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Abstract: Nowadays, congestion caused by traffic in urban areas is considered as a major
problem. In order to make the best use of the existing road capacity, traffic-responsive
control systems, including model-predictive controllers, are excellent choices. A model-predictive
controller can minimize a cost function along a given time horizon. We propose a model-
predictive control system that aims to reduce the congestion, and uses an internal flow model,
which is our proposed modified version of the S-model. In the formulation of the objective
function for the controller, we take into account the effect of those vehicles that remain in the
network at the end of the prediction horizon until the network is completely evacuated. We
formulate this effect as endpoint penalties for the MPC optimization problem. Finally, we will
apply the designed controller to an urban traffic network and compare two scenarios, i.e., the
fixed-time control case and the model-predictive control approach with the endpoint penalties
proposed in this paper. The results prove the excellent performance of the model-predictive
controller compared with the fixed-time controller.

Keywords: Traffic control, Model-predictive control, Urban traffic flow model, Endpoint
penalties.

1. INTRODUCTION

Traffic in urban areas is significantly time and energy con-
suming, especially when roads become highly congested.
This waste of time and energy, and the inefficient consump-
tion of fuel by vehicles while idling in congested queues,
can be the source of huge economical and environmental
costs. These negative effects have been investigated and
assessed by Center for Economics and Business Research
(2014) for the US, Germany, France, and UK. Based on
their findings, it is expected that the economical costs of
traffic congestion in the above-mentioned four countries
will show an increase of 46% in 2030 compared with 2013.
This indicates that it is very important, both from the
economical and the environmental point-of-view, to take
actions aimed at reducing congestion in urban traffic areas.

The main reason of congestion in urban traffic networks
is inefficient use of the available roads (Thomson, 1997).
Expanding the current road capacity requires long-term
planning and can be highly costly. However, one solution
that can be achieved in a relatively short time period is
to make the best use of the existing road capacity by
introducing more efficient traffic management and control
systems.

⋆ This research has been supported by COST ARTS and by the
NWO-NFSC project “Multi-level predictive traffic control for large-
scale urban networks” (629.001.011), which is partly financed by the
Netherlands Organization for Scientific Research (NWO).

Real-time traffic-responsive control systems are widely
known for their high efficiency compared with other traf-
fic management systems, and for their adaptability to
dynamic changes in the system (Diakaki et al., 2002,
2003). One of the real-time control categories that has
been implemented extensively for different systems, is the
optimization-based control methods.

Model-predictive control (MPC), which is the main focus
of this paper, is an optimization-based control approach.
We choose MPC, since it is a suboptimal control ap-
proach that fits well our aim of finding a control strat-
egy that manages traffic systems close to their optimal
performance; in addition to that, MPC is indeed a dy-
namic optimization approach and its characteristics (such
as handling constraints on the states and on the inputs,
being an anticipative control method, making use of the
measured states/output as feedback, etc.) fit the require-
ments of traffic networks with highly dynamic behaviors
(Maciejowski, 2002).

Moreover, compared with optimal control strategies that
use dynamic programming within an entirely open-loop
scheme, the suboptimal solution computed by MPC is
more robust towards external disturbances as MPC uses
the measured states of the system at every time step.

In order to solve the optimization problem for MPC, a
prediction horizon with a finite number of time steps is
considered. A suboptimal control strategy is computed



along this prediction horizon, but only the signal corre-
sponding to the first step of the horizon will be applied to
the traffic network. Afterwards, the starting point of the
horizon will be moved ahead for one time step, and the
procedure will be repeated. A model-predictive controller
should predict the future states of the system along the
prediction horizon; therefore, a model of the system is
considered by the controller. A detailed discussion on MPC
can be found in (Maciejowski, 2002).

In this paper, we will focus on designing an urban traffic
control system that makes use of the MPC approach and
reduces the total time spent (TTS) by the vehicles in the
network. We propose a new version of the S-model, which
is an urban traffic flow model developed by Lin et al.
(2012), where we introduce a new state, i.e., queues formed
at the sources of the network. Moreover, we introduce some
modifications to make the model more accurate, while it
is still computationally very efficient. MPC has been used
previously for both freeways and for urban traffic networks
(Aboudolas et al., 2010, 2009; van den Berg et al., 2007;
Burger et al., 2013; Bellemans et al., 2006; Lin et al., 2013;
Hegyi et al., 2005). However, we formulate an objective
function for the MPC optimization problem that takes
into account the effect of those vehicles that will still
be in the network by the end of the prediction interval.
We also propose a computationally efficient algorithm for
computing the endpoint penalties in real time.

The paper is organized as follows: in Section 2, we give
a brief introduction to model-predictive control. In Sec-
tion 3, we explain the formulation of the problem that we
are going to solve with MPC in order to reduce the total
time spent by vehicles, and consequently the congestion
level, in the traffic network. Section 4 is about estimating
the endpoint penalties for the objective function using
shortest-path algorithms for networks with a large number
of routes. We present the results of implementing the
MPC-based controller with endpoint penalties in Section 5
for an urban traffic network. Finally, Section 6 concludes
the paper.

2. MODEL-PREDICTIVE CONTROL (MPC)

Model-predictive control (MPC) is a real-time control
approach that finds a suboptimal control signal for the
controlled system through optimizing an objective func-
tion along a finite-length horizon (known as the prediction
horizon). Figure 1 presents the main idea behind MPC
for a discrete-time system, for which measurements are
available at discrete time steps only.

MPC is a dynamic optimization approach, i.e., the con-
troller receives the measured states of the system at every
time step as feedback, and applies them as the initial con-
ditions of its optimization problem. Therefore, MPC is a
more robust control approach for systems that are exposed
to external disturbances, compared with classical optimal
control methods, which apply dynamic programming in
an open-loop control scheme and solve the optimization
problem offline.

An MPC controller receives the measured states of the
system at each time step kctrl. However, the controller
should estimate the optimal control strategy not only at
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Fig. 1. Basic idea behind model-predictive control (MPC)
where x̃init

kctrl
shows the measured state variable at kctrl.

kc, but also along the entire prediction horizon of length
Np. Therefore, it needs to have a model of the system that
uses the initial measured values of the state to produce
an estimation of the states at all time steps kctrl + i for
i ∈ {1, . . . , Np}.

Since most model-predictive controllers are used in real
time, the prediction model of the controller should provide
a trade-off between accuracy and computational efficiency.
When the model estimates the future states of the system,
the controller minimizes a cost function that is formulated
based on the current and the predicted states. The output
of the MPC controller is a suboptimal control sequence
within [kctrlTctrl, (kctrl +Np)Tctrl), where Tctrl denotes the
length of the time step (see Figure 1).

The optimal control signal will be implemented for the real
system only within [kctrlTctrl, (kctrl+1)Tctrl). At time step
kctrl + 1, the states of the system will be measured again
and will be sent to the controller. The prediction horizon
will moved ahead along the time axis for one time step,
and the procedure explained above will be repeated.

3. MPC FOR URBAN TRAFFIC

3.1 Formulating the Problem

We discuss a model-predictive control system to optimize
the green time length of the intersections in an urban
traffic network. Since the aim of the controller is to reduce
the total time spent by the vehicles (and consequently the
level of congestion) in the network, we propose a multi-
objective optimization problem to be solved by the MPC
controller. The objective function J (kctrl) is formulated
by:
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Fig. 2. Illustration of the entering, arriving, and leaving
flows for the urban traffic flow model

J (kctrl) =w1
TTS(kctrl)

TTSnominal
+

w2
TTSendpoint(kctrl)

TTSnominal
endpoint

+ w3
Var(g(kctrl))

Varnominal
,

(1)

with:

TTS(kctrl): total time spent by the vehicles in the
network during the prediction interval,
TTSnominal: nominal performance for TTS(kctrl) dur-
ing the prediction interval,
TTSendpoint(kctrl): expected time spent by the re-
maining vehicles in the network at the end of the
prediction time interval until they leave the network,
TTSnominal

endpoint: nominal performance for TTSendpoint(kctrl)
during the prediction interval,
Var(g): sum of all the consecutive time variations
in the green time (this term prevents possible large
oscillations of the control signal with time).

3.2 A Modified internal Flow Model for the Model-Predictive
Controller

The MPC controller requires a traffic flow model. The
model should be both accurate and simple, and should
be able to handle all the computations for estimating
the future states in real time. As a starting point, we
have selected the S-model (Lin et al., 2012), which is a
simplified form of the BLX model given by van den Berg
et al. (2007) and by Lin and Xi (2008); we propose new
modifications for the model to make it more accurate and
computationally efficient.

The S-model is a nonlinear flow model for urban traffic
networks that takes into account different cycle times
for different intersections. Intersections are represented by
nodes in the S-model, and a road between two intersections
u and d is considered as a link between nodes u and d and
is denoted by (u, d); L and J are the sets of links and
nodes of the S-model.

The simulation time step of the S-model might vary for
different links, as it is considered to be equal to the
cycle time of the downstream intersection of that link.
Therefore, different time step counters are also considered,
i.e., for each link (u, d) ∈ L the time step counter is
represented by kd.

For the original S-model, two states are considered for each
link in the network, i.e., the number of vehicles in link
(u, d) indicated by nu,d(kd), and the number of vehicles

within the queue in link (u, d) denoted by qu,d(kd). These
state variables of link (u, d) ∈ L are updated by:

nu,d(kd + 1) = nu,d(kd) +
(

α
enter,l
u,d (kd)− α

leave,l
u,d (kd)

)

cd, (2)

qu,d(kd) =
∑

o∈Ou,d
qu,d,o(kd), (3)

with,

qu,d,o(kd + 1) = qu,d,o(kd) +
(

α
arrive,q
u,d,o (kd)− α

leave,l
u,d,o (kd)

)

cd, (4)

where we have:

cd: cycle time of the downstream intersection of link
(u, d),
Ou,d: set of output nodes of link (u, d),

α
enter,l
u,d (kd): average entering flow of link (u, d) during

[kdcd, (kd + 1)cd),

α
leave,l
u,d (kd): average exiting flow of link (u, d) during

[kdcd, (kd + 1)cd),
qu,d,o: queue length in link (u, d) composed of vehicles
intending to move to node o,
α
arrive,q
u,d,o (kd): average arriving flow at the tail of the

queue during [kdcd, (kd + 1)cd),

α
leave,l
u,d,o (kd): average leaving flow towards node o dur-

ing [kdcd, (kd + 1)cd).

As the first modification to the S-model, we propose to
add a new third state, i.e., the length of the queue that is
formed at the sources of the traffic network. A source queue
is formed when the available free space on the outgoing of
the source is less than the number of vehicles that intend
to enter the outgoing of the source (note that we assume
w.l.o.g. that for each source there is only one outgoing
link). For each source node s of the network, we can write:

qsources,ds
(kds

+ 1) = qsources,ds
(kds

)+α
enter,l
s,ds

(kds
)cds

− Cs,ds
+ ns,ds

(kds
),

(5)

where α
enter,l
s,ds

(kds
)cds

gives the total number of vehicles

that intend to enter link (s, ds) during [kds
cds

, (kds
+1)cds

),
and Cs,ds

− ns,ds
(kds

) is the free space on link (s, ds) at
time step kds

. Note that in (5), we have supposed that the
external link that ends at node s and feeds link (s, ds) of
the network, has an unlimited capacity such that all those
vehicles that cannot enter link (s, ds), can stay in the link
ending at s and become part of the source queue. This
way, link (s, ds) allows only Cs,ds

− ns,ds
(kds

) number of
new vehicles to enter it.

Figure 2 illustrates a link within an urban traffic network,
where the entering, leaving, and arriving flows are shown.
We have:

α
arrive,q
u,d,o (kd) = βu,d,o(kd) · α

arrive,q
u,d (kd), (6)

with βu,d,o(kd) the fraction of vehicles in link (u, d) that

intend to move towards o, and α
arrive,q
u,d (kd) the average flow

arriving at the tail of the waiting queue during [kdcd, (kd+
1)cd).

We propose the following modified equation for the arriv-
ing flow rate:

α
arrive,q
u,d (kd) =

cd − τu,d(kd)
cd

α
enter,l
u,d (kd) +

τu,d(kd − 1)
cd

α
enter,l
u,d (kd − 1),

(7)
where the time delay τu,d(kd) is indeed the time needed by
the vehicles that enter the link until they reach the end of
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Fig. 3. Continuous form of the piecewise constant input

signal, α
enter,l
u,d (kdcd), and the delayed input signal,

α
enter,l
u,d (kdcd − τu,d(kd))

the waiting queue. Compared with the equation given for
α
arrive,q
u,d (kd) by Lin et al. (2012) in the original version of

the S-model which considers a time-independent τu,d, we
here consider a time-dependent time delay as this is more
consistent with the rest of the equations of the S-model
where the time delay is indeed time-dependent.

Now we explain how (7) is obtained. The arriving flow at
kd is indeed the entering flow with a delay of τu,d(kd) time
steps. Therefore, if we plot these flows along the time axis,
the curve representing the arriving flow is the same as the
curve that represents the entering flow with a shift equal
to τu,d(kd) time units to the right. However, we should
make sure that if the time delay varies over time, then in
the long term we never miss or reconsider some fractions
of the entering flows in computing the arriving flows.

Fig. 3, shows the shifted entering flow, i.e., the arriving
flow functions where the grey areas show the current time
step. From this figure, the red (dashed) sections of the
input signal are considered in the computation of the
arriving flow during the time interval [(kd − 1)cd, kdcd).
For the next step, i.e., for the interval [kdcd, (kd +1)cd), if
the value of the time delay changes compared with kd − 1
(e.g., τu,d(kd) < τu,d(kd − 1)), then the yellow (dashed-
dotted) section shown in Figure 3 will be ignored in the
computation of the arriving flow during the time interval
[kdcd, (kd + 1)cd). To compensate for this issue, we add
this part of the input signal to the input considered for
the interval [kdcd, (kd + 1)cd) as follows:

u

v

d

βx,y,z

x

y

z

c(y
, z)

Fig. 4. Considering a point-to-point problem to find the
Ku,d most likely used routes in a traffic network

α
arrive,q
u,d (kd) =

1
cd

∫ kdcd+cd

kdcd−(τu,d(kd−1)−τu,d(kd))

α
enter,l
u,d (t− τu,d(t))dt,

(8)
which gives (7) considering a piecewise constant entering
function flow.

Finally, the delay time within the time interval [kdcd, (kd+
1)cd) is computed by:

τu,d(kd) =

(

Cu,d − qaveu,d(kd)
)

· lveh

N lane
u,d · vfreeu,d

, (9)

with:

Cu,d: storage capacity of link (u, d),
qaveu,d(kd): average queue length on the link (u, d)

during [kdcd, (kd + 1)cd),
lveh: average length of the vehicles,
N lane

u,d : number of lanes in link (u, d),

vfreeu,d : free-flow speed on link (u, d).

In order to compute the average queue length qaveu,d(kd), we
propose the following options:

(1) Substituting qaveu,d(kd) with the queue length at kd, i.e.,

qaveu,d(kd) = qu,d(kd),

(2) Using extrapolation, i.e.,

qu,d(kd + 1) = qu,d(kd) + qu,d(kd)− qu,d(kd − 1),

qaveu,d(kd) =
qu,d(kd) + qu,d(kd + 1)

2

=
3

2
qu,d(kd)−

1

2
qu,d(kd − 1)

4. ENDPOINT PENALTIES

Note that we have a destination-independent model. For
determining the effect of those vehicles that will remain
in the network at the end of the prediction horizon, we
consider fixed traffic situations at the end of the prediction
interval, (kctrl + Np)Tctrl, till the network is completely
evacuated. We also suppose that no new vehicles will
enter the network from (kctrl +Np)Tctrl till the remaining
vehicles leave the network. To estimate the time spent by
the remaining vehicles in the network at (kctrl +Np)Tctrl,
we should first allocate to each of these vehicles a route
that leads them to one of the exit nodes of the network.

For the vehicles remaining on a given link (u, d) at (kd +
Np)Tctrl, we first specify a limited number Ku,d of routes
to the exit nodes that are most likely to be used by
the remaining vehicles. This is necessary especially for



networks with grid-shaped parts, in which vehicles may
move in cyclic paths and hence, the number of possible
routes to the exits will become infinity.

most of the available shortest-path algorithms, e.g., Yen’s
algorithm (Yen, 1971), are developed such that they find
the K shortest routes that connect two nodes (i.e., a
single exit node should be considered). Therefore, we first
transform the problem of finding the shortest routes in a
traffic network into a point-to-point problem. We do that
by connecting a virtual endpoint “v” to all end nodes of
the network (see Figure 4).

We should also redefine some of the concepts for the
recast problem. For a shortest-path algorithm, each route
has a “cost” value, based on which routes with the least
cumulative costs are investigated by the algorithm. We
make use of the turning rates of the roads that are used
by the S-model to define the costs. The routes that have
the largest value of

∏

(x,y),(y,z)∈(Rj(d)∪{(u,d)})

βx,y,z,

are most likely to be selected by the vehicles in the
network, where Rj(d) is a route between two nodes d and
v, j ∈ {1, 2, . . . , Nj(d)}, and Nj(d) is the number of all
possible (with no cyclic paths) routes from d to v, and
(x, y), (y, z) ∈ L . Equivalently, we can find the routes
that have the largest value of

log





∏

(x,y),(y,z)∈(Rj(d)∪{(u,d)})

βendpoint,x,y,z





These routes will indeed have the least cumulative cost for
the shortest-path algorithm. Hence, we can define the cost
C(y, z) of link (y, z) as:

C(y, z) = − log βx,y,z (10)

Note that (10) is a valid expression for the cost value, since
we have 0 ≤ βx,y,z ≤ 1 and therefore C(y, z) ≥ 0.

Now we should adjust the values of the turning rates to the
new setup. Since some of the links/routes are discarded
from the network via the shortest-path algorithm, the
summation of turning rates βx,y,z at some nodes might
not be equal to the unity anymore. Therefore, γu,d,r, r ∈
{1, 2, . . . ,Ku,d} is redefined as the percentage of those
vehicles in link (u, d) at the end of the prediction interval
that intend to leave the network through the rth route
specified by the shortest-path algorithm. We have:

γu,d,r =

∏

(x,y),(y,z)∈(Rr(d)∪{(u,d)})

βx,y,z

Ku,d
∑

l=1





∏

(x,y),(y,z)∈(Rl(d)∪{(u,d)})

βx,y,z





(11)

Finally, TTSendpoint(kctrl) in (1) is computed by:

TTSendpoint(kctrl) =
∑

(u,d)∈L



nendpoint,u,d

Ku,d
∑

r=1

γu,d,rTTSu,d,r



 ,

(12)
with nendpoint,u,d the number of vehicles observed in link
(u, d) at (kd + Np)Tctrl, and TTSu,d,r the average total
time spent by each vehicle that is in link (u, d) at the end
of the prediction interval, until it exits the network. To
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Fig. 5. Urban traffic network used for the case study

compute TTSu,d,r, we can simply assume that all vehicles
will move through the links with a fixed average speed of

vave =
vfreeu,d + vlowu,d

2
,

with vlowu,d the typical idling speed of the vehicles in the
network.

5. SIMULATION AND RESULTS

Table 1. Parameters used for the case study

Parameter value

lveh [m] 7
gmax [s] 55
gmin [s] 5
CL1

[veh] 55
CL2

[veh] 50
CL3

[veh] 75
CL4

[veh] 65
CL5

[veh] 50
µLi

, i ∈ {1, . . . , 5} [veh/s] 1.5
vfree
Li

, i ∈ {1, . . . , 5} [m/s] 12

cLi
, i ∈ {1, . . . , 5} [s] 60

β1 [-] 0.7
β2 [-] 0.3

In this section, we consider a case study involving an urban
traffic network that is composed of two entrances, two
exits, and one intermediate link (see Figure 5), and the
links are represented by Li, i ∈ {1, . . . , 5}. Two traffic
lights are located at the intersecting point of the two
entering links. The parameters used for the case study
are listed in Table 1, where gmax and gmin denote the
maximum and minimum possible values of the green time
length and β1 and β2 are the turning rates for the vehicles
on L3 to L4 and L5.

Table 2. Initial entering flow rates
[

veh
s

]

α
enter,l

L1
(k0) α

enter,l

L2
(k0)

Case 1 1.2 0.5
Case 2 1.0 1.0
Case 3 0.2 1.3

Table 3. Total time spent [min] for the 3 cases

Simulation 1 Simulation 2

Case 1 1771 1744
Case 2 2073 2031
Case 3 1556 1542

The entering flow rates from links L1 and L2 are initially
(at k0 = 0) set to the values shown in Table 2 for 3



different experiments. We consider a sine function with

an amplitude equal to α
enter,l
Li

(k0) and a frequency of π
10

to model the entering flow rates through time. For each of
these three cases, two controllers are considered, i.e.,

• fixed-time controller;
• model predictive controller for which both the TTS
and the endpoint penalties are considered in formu-
lation of the objective function.

The total simulation period for each of the two scenarios
applied to Cases 1-3 is considered to be 75 min. We use
fmincon in MATLAB to solve the minimization problem.
The corresponding total time spent by the vehicles during
the simulation period is computed for each scenario. The
values of the total time spent are represented in Table 3.
From this table we see that the controlled system using
a model predictive controller always shows a better per-
formance (i.e., a smaller total time spent by the vehicles)
compared with the fixed-time control scenario. Implement-
ing the model-predictive controller can reduce the total
time spent by the vehicles up to 2%.

6. CONCLUSIONS AND FUTURE WORK

We have proposed a model-predictive urban traffic control
system that aims to reduce the total time spent by the
vehicles in the network and hence, to decrease the level of
congestion. We have introduced a new version of an urban
traffic flow model (i.e., the S-model), which is nonlinear.
Our modifications can make the model more accurate,
while the modified model is still computationally very
efficient. Moreover, we have introduced a new third state
for the S-model, i.e., the length of the queues that are
formed at the sources of an urban traffic network. We
have also proposed some modifications for the equations
used in the S-model to make the model more consistent
by considering a time-dependent delay time (i.e., the time
needed for the vehicles that enter the network until they
reach the tail of the waiting queue) in all equations.

The objective function of the MPC optimization problem
is formulated as a weighted combination of the total time
spent by the vehicles, the estimated value of the time spent
by the vehicles that will remain in the network at the end of
the prediction interval (i.e., endpoint penalties), and the
sum of variations for consecutive green time signals (to
prevent large oscillations in the control signal). We have
developed an approach based on a shortest-path algorithm
in order to approximate the endpoint penalties.

For future work, we propose to also consider the total emis-
sions caused by the vehicles and the endpoint penalties
corresponding to the expected emissions by the vehicles
that will remain in the network at the end of the prediction
interval in formulating the objective function of the MPC
optimization problem. To solve the optimization problem,
we propose to use an efficient method such as RPROP.
The computation time and complexity can be compared
for different optimization approaches.
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