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Fault Diagnosis Using Spatial and Temporal Information

with Application to Railway Track Circuits

K. Verberta,∗, B. De Schuttera, R. Babuškaa

aDelft Center for Systems and Control (DCSC), Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

Adequate fault diagnosis requires actual system data to discriminate between healthy behavior and various types of
faulty behavior. Especially in large networks, it is often impracticable to monitor a large number of variables for each
subsystem. This results in a need for fault diagnosis methods that can work with a limited set of monitoring signals.
In this paper, we propose such an approach for fault diagnosis in networks. This approach is knowledge based and uses
the temporal, spatial, and spatio-temporal network dependencies as diagnostic features. These features can be derived
from the existing monitoring signals; so no additional sensors are required. Besides that the proposed approach requires
only a few monitoring devices, it is, thanks to the use of the spatial dependencies, robust with respect to environmental
disturbances. For a railway track circuit example, we show that, without the temporal, spatial, and spatio-temporal
features, it is not possible to identify the cause of a detected fault. Including the additional features allows potential
causes to be identified. For the track circuit case, based on one signal, we can distinguish between six fault classes.

Keywords: System monitoring; Fault detection; Fault diagnosis; Railway systems; Reasoning systems.

1. Introduction

In this paper, we propose an approach to fault diag-
nosis in networks in the presence of environmental distur-
bances. Because it is often not feasible to monitor a large
number of variables for each subsystem in the network, we
particularly look into diagnosis strategies that require only
a few monitored variables.

With respect to the diagnosis strategy, a choice needs
to be made between a model-based, a model-free, or a
hybrid approach (see Figure 1). Model-based approaches
[1–6] rely on a qualitative or quantitative description of the
relations between the monitoring data and system health,
while model-free approaches [7, 8] use historical data and
techniques from machine learning or pattern recognition.
Finally, hybrid approaches [9–11] use a combination of the
aforementioned strategies. The difficulty with model-free
approaches, and to a lesser extent also with hybrid ap-
proaches, is that a representative amount of labeled histor-
ical data is required, which is in general difficult to obtain
[8]. Furthermore, due to preventive maintenance activi-
ties, usually only few data samples are available that are
characteristic of the natural degradation behavior. For
these reasons, we will not further consider model-free and
hybrid approaches in this work.
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Figure 1: Classification of the different fault diagnosis methods.

Model-based approaches can be further divided accord-
ing to the way the model is created [12] (see Figure 1).
Analytical approaches [1–3] are based on a quantitative
model derived from first principles, knowledge-based ap-
proaches [4, 5] use expert knowledge to define a qualitative
model of the system, while data-based approaches [6] use
historical data to learn this model. As we consider appli-
cations where data are scarce, and detailed system insight
is often difficult to obtain because of system complexity
and uncertain environmental disturbances, in this work, a
knowledge-based approach is proposed.

The main contribution of this paper is the introduction
of a new approach to fault diagnosis in general networks.
Key features of this approach are that it relies on the
availability of only a limited number of monitoring signals
and that it is robust with respect to environmental distur-
bances. To ensure an adequate diagnosis performance, the
following diagnostic features are taken into account:
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1. Temporal dependencies in the considered subsystem;

2. Spatial dependencies within the network;

3. Spatio-temporal dependencies within the network.

The temporal dependencies are valuable for diagnosis be-
cause different faults develop in different ways. Knowing
the temporal system behavior provides insight into pos-
sible fault causes. Similarly, the spatial dependencies are
useful because they are different for different types of sys-
tem faults, i.e. some faults only influence one subsystem,
whereas other faults influence multiple subsystems. Fi-
nally, the spatio-temporal dependencies become of interest
when objects move through the network. In this case,
faulty behavior can be caused by the network itself or by
an object moving through the network. Since object faults
manifest themselves differently in place and time than net-
work faults, spatio-temporal network dependencies are a
suitable feature to discriminate between the two fault cat-
egories. The temporal, spatial, and spatio-temporal de-
pendencies can be determined from the available monitor-
ing signals, meaning that they do not require the instal-
lation of additional monitoring devices. To the authors’
best knowledge, the use of spatial and spatio-temporal
dependencies has not been previously proposed for fault
diagnosis in networks.

Figure 2 gives a schematic overview of the proposed
diagnosis approach. The proposed method can be used to
monitor all kinds of networks where temporal and spatial
knowledge is available, e.g., drinking water distribution
networks, building infrastructures, and highways. In this
work, the applicability of the proposed method is illus-
trated based on a track circuit diagnosis task.

Railway track circuits are used for train detection. Fault
diagnosis for railway track circuits has already been dealt
with, e.g. in [7–10, 13, 14]. A distinction can be made
regarding the way the monitoring data are obtained, e.g.
using a measurement train [7, 8, 13, 14] or using track-side
monitoring devices [9, 10]. In the current paper, track-side
monitoring devices are considered because they continu-
ously monitor the system state and are therefore suitable
for the early detection and diagnosis of faults. The main
difference compared to the approaches in [9, 10] is that
in those works multiple monitoring signals are used, while
in this paper, for each track circuit, only one measure-
ment signal is available. Although the availability of a
wide variety of measured quantities can be beneficial for
model-based fault diagnosis [2], it is not realistic to assume
that this will be realized for the whole rail infrastructure,
as the related installation and monitoring costs are high.
Therefore, we restrict ourselves to one monitoring signal,
the current measured at the track circuit receiver.

Note that this paper is an improved and extended ver-
sion of our conference paper [15]. In particular, the current
paper adds the following elements: a general framework
for fault diagnosis in networks, inclusion of the spatio-
temporal dependencies, and a more extensive example.

The paper consists of three parts: 1. a part regarding
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Figure 2: Overview of the proposed diagnosis approach.
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fault diagnosis in general networks (Section 2), 2. a part
covering fault diagnosis in railway track circuit networks
(Section 3 and 4), and 3. a specific track circuit diagnosis
example (Section 5).

2. Fault diagnosis in networks

In this section, we propose a knowledge-based approach
to fault diagnosis in networks. Figure 3 gives a schematic
overview of the proposed approach. In brief, we collect
monitoring signals from the subsystems in the network,
correct them for the effect of environmental disturbances
(Section 2.3), and extract diagnostic features from the
corrected signals. Based on the extracted features (see
Section 2.2) and knowledge of the system states (see Sec-
tion 2.1), we infer the system health. In the remainder,
the different steps are worked out in more detail.

2.1. Diagnosis setup

Consider a network consisting of n subsystems1 that
can be graphically represented by a, possibly disconnected,
graph (see e.g. the graph in Figure 2). In this graph, the
black dots represent the subsystems and the edges repre-
sent connections between the different subsystems. Here,
we consider fault diagnosis of an arbitrary subsystem i in
the network. We assume that each subsystem i has one
healthy mode f0 and ℓ faulty modes f1 till fℓ. For clar-
ity of presentation and without loss of generality, in the
theory part of this paper we consider only single fault sce-
narios, i.e. the system health2 Fi of each subsystem i takes
one value in the set ΘF = {f0, f1, . . . , fℓ}. Furthermore,
it is assumed that for each subsystem i in the network a
monitoring signal (vector) Mi is available that character-
izes system behavior. From these monitoring signals, we
extract the following diagnostic features (see Figure 3):

• system dependencies Ki,

• temporal dependencies Ti,

• spatial dependencies Si,

• spatio-temporal dependencies Gi,

which we will elaborate on in Section 2.2.
Generally, the state Xi of each subsystem i can take

a finite number m ≥ 1 of possible values x1 till xm. For
example, for a railway switch, the state Xi can take the
values:

x1 : at rest

x2 : moving from the normal position to the reverse po-
sition

1For clarity, in the remainder we assume that all subsystems are
identical. The proposed method can however be easily extended to
networks with different types of subsystems.

2In the theory part of this paper, we use capital letters to denote
variables and small letters to denote possible values of these variables.

x3 : moving from the reverse position to the normal po-
sition

In general, the monitoring signal (vector) Mi and the ex-
tracted features can take different values. The interpre-
tation of these values can be different for different state
values. Therefore, for a system with more than one state
value, i.e. m > 1, it is only guaranteed that system health
can be inferred from the extracted features if we know the
current system state Xi. In this work, the following basic
assumption is adopted

Basic assumption A0: The state Xi is known for each
subsystem i in the network at all times.

The state Xi can e.g. be determined from additional anal-
yses or sensors measurements.

2.2. Diagnostic Inference

To determine the system health of a subsystem in the
network, a representative set of diagnostic features is ex-
tracted from all the available monitoring signals (see Fig-
ure 3). Based on subsystem and network knowledge, these
diagnostic features are then linked to the subsystem health.
In the remainder of this section, we introduce the rule-
based system we use to capture the diagnostic model3.
Next, we propose four diagnostic features (see Figure 3)
and discuss the knowledge required to link these features
to the system health. Note that in this work the number of
available monitoring signals is assumed to be fixed. Gener-
ally, the diagnostic performance improves when more data
become available [2]. Therefore, a straightforward way to
improve diagnosis is to place additional sensors. As this
is, especially in large-scale networks, often not feasible for
economic reasons, in this work, the possibility of adding
extra sensors is excluded.

For the sake of brevity, in the sequel we omit the sub-
script i when the explicit reference to a particular subsys-
tem i is not necessary.

2.2.1. Diagnostic model

To describe the relations between the features and the
system health, we use a rule-based system. Consider that
we have z features C1 till Cz and that each feature Ck is nk-
valued, i.e. Ck takes values in the set {vk,1, vk,2, ..., vk,nk

}.
Each feature Ck is linked to the system health F by the
following, state-dependent set of rules:

3A diagnostic model is a set of static or dynamic relations that
link specific input variables – the feature values – to specific output
variables – the faults [16].
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Figure 3: Schematic overview of the proposed knowledge-based fault diagnosis approach.

if X = xζ then

if Ck = vk,1 then W
(ζ)
Ck

= wk,ζ,1 (1a)

elseif Ck = vk,2 then W
(ζ)
Ck

= wk,ζ,2 (1b)

...

elseif Ck = vk,nk−1 then W
(ζ)
Ck

= wk,ζ,nk−1 (1c)

else W
(ζ)
Ck

= wk,ζ,nk
(1d)

and

F ∈ WCk
(2)

WCk
= W

(1)
Ck

∩W
(2)
Ck

∩ . . . ∩W
(m)
Ck

(3)

with each wk,ζ,β ⊆ {f0, f1, ..., fℓ} and WCk
the set of pos-

sible fault causes given Ck in all operating states. When
we have m operating states and z features Ck that are nk-
valued, we end up with m

∑z
k=1 nk rules. In the ideal case,

given the value of each feature Ck in each operating state,
we can determine the fault case, i.e. we know the value
of F . This is guaranteed to be the case if each observed
combination of feature values corresponds to one possible
fault cause, i.e. if:

|W | = |WC1
∩WC2

∩ ... ∩WCz
| = 1 (4)

for all possible valid assignments of values for WC1
till

WCz
. When ℓ+1 > |W | > 1, it is not possible to determine

the fault cause, but it is possible to exclude some of the
fault causes.

2.2.2. Diagnostic features

In this section, we propose four diagnostic features for
fault diagnosis in networks. First, we propose two features
that are applicable to individual systems, namely the sys-
tem dependencies and the temporal dependencies. Next,
we propose two features that become of interest when the

system is part of a network consisting of multiple moni-
tored systems, namely the spatial dependencies and the
spatio-temporal dependencies.

System dependencies Ki. System knowledge is generally
considered as a first source for feature generation in model-
based diagnosis strategies. System knowledge is used to
generate a qualitative description of the nominal, i.e. fault-
free, system behavior. Based on system insight, useful
featuresKi are extracted from the monitoring signal vector
Mi. Comparing the value of the feature Ki derived from
the measurement data with the value of Ki derived from
the system model, provides information about the system
health [2].

Temporal dependencies Ti. Although, in general, a fault
may develop in a complex way and an exact quantitative
description of the fault evolution cannot be provided, of-
ten information is available regarding its qualitative time
behavior. For example, it may be known whether the time
evolution of a particular fault is intermittent or approxi-
mately linear. This information can be used to distinguish
between the different faults. Based on the available fault
and system knowledge, the expected temporal behavior Ti

of the monitoring signal vector Mi as a consequence of a
particular fault in subsystem i can be determined. Con-
versely, based on the observed temporal behavior of Mi,
possible underlying fault evolution behaviors can be recov-
ered. So, based on the temporal behavior of Mi, we can
infer possible fault evolution behaviors and subsequently
the associated fault types. With respect to the fault evo-
lution behavior, a distinction can be made between a wide
range of time behaviors. For the purpose of fault diagnosis,
faults are often divided, according to their evolution over
time, into the following three groups [2]: abrupt, intermit-
tent, and incipient (e.g. linear or exponential). Depend-
ing on the, application-specific, fault evolution knowledge,
a further refinement of the different groups can be made,
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e.g. for crack growth, detailed evolution characteristics are
available [17, 18] whereas for other faults only rough de-
scriptions may be available.

Spatial dependencies Si. When the system i to be diag-
nosed is part of a network, the monitoring data of other
subsystems in the network may contain valuable informa-
tion regarding the health of subsystem i. Valuable infor-
mation is contained in these data if there exist dependen-
cies between the different subsystems that vary for differ-
ent fault types. In this case, the cross-correlations between
the monitoring signals of the different subsystems provide
information about the possible fault causes. So, faults
can be classified according to their impact region. For ex-
ample, a distinction can be made between faults that are
specific to one subsystem and faults that affect all inter-
connected subsystems.

Spatio-temporal dependencies Gi. In the case that objects
move through the network, faulty behavior can be caused
by the network itself or by an object moving through the
network. To easily distinguish between a fault in subsys-
tem i and an object fault, we propose to use the spatio-
temporal dependencies Gi in the network. In the situation
that the faulty behavior is caused by an object o moving
through the network, it is expected that this behavior is
only observed during the time that the object is in the con-
sidered subsystem i and that time-shifted versions of the
faulty behavior are visible in the monitoring signal of each
other subsystem lying on the path Po of the moving object
o. In the case of a fault in one or more of the subsystems
themselves, the faulty behavior is observed regardless of
the object moving through the subsystem. Note that in
this paper the main focus is on the fault diagnosis of the
network and not on diagnosing objects passing through
the network. Therefore, only a distinction is made be-
tween faults that are object-specific and faults that are
not object-specific, i.e. Gi is a variable that can take on
two values only. This distinction is made to prevent that
object faults are incorrectly diagnosed as network faults.

Note that to determine the proposed features, standard
techniques from signal analysis and/or pattern recognition
[19, 20] can be used. The exact procedure to determine
these dependencies is application-specific and a further
elaboration is beyond the scope of this paper. Section 5
briefly explains the determination of the feature values for
a track circuit diagnosis task.

2.3. Correction for environmental disturbances

An important property of the proposed approach is
that it is robust with respect to environmental distur-
bances. To achieve adequate diagnosis performance in
the presence of environmental disturbances, the monitor-
ing signals are corrected for environmental disturbances
before proceeding with the fault diagnosis. To correct for

environmental disturbances, we again use the spatial de-
pendencies, i.e. the correlations between the monitoring
signals of the different subsystems in the network.

Environmental disturbances generally affect all subsys-
tems in a close neighborhood (independent of the network
structure) in a similar way. Therefore, if we observe a
particular faulty behavior in all nearby subsystems (even
in subsystems that are not connected from the network
point of view), we can attribute the common part of the
faulty behavior to environmental disturbances. Note that
in the case that environmental disturbances may hamper
the proper execution of the system task, environmental
disturbances should be treated as a potential fault cause.
So, besides for the diagnosis itself, the spatial dependen-
cies are useful to identify the environmental disturbances.

The contribution of environmental disturbances to Mi,
denoted as Menv,i, can be determined from the monitoring
signals of the subsystems in the immediate neighborhood
Ni, assuming that a sufficient number of the subsystems
in Ni is healthy (apart from environmental disturbances).
In this work, the following basic assumption is adopted:

Basic assumption A1: In each local neighborhood Ni,
the number of healthy subsystems is sufficient to deter-
mine Menv,i.

To determine the effect of environmental disturbances based
on the monitoring data, standard signal analysis tech-
niques, e.g. correlation analyses, can be used (see e.g. [19,
20]). The optimal size of the neighborhood set Ni needed
to appropriately determine Menv,i is application-specific
and dependent on the specific environmental disturbances.
However, two factors play a role in general:

1. The behavior of the subsystems in neighborhood Ni

should be representative for subsystem i. In general,
the closer a subsystem is located to i, the more rep-
resentative its behavior is. So this requirement asks
for a small neighborhood.

2. The diagnosis result should be insensitive to possible
faults in the considered nearby subsystems. In gen-
eral, the more subsystems are considered, the less
sensitive the diagnostic result is to possible faults.
So, this requirement asks for a large neighborhood.

So, for each diagnosis task, a trade-off between these two
requirements needs to be made. Optionally, additional
information, e.g. weather reports, can be taken into ac-
count to determine the environmental disturbances. Next,
based on Menv,i, monitoring signal Mi is corrected. The
corrected monitoring signals M ′

j for j ∈ Ni ∪ {i} are then
used for the diagnosis of subsystem i, with M ′

j the mon-
itoring signal of subsystem j corrected for environmental
disturbances.

2.4. Diagnostic procedure

Procedure 2 outlines the proposed approach for on-
line fault diagnosis in networks, with the local neighbor-
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hoods Ni, Li, and Mi defined in Procedure 1. Proce-
dure 2 is executed at all diagnosis instants, while Proce-
dure 1 is executed only at startup and when the network
topology or knowledge have been changed. In Procedure
2, τ is used to denote time. In Si,τ (step 3 of Proce-
dure 2) we collect the behavior corresponding to different
objects passing through subsystem i. By analyzing Si,τ ,
the spatio-temporal dependencies Gi,τ can be determined,
i.e. it can be inferred whether the problem is object-specific
(if the problem is also observed for other subsystems on
the path) or system-specific (if the problem is observed in-
dependently of the object). The function corr(·) in step 6
corrects the monitoring signal Mi,τ for the effect of envi-
ronmental disturbances Menv,i,τ as determined in step 5.
An example of how to determine and correct for environ-
mental disturbances can be found in Section 5.

Procedure 1 Defining the local neighborhoods

Input: Graph of the network, definition of a close neighbor-
hood

1: for i = 1, ..., n do

{Selection of subsystems relevant for diagnosis of subsys-
tem i}

2: Collect in the neighborhood set Ni the subsystems that
are in a close neighborhood of subsystem i

3: Split Ni into two sets: Li, containing subsystems con-
nected with i, and Mi containing the unconnected sub-
systems.

4: end for

3. Track circuits

To illustrate the applicability of the method proposed
in Section 2, in the remainder of this paper, we consider the
fault diagnosis of track circuits within a railway network.
In this section, track circuits are described and modeled
and possible system faults are discussed. Double-rail, 75
Hz AC track circuits, as used in the Netherlands, are con-
sidered. However, it is important to note that the methods
proposed in this paper can be easily applied to other track
circuit variants.

3.1. Working principle

Throughout the world, track circuits are the most com-
monly used devices for train detection [9]. For the purpose
of train detection, the railway track is divided into electri-
cally separated sections, each having its own track circuit,
see Figure 4. In this figure, Vrail represents the voltage ap-
plied between the two rails at the side of the transmitter
and Ic represents the signaling current measured at the
receiver. The insulated joints prevent current flow via the
rails to the neighboring sections. The impedance bonds
allow direct traction currents to flow to adjacent sections,
while blocking the alternating currents used for train de-
tection.

Procedure 2 Diagnosis approach at time τ

Input: Neighborhoods Ni, Li, and Mi and monitoring signal
Mi for each subsystem i = 1, ..., n in the network, path Po

of all objects o passing through the network, time window
length δ

1: for i = 1, ..., n do

{Selection of subsystems relevant for diagnosis of subsys-
tem i at time τ}

2: for all objects o passing through i in [τ − δ, τ ] do
3: Add local path Po,i,τ to Si,τ , with Po,i,τ containing all

subsystems j ∈ Ni ∩ Po,τ

4: end for

{Determination and correction of environmental distur-
bances}

5: Determine Menv,i,τ using Mj,τ ∀j ∈ Ni ∪ {i}
6: Correct monitoring signal Mi,τ for environmental distur-

bances:

M
′

i,τ = corr(Mi,τ ,Menv,i,τ )

7: end for

8: for i = 1, ..., n do

{Feature extraction, fault detection, and diagnosis}
9: Determine the features Ki,τ , Ti,τ , Si,τ , and Gi,τ in all

states using M ′

j,τ for all j ∈ Ni ∪ {i} and the spatio-
temporal network knowledge collected in Li, Mi, and
Si,τ

10: Use (1)-(3) to determine WK,i,τ , WT,i,τ , WS,i,τ , and
WG,i,τ

11: Wi,τ = WK,i,τ ∩WT,i,τ ∩WS,i,τ ∩WG,i,τ

12: end for

Output: Set of possible faults Wi,τ for all subsystems i =
1, ..., n at the current time τ .
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Impedance bond

Insulated joint

Ic

Rail Ballast

Vrail

Figure 4: Overview of a railway section and the corresponding track
circuit.

Track circuits operate by transmitting electric current
to a receiver via the two rails. When a section is free,
the transmitted signal reaches the far end of the section.
When the section is occupied by a train, the circuit is
short-circuited by the wheel sets and the current does not
reach the receiver (see Figure 5). More specifically, the
track circuit working can be described as follows: Under
healthy conditions, the current is above a certain thresh-
old α2 when the section is free and below a threshold α1

when the section is occupied by a train. The track circuit
is tuned such that even in the case of small current devi-
ations, the presence and absence of a train are correctly
reported, i.e.

if Ic,i > γ2 then section i is reported as free,

if Ic,i < γ1 then section i is reported as occupied,

with4,5 α2 > γ2 > γ1 > α1. So, α1 and α2 serve to define
system health, whereas γ1 and γ2 are settings of the train
detection system. For a free section, this means: When
Ic,i > α2, the track circuit in section i is healthy and is
correctly reported as free. When Ic,i < α2, the current is
too low. However, when γ2 < Ic,i < α2 section i is still
correctly reported as free and the corresponding system
behavior is classified as faulty. Only when Ic,i < γ2, this
fault may result in a false positive (FP) train detection
result. In this case, we no longer talk about a fault, but
about a failure. In the same way, for an occupied section
i, it holds that when Ic,i < α1, the track circuit is healthy;
when α1 < Ic,i < γ1, circuit i is faulty (no train detection
error); and when Ic,i > γ1, the circuit fails, i.e. we have a
false negative (FN) train detection result.

3.2. System modeling

To get insight into the system behavior and possible
fault causes, a track circuit model will be derived hereafter.
To model the relation between the input voltage Vrail and
the output current Ic, a good understanding of the elec-
trical properties of the rails, ballast, and train shunts is
required.

4In general, α1, α2, γ1, and γ2 may vary for different sections.
5When the current is between γ1 and γ2, the detection result is

not uniquely defined by Ic,i and depends on the previous level of the
current.

Insulated rail joints

Transmitter Receiver

No signal detected, section occupied

Wheel set

Figure 5: Current flow in a track circuit.

3.2.1. Rail and ballast impedance

The rail bars are made of iron, having a low resistance
for DC currents and an increasing resistance for AC cur-
rents as frequency increases. Here, we are interested in
the resistance (Ω/km) that 75 Hz current encounters when
flowing in the longitudinal direction of the rail bars. The
ballast impedance is a measure of how easily current can
flow between the two rails of a track circuit and it consists
of the leakage between the rail fixings, sleepers, and earth
[21].

To model the rail impedance ZR and ballast impedance
ZB, the two-line transmission line model [9] is often used.
This model assumes that the rail and ballast impedance
are evenly distributed over the length of the track. For
practical purposes, lumped parameter models, consisting
of a finite number of (identical) cascaded subsections, are
often considered to approximate the transmission line be-
havior. The number of subsections determines the accu-
racy of the model considered. In Figure 6, a model with
one subdivision is shown. A connection to an adjacent
section is included to model insulated joint defects (see
Section 3.3.2).

3.2.2. Train shunt

When a train is present in a section, the wheels and
axles create low-impedance connections between the two
rails. Such a connection can be modeled by the shunt
impedance ZS between the two rails, parallel to the ballast
impedance ZB. Resistor ZS is only connected when there
is a train in the section (switch s closed).

} }

} }Vrail

ZR

ZR

ZR

ZR

Ic
ZS

s

ZB

ZN

Adjacent section

Figure 6: Model of a track circuit.
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Table 1: Fault characteristics for track circuits. The relationships between features and faults are defined based on system knowledge and
information extracted from historical data. FN = False Negative, FP = False Positive, L = Linear, E = Exponential, A = Abrupt, I =
Intermittent, NC = No Correlation, CCS = Correlation with Connected Sections, CAS = Correlation with All Sections, TS = Train-Specific,
NTS = Not Train-Specific.

(a) fault characteristics (b) features

Health
(F )

Problem Cause Potential
error

System knowledge(K) Temporal
(T )

Spatial (S) Spatio-
temporal
(G)

section free section occupied

f0 - Healthy state - high low - - -

f1 Train shunt imperfection
Rail contamination FN high medium ∨ high - - NTS

f2 Lightweight trains FN high medium ∨ high - - TS

f3 Insulation imperfection
Insulated joint defect FP low ∨ medium low L∨E NC NTS

f4 Conductive objects FP low ∨ medium low A NC NTS

f5 Rail conductance impairment
Mechanical defect FP low ∨ medium low E NC NTS

f6 Electrical disturbances FP low ∨ medium low I∨A CCS TS ∨ NTS

f7 Ballast condition
Ballast degradation FP low ∨ medium low L∨E CAS ∨ CCS NTS

f8 Ballast variation FP low∨medium∨ high low A∨L∨E∨ I CAS NTS

3.3. Fault causes

Due to several causes, a track circuit can behave in an
undesired way. For instance, due to an increased resis-
tance of the rails (e.g. as a consequence of a broken rail),
the current level at the receiver may be too low. In the
worst case, this hinders the execution of the system task
(train detection), resulting in a functional failure. To pre-
vent functional failures, it is important to recognize system
faults as early as possible. Therefore, in the sequel, dif-
ferent types of system faults, the related causes, and their
effect on the system behavior are investigated. Table 1(a)
gives an overview of the faults considered.

3.3.1. Train shunt imperfection

The proper functioning of a track circuit requires that
every train short-circuits the section, meaning that the
path “rail-wheels-axles-wheels-rail” should have a sufficiently
low resistance for 75 Hz AC currents. A good train shunt
can be hampered by different causes; the two most impor-
tant ones are: 1. contamination between the rail surface
and the wheels, and 2. lightweight trains. Contamination
between the rails and the wheels (e.g., rust films, sand,
and leaf residue) acts as a semi-conductor, in the sense
that it exhibits high resistance until the voltage exceeds a
threshold [21]. When the contamination level is too high,
the voltage between the rails and the train is too low to
realize a good train shunt. In addition, lightweight trains
may suffer from shunting problems because they can be too
light to make good contact and to clean the rails. In the
case of a bad train shunt, the resistance of ZS is relatively
high, meaning that the path via the train is electrically
less attractive and more current flows to the receiver.

3.3.2. Insulation imperfection

Insulated joints are used to prevent that 75 Hz AC cur-
rents leak to neighboring sections. Problems occur when
insulated joints degrade or when conductive objects lie
over the joints. Insulated joints are implemented in a
way that they are fail-safe.This is achieved by using phase-
shifted currents in adjacent sections, so that a current sig-

nal of one section cannot energize the relay of an adjacent
section. Insulated joint defects can be modeled by a con-
nection to another circuit (see Figure 6). The impedance
of this circuit determines the amount of current flowing to
the adjacent section. In the case of an insulation problem,
the circuit leaks current and consequently, the current Ic
is too low.

3.3.3. Rail conductance impairment

The proper functioning of a track circuit relies on the
conductance properties of the rails. The rail conductance
is influenced by the quality of the rails themselves (e.g.,
damaged rail, broken rail), the quality of the bonds in
jointed track, and electrical influences of disturbance cur-
rents (e.g. saturated track due to high traction currents).
In the track circuit model, the quality of the rails is mod-
eled by the value of the impedance ZR. Problems occur
when this resistance is too high; in that case, the path via
the ballast ZB becomes more attractive and the current
level at the receiver decreases.

3.3.4. Ballast condition

The condition of the ballast determines the resistance
that currents encounter when flowing from one rail to the
other rail or to the ground. Because the effect of a decreas-
ing ballast resistance is similar to that of a train shunt, it
is important that the ballast resistance is sufficiently high
and constant. Due to environmental disturbances (mainly
weather) and aging, the ballast resistance will fluctuate
over time. Some degree of fluctuation is acceptable, but
when the ballast resistance becomes too low, the section
will be reported as occupied, even if there is actually no
train present.

3.3.5. Circuit-related faults

Although track circuits have a high reliability, their
components (e.g., relays, cables, and power supply) can
break. In this paper, circuit-related faults are not treated
further and it is assumed that the circuit itself functions
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properly. However, the proposed approach can be ex-
tended so that also circuit-related faults can be handled.

4. Fault diagnosis of railway track circuits

In this section, we apply the diagnosis approach in-
troduced in Section 2 to the track circuit diagnosis case
discussed in Section 3. First, the diagnosis problem is
specified and assumptions are given. Next, we elaborate
on the application-specific knowledge that is required to
interpret the values of the diagnostic features introduced
in Section 2.2. Finally, the diagnosis algorithm is worked
out for the track circuit diagnosis example.

4.1. Diagnosis setup

According to the approach proposed in Section 2, a
track circuit (i.e. section) can be considered as a system for
which the state Xi of each section i can take two possible
values:

x1 : Free section,

x2 : Occupied section.

Furthermore, Mi ≡ Ic,i and each section i in the network
may suffer from the system faults f1 till f8 listed in Table 1.

For the track circuit case, we only focus on faults and
not on failures6. This means that the actual system state
Xi can be inferred from Ic,i, so Xi is known at each mo-
ment. This means that basic assumption A0 (see Sec-
tion 2) is satisfied. Please note that we do not assume that
the detection system cannot be broken. We assume that
fault diagnosis is preceded by a failure detection mecha-
nism. Failure detection can e.g. be done using redundant
measurement equipment, based on train schedules, or by
verifying the spatio-temporal dependencies in the network.
A further elaboration of it is beyond the scope of this pa-
per.

The following assumptions are adopted:

Assumption A2: Ballast variations (f8) are caused by
environmental disturbances, which are present in all sec-
tions (see Section 2.3);

Assumption A3: At most one of the faults f3 till f7 and
one of the faults f1 and f2 are present in the considered
section;

Assumption A4: We have a closed world, i.e. Table 1 is
complete.

6A fault is defined as a deviation in the system operation that
does not hinder the execution of the system task (train detection),
whereas a failure indicates that the system task can no longer be
executed properly.

Ic,i

α1

α2

high

medium

low

Figure 7: Definition of the feature values of Ki for the track circuit
case.

So, ballast variations are considered as environmental
disturbances, and our aim is to detect and diagnose other
faults (f1 till f7) in the presence of this natural variation.

Since some faults are allowed to be simultaneously present
(e.g. faults f1 and f4), we consider two fault variables
Fo,i ∈ {fo,0, f1, f2} and Ff,i ∈ {ff,0, f3, f4, f5, f6, f7}. The
overall system health Fi equals Fo,i∪Ff,i, with the system
being healthy (i.e. Fi = f0) if Fo,i = fo,0 and Ff,i = ff,0.
The set of values Fo,i can take given feature Ck is denoted
as Wo,Ck,i and the set of values Ff,i can take given fea-
ture Ck is denoted as Wf,Ck,i. The associated sets Wo,i

and Wf,i (see Section 2.2.1) can be computed according to
Procedure 2.

4.2. Feature extraction

This section focuses on feature extraction for the fault
diagnosis of railway track circuits. As the goal of fault di-
agnosis is the identification of the root cause(s) of faulty
behavior, the feature set should be chosen such that, given
the values of the features, the cause can be determined or
at least some potential causes can be excluded. We first
show that, for the track circuit example, system knowledge
in combination with the only available monitoring signal
Ic,i is not sufficient to adequately distinguish between the
different faults listed in Table 1. To improve diagnostic
performance, we consider the diagnostic features proposed
in Section 2.2, i.e. temporal dependencies, spatial depen-
dencies, and spatio-temporal dependencies.

4.2.1. System dependencies

The actual system knowledge of section i is represented
in the form of a single-input single-output system with
as (unknown and uncontrollable) input the voltage across
the two rails Vrail,i and as measured output the current
Ic,i. Based on the measured signal Ic,i and our system
knowledge (see Section 3), we define the feature Ki as the
qualitative behavior of Ic,i, where Ki takes values in the
set {low, medium, high} (see Figure 7), with:
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low: Ic,i < α1;

medium: α1 ≤ Ic,i ≤ α2;

high: Ic,i > α2.

Note that a finer distinction in current values can be made
by using both the thresholds α1 and α2 and the thresholds
γ1 and γ2. However, since for the purpose of fault diagno-
sis, a finer discretization does not add additional informa-
tion, Ki is defined as a three-valued feature. In Table 1(b)
the value of Ki is given for each of the considered faults.
Based on Ki only, it not possible to distinguish between
the different faults. Indeed, it is observed that different
types of faults have a similar effect on Ic,i (e.g. both ballast
degradation, rail conductance impairment, and insulation
imperfection result in a low value of Ic,i). Given the sys-
tem state Xi (occupied or free), the value of Ki only tells
us whether section i is healthy or not, i.e. we can detect
faults, but we cannot diagnose them. The system knowl-
edge (see Table 1) is represented by the following set of
rules:

if Ki = high for Xi = free then Wf,K,i = {ff,0}

if Ki 6= high for Xi = free then Wf,K,i =
{f3, f4, f5, f6, f7, f8}

if Ki = low for Xi = occupied then Wo,K,i = {fo,0}

if Ki 6= low for Xi = occupied then Wo,K,i = {f1, f2}

where f1, ..., f8 refer to the faults given in Table 1.

4.2.2. Temporal dependencies

For most faults, a qualitative description of their evo-
lution over time is available and this information can be
used for fault diagnosis. In Table 1, for each of the faults,
a characterization of the time evolution Ti of Ic,i as a con-
sequence of a fault in section i is given. Hereby we have
restricted ourselves to the four types of time behavior Ti

shown in Figure 8, i.e.:

A: Abrupt;

L: Linear;

E: Exponential;

I: Intermittent.

The results are included in Table 1(b). Note that the
temporal dependency Ti is only a relevant feature for the
diagnosis of a free section, i.e. Xi = free. Furthermore,
all behaviors that are possible according to the available
knowledge are listed7. Taking this additional information
into account, our knowledge base can be extended with
the following rules:

7We did not choose one particular type of behavior T if the
knowledge to do so was lacking, i.e. for an insulated joint defect
(f3), both T = L and T = E are assumed to be possible.

Abrupt Linear

IntermittentExponential

I
cI
c

I
c

I
c

τ τ

ττ

Figure 8: Temporal behaviors.

if Ti = L for Xi = free then Wf,T,i = {ff,0, f3, f7, f8}

if Ti = E forXi = free thenWf,T,i = {ff,0, f3, f5, f7, f8}

if Ti = A for Xi = free then Wf,T,i = {ff,0, f4, f6, f8}

if Ti = I for Xi = free then Wf,T,i = {ff,0, f6, f8}

Wo,T,i = {fo,0, f1, f2}

The last rule states that the temporal dependencies do not
contain information to distinguish between faults fo,0, f1,
and f2.

4.2.3. Spatial dependencies

CAS

NC

CCS

i

Figure 9: Division of the subsystems (track circuits) in a railway
network system for the fault diagnosis of subsystem i.

For each section i, only one monitoring signal (Ic,i) is
available. However, this signal is measured for all sections
in the network. It is interesting to investigate whether the
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monitoring signals of other sections in the network can pro-
vide additional information about the health of section i.
Additional information is contained in these data thanks
to the dependencies between the signals of neighboring sec-
tions that vary for different types of faults. Some faults
are likely to influence all sections in a small neighborhood
(e.g. ballast variation), other faults only influence sections
of the same track (e.g. electrical disturbances), while still
other faults are specific to one section (e.g. mechanical rail
defects). So, the presence of a fault introduces dependen-
cies between (some of) the sections in a local neighbor-
hood. These dependencies introduce correlations between
the monitoring signals of the different sections, which can
be used for fault diagnosis. An overview of the correla-
tions introduced by the different faults can be found in
Table 1(b), where the correlations are defined as:

NC: No correlation of Ic,i with the monitoring signals of
other sections;

CCS: Correlation of Ic,i with the monitoring signal of con-
nected sections, i.e. sections on the same track;

CAS: Correlation of Ic,i with the monitoring signal of all
nearby sections.

In Figure 9, a graphical overview is given of the affected
sections corresponding to the spatial dependencies NC,
CCS, and CAS.

Accordingly we extend our knowledge based with the
following set of rules:

if Si =NC forXi = free thenWf,S,i = {ff,0, f3, f4, f5, f7}

if Si = CCS for Xi = free then Wf,S,i = {ff,0, f6, f7}

if Si = CAS for Xi = free then Wf,S,i = {ff,0, f8}

Wo,S,i = {fo,0, f1, f2}

4.2.4. Spatio-temporal dependencies

For the track circuit diagnosis task, a distinction can
be made between faults that are caused by a train and
so are train-specific (e.g. train shunt imperfection due to a
lightweight train) and faults that are related to the section
itself (e.g. rail contamination). Therefore, we make a dis-
tinction between the following two types of faulty spatio-
temporal behavior Gi:

TS: Train-specific faulty behavior

NTS: Faulty behavior that is not train related

Taking this additional information into account, the
following rules can be added to our knowledge base:

if Gi =NTS forXi = occupied thenWo,G,i = {fo,0, f1}

if Gi = TS for Xi = occupied then Wo,G,i = {fo,0, f2}

if Gi = TS for Xi = free then Wf,G,i = {ff,0, f6}

if Gi = NTS for Xi = free then Wf,G,i =
{ff,0, f3, f4, f5, f6, f7, f8}

Considering Table 1, it can be concluded that the tem-
poral, spatial, and spatio-temporal dependencies are valu-
able diagnostic features for fault diagnosis in a railway
track circuit network. Without these additional features,
faults can only be detected, whereas when taking these
features into account, also possible fault causes can be de-
termined.

4.3. Diagnosis approach

In this section, the diagnosis approach proposed in Sec-
tion 2 is elaborated for the track circuit case. The diag-
nosis of section i in a monitored track circuit network can
be split into the following tasks:

1. Select the sections that are relevant for the diagnosis
according to Procedure 1.

2. Infer the system state Xi from Ic,i:

if Ic,i > γ2 then Xi = free

if Ic,i < γ1 then Xi = occupied

3. Determine current fluctuations due to environmental
disturbances (ballast variations) based on the free
section behavior of the sections selected in step 1
(step 5 of Procedure 2).

4. If Xi = free, correct the currents Ic,j for all j ∈
Ni∪{i} for ballast variations (step 6 of Procedure 2)

5. Check for faulty behavior:

if Xi = free then (Ki 6= “high” =⇒ Fi 6= f0)

if Xi = occupied then (Ki 6= “low” =⇒ Fi 6=
f0)

6. If a fault is detected, determine the spatial depen-
dencies Si, the temporal dependencies Ti, and the
spatio-temporal dependencies Gi and diagnose sec-
tion i (steps 9− 11 of Procedure 2).

Below, the determination of the ballast variation over time
(tasks 3 and 4) and the fault detection and diagnosis (tasks
5 and 6) are worked out for both free and occupied sec-
tions.

Determination of the ballast variation over time

Based on the behavior of section i and the behavior of
the sections in a close neighborhood Ni, the current fluc-
tuations due to ballast variation Ibal,i need to be deter-
mined. These fluctuations can be easily determined from
the monitoring signals of healthy sections. One possible
way to do this is to compute the current fluctuations due
to ballast variations Ibal,i as a filtered (weighted) average
of the current fluctuations of the considered sections:

Ibal,i(τ) = filter





∑

j∈Ki

Ic,j(τ)− Īc,j(τ)

|Ki(τ)|



 (5)

with Ki ⊆ Ni the set of sections in a close neighborhood
of section i that are expected to be healthy, i.e. that are
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not known to be faulty8, and Īc,j the nominal value (i.e.
long-term average) of Ic,j . Note that for the determination
of these variations, only the measurements corresponding
to a free track are considered. When a train is present in
the section, generally, the track circuit is short-circuited
and the current measured at the receiver is approximately
zero, independent of the ballast condition.

Fault detection and diagnosis of a free section

The current measurements corresponding to a free sec-
tion are first corrected for ballast variation based on the
previously determined behavior of Ibal,i(τ). The corrected
current measurements I ′c,i can e.g. be defined as:

I ′c,i(τ) = Ic,i(τ)− Ibal,i(τ) (6)

The corrected current signals I ′c,i are then used for the
fault diagnosis of section i. When a fault is detected in
section i (i.e. Ki 6= “high”), the corresponding temporal
(Ti), spatial (Si), and spatio-temporal (Gi) dependencies
are determined. To determine the spatial dependencies Si,
the monitoring signals of neighboring sections lying on the
same track as section i are analyzed. Based on Ti, Si, and
Gi the cause (or a set of possible causes) for the faulty
behavior can be inferred from Table 1.

Fault detection and diagnosis of an occupied section

When a section is occupied, ballast variations play no
significant role, so we can directly proceed with the de-
tection of faulty behavior. When a fault is detected, i.e.
Ki 6= “low”, diagnosis is required. Then, it is verified
whether the problem is train-specific or not. For this pur-
pose, the monitoring signals of sections lying on the train
routes of several passing trains are analyzed. If the prob-
lem is train-specific, the faulty behavior is caused by a
lightweight train and not due to rail contamination (i.e.
fault f2 is present and fault f1 is absent). If the prob-
lem is not train-specific, rail contamination (among others)
causes the faulty behavior, i.e. fault f1 is present. When
rail contamination is present, problems with lightweight
trains are no longer guaranteed to be identified in section
i. However, defective trains will be detected in any other
section on the train path without rail contamination.

5. Illustrative example

In this section, we consider the fault diagnosis of a
railway section in a small network. First, we introduce the
diagnosis setup together with the adopted assumptions.
Next, we consider how to determine and correct for ballast
variations and finally, the fault detection and diagnosis is
performed.

8Sections that are diagnosed to be faulty, but are still not re-
paired are excluded from Ki.

A

C

B

Figure 10: Sections considered in the diagnosis example.

5.1. Diagnosis setup

Consider that we aim to diagnose section A and we
have the monitoring signals Ic,A, Ic,B, and Ic,C of the three
sections A, B, and C as depicted in Figure 10 available for
the diagnosis of section A, with:

A: the section to be diagnosed;

B: a nearby preceding section;

C: a nearby section located on another track.

So for this example, we have:

NA = {B,C}

LA = {B}

MA = {C}

Furthermore, basic assumption A1 is specified as:

Assumption A′
1: Sections B and C do not suffer from

section-specific faults (i.e. faults for which S = NC) and
section C does not suffer from track-specific faults (i.e.
faults for which S = CCS).

Assumption A′
1 is adopted here because (for simplicity)

only two neighboring sections are considered. In the case
that more sections are considered, the redundant informa-
tion contained in these signals can be used to detect (and
correct for) possible faults in neighboring sections.

5.2. Determination and correction for ballast variation

To determine the part of the current signal Ic,A that
can be attributed to ballast variations (i.e. environmental
disturbances), we consider the long-term behavior of the
signals Ic,A, Ic,B, and Ic,C for a free track. In Figure 11,
samples of these signals are given. From this figure, it can
be observed that all the current signals exhibit a similar
type of variation over time. However, it can also be ob-
served that there is a systematic difference between the
current values of the three section, e.g. the current of sec-
tion C is generally higher than the current of section A.
Furthermore, it can be observed that the measurements
are disturbed by noise and quantization. To determine the
current fluctuation due to ballast variation Ibal,A, we first
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Figure 11: The current signals of the three considered sections A, B,
and C when the section is free.

normalize the current signals by subtracting their nomi-
nal (i.e. mean) value from the measurements (see (5)). In
Figure 12, the normalized current signals are given. As we
know that section C is healthy, apart from ballast varia-
tion, the resulting signal can basically be attributed to bal-
last variations. To reduce the effect of the noise and quan-
tization, we first fit a twelfth-degree polynomial model9

through the data (filter operation in (5)) and use the re-
sulting model Ibal,A (black solid line in Figure 12) to cor-
rect the current signals for the effect of ballast variation.
Note that because only this local neighborhood of three
sections is available, we assume Ibal,A = Ibal,B = Ibal,C .
The corrected current signals are given in Figure 13. The
remaining variation can mainly be attributed to noise and
quantization.

5.3. Feature extraction, fault detection, and diagnosis

For the fault diagnosis, we focus on a short time in-
terval, including several train passages. The associated
corrected monitoring signals are shown in Figure 14, with
the gray areas indicating the time intervals during which
the section is occupied by a train. As expected, after cor-
rection for ballast variation (see Section 5.2), the free track
behavior of section C is as desired; the current Ic,C is above
the threshold α2 (i.e.KC = “high”) when the section is free
and below the threshold α1 (i.e. KC = “low”) when the
section is occupied. To diagnose section A, first the behav-
ior of KA is analyzed. We conclude that till time τ = τ1,
KA = “high” when the section is free and KA = “low”
when the section is occupied, i.e. the system is healthy
(see Section 4). At time τ1, the current level drops as a
consequence of a train passage, but the current does not
decrease below the threshold value α1 (i.e. KA 6= “low”),

9The degree of the polynomial has been tuned manually.
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Figure 12: Normalized current measurements of sections A, B, and
C together with a polynomial fit (black solid line) through the mea-
surement data of healthy section C.
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Figure 13: The current signals corrected for ballast variation.
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indicating that faults f1 and/or f2 are present (see Ta-
ble 1). To determine which fault is present, feature GA is
used10, i.e. we verify whether the problem is train-specific
(see Section 4.2.4). This is done by checking whether the
same problem occurred for other train passages. This is
the not the case (GA = TS), indicating that the fault is
caused by a lightweight train (see Table 1). This conclu-
sion is validated by the monitoring signal I ′c,B of preceding
section B. Also from this monitoring signal, it is concluded
that one particular train suffered from shunt problems.

After the train passage at time τ = τ1 the behavior
is normal again till τ = τ2. Then, after τ = τ2 some de-
viating behavior is observed: In some time intervals, the
current level is below α2 (i.e.KA 6= “high”) while the track
is free, indicating the presence of one of the faults f3 − f7.
To further specify which fault is present, we first consider
feature SA, i.e. we verify whether there is a correlation
with neighboring sections. Considering the monitoring sig-
nals I ′c,B and I ′c,C, we observe a similar faulty behavior in
section B, but no deviating behavior in section C, from
which we conclude that the disturbance is track-specific,
i.e. SA = CCS. So far, it can be concluded that FA = f6
or FA = f7. To make a further distinction, the time evolu-
tion of I ′c,A is studied, i.e. we consider feature TA. Based
on the available part of the time signal, we conclude that
the time behavior of I ′c,A is intermittent, i.e. TA = I. Then
it follows that FA = f6.

In summary, from the signals in Figure 14, we can
conclude that around τ = τ1 a “defective” train passes
through sections A and B and after τ = τ2, sections A and
B suffer from electrical disturbances.

6. Conclusions

In this work, a knowledge-based approach to fault di-
agnosis in networks has been proposed. Next to system
dependencies, the temporal, spatial, and spatio-temporal
dependencies in the network are used as diagnostic fea-
tures. Two main advantages of this method compared
to existing diagnosis methods are that 1. fewer monitor-
ing devices are required and 2. the method is robust with
respect to environmental disturbances. The applicability
of the method has been demonstrated on a railway track
circuit diagnosis case. It has been shown that the pro-
posed method is able to adequately detect and diagnose
track circuit faults, even in the presence of environmental
disturbances. Compared to the current practice of thresh-
old checking, the proposed approach provides more timely
insight into faulty behavior and a characterization of the

10Remember that for an occupied section, features Ti and Si do
not provide information about the fault cause (see Section 4.2.2 and
Section 4.2.3). It is therefore sufficient to only consider features
Ki and Gi here. In other words, features Ti and Si do not put
any constraints on the set of possible faults, so Wo,K,i ∩ Wo,G,i =
Wo,K,i ∩Wo,T,i ∩Wo,S,i ∩Wo,G,i.
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Figure 14: Monitoring signals of sections A, B, and C.

type of fault present. This additional information is impor-
tant for creating an effective condition-based maintenance
schedule.

Maintenance planning based on fault diagnosis and prog-
nosis results will be a topic of further research. Moreover,
we plan to extend the method to a probabilistic setting,
taking uncertainties into account. In a probabilistic set-
ting, it would be interesting to investigate whether and
when it is beneficial to explicitly include predictive infor-
mation, e.g. regarding usage, previous maintenance activ-
ities, and system dependencies, in the diagnostic model.

For the track circuit case, topics for future work include
the development of systematic methods to determine the
feature values as well as the incorporation of extra or more
refined features to further improve diagnostic performance
and to allow for more multiple fault scenarios.
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