sample means. This produces a smoother plot than
the raw sample traces, and can make it easier to identify
and understand any non-stationarity. The first fifty values
of Fig. 3 are not comparable to the rest of the figure.
However, the rest of each plot shows that the parameter
posterior means have converged to stationarity.

The probability failure regression models resulted from
N samples of MCMC simulation are depicted in Fig.
5, where N is equal to 1000. The idea of Fig. 5 is
to show how squat will be prone for rail break in the
future. In this figure, the non-linear regression models
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Fig. 3. Posterior distributions of regression parameter a

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of samples

M
e
a
n
 o

f 
th

e
 s

lo
p
e
, 
b

Fig. 4. Posterior distributions of regression parameter b

Table 1. Bayesian point and interval estimates

Scenario Parameter Mean 95 % confidence
interval

s1
a1 0.8001
b1 0.8000

[0.9860,1.0089]
s2

a2 1.0009
b2 0.8624

[0.8589, 0.8667]
s3

a3 1.9592
b3 1.1346
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Fig. 5. Bayesian estimates for rail failure probability after
a time horizon sufficiently long to guarantee a timely
maintenance.

of s1, s2, s3 are used to reflect the optimistic failure
scenario, the average scenario and the pessimistic scenario,
respectively. Thus, relying on the figure, for each available
crack depth, the probability of the squat to develop into a
rail break is estimated within a time horizon, sufficient to
guarantee a timely maintenance. For example, the squats
with crack depth 7 mm induces rail to be broken if we do
not maintenance operations in a long time horizon, with
probabilities increasing according the scenario: 0.8554 for
s1, 0.8668 for s2 and 0.9068 for s3. Point estimates and
Bayesian confidence intervals, representing uncertainty
about parameters after data analysis are presented in
Table 1.
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Fig. 6. Experimental categories of squat based on crack
depths and the visual lengths

4.2 Squat Severity Analysis

As the visual lengths of squats follow a specific growth
model classifying the squats according to its severity, in
this section, a relation on how the visual lengths and the
crack lengths are linked to each other is investigated. The
idea is to classify the severity of the squat when it is getting
worse in terms of both, the visual length and the crack
length. For this purpose, the visual length and the crack
depth of 36 squats were registered every six months over
2 years (see Fig. 5).

As depicted in Fig. 6, the squat growth space is divided
into four categories representing the squat severity. The
reason behind specifying the category boundaries is that
the squats with visual length above 20 mm will potentially
reappear after a grinding operation. Thus, Category 1
shows the most severe growth of squats where the crack
length and visual length both are sufficiently high to
require maintenance as soon as possible. Contrary to the
Category 1, Category 4 is a safe category reflecting all
the squats which are located in the early stage of growth.
There are a few squats observed in categories 2 and 3.
Even though the squats situated in Category 2 are in early
stage of growth in terms of visual length, the crack depth
are considerably high. In Category 3 the visual length is
high whereas the crack depth is below 4 mm.

4.3 Rail Failure Risk

Relying on the failure probability scenarios and the sever-
ity categories, the risk can be defined as:

Rz
s = wz

∫ lzi+1

lzi

Ps(l)dl (5)

where Rz
s is the rail failure probability for scenario s

and Category z, wz is the severity weight of Category z
and [lzi , lzi+1 ] is the interval of crack depths that defines
Category z. The idea is to use the failure probability of
the crack depth l, Ps(l), for each category of severity, z,
by considering the severity weight wz. Table 2 shows the
resulting risk values of each scenario at different categories.
To illustrate, as expected, the risk of failure in scenario s3
for Category 1 is the highest where the crack are most
severe both in the length and the depth while the risk for
scenario s1 in the Category 4 contains the lowest value.

Table 2. Failure risk results

Risk
Scenario

Category
1

Category
2

Category
3

Category
4

s1 0.7758 0.5172 0.1621 0.0811

s2 0.7862 0.5241 0.1654 0.0827

s3 0.8173 0.5449 0.1753 0.0876

The failure risk values can be used as risk Key Performance
Indicators (KPIs) to address health condition of the rail,
so to keep informed infrastructure manager of the status
of track. In combination with other KPIs as defined in
Jamshidi et al. (2015), the risk values can be employed to
support a condition-based maintenance plan.

5. CONCLUSIONS

In this paper, a probabilistic approach is used to model
rail failure considering the squat growth. A Bayesian
method was employed to make robust failure estimation,
including optimistic, average and pessimistic scenarios.
Furthermore, uncertainties of the method are also obtained
and used to calculate Bayesian confidence intervals per
failure scenario. Then, according to where the squat is
in the severity categories, the rail failure risk is obtained
per failure scenario. In future studies, we will develop
the methodology to analytically predict the rail failure
over a time horizon using risk key performance indicators
relying on different measurement sources. Parameters like
mechanical strength values, material properties and geo-
metrical values of the rail such as area of cross section, can
give further details about the way the crack will evolve over
time. The evaluation on how those parameters influence
the risk assessment is part of the further research.
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