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Abstract—To deal with the traffic congestion and
emissions, traffic-responsive control approaches can be
used. The main aim of the control is then to use the
existing capacity of the network efficiently, and to reduce
the harmful economical and environmental effects of
heavy traffic. In this paper, we design a highly efficient
model-predictive control system that uses a gradient-
based approach to solve the optimization problem,
which has been reformulated as a two-point boundary
value problem. A gradient-based approach computes the
derivatives to find the optimal value. Therefore, the opti-
mization problem should involve only smooth functions.
Hence, for nonsmooth functions that may appear in
the internal model of the MPC controller, we propose
smoothening approaches. The controller then uses an
integrated smooth flow and emission model, where the
control objective is to reduce a weighted combination of
the total time spent and total emissions of the vehicles.
We perform simulations to compare the efficiency and
the CPU time of the smooth and nonsmooth optimization
approaches. The simulation results show that the smooth
approach significantly outperforms the nonsmooth one
both in the CPU time and in the optimal objective value.

I. INTRODUCTION

In urban areas, especially in capital cities, we
should deal with economical, environmental, and
health problems resulted by heavy traffic. In order to
solve these issues, various control approaches have
been proposed in the literature (see [1]–[5]), where
the focus of the control engineers is on developing
methods that use the existing capacity of the network
in a more efficient way.

Model-predictive control or MPC [6] is an
optimization-based control approach that has proven
to be efficient in handling input and state constraints
for various applications. MPC minimizes a cost func-
tion along a finite horizon and finds a suboptimal
control strategy along the horizon (see Figure 1).
To reduce the computation time, a control horizon
of a smaller length than the prediction horizon may
be considered. This imposes an additional constraint
on the MPC optimization problem, i.e., the control
signal remains constant from the end of the control
horizon to the end of the prediction horizon (see
Figure 1). MPC uses a prediction model to estimate
the future states of the system and to use them for

solving the optimization problem. The suboptimal
control signal is implemented for one time step, and
then the prediction window is shifted forward for one
time step (see Figure 1). The controller receives the
measured states from the system and uses them as the
initial states of the optimization problem to solve the
problem again.

In this paper a highly efficient MPC controller
for urban traffic networks is designed. The controller
finds a balanced trade-off between reduction of the
total time spent and emissions. An integrated urban
flow-emission model is used that combines the smooth
modified S-model (see [7] and [8]) and VERSIT+
[9]. We apply a gradient-based method based on the
minimum principle of Pontryagin [10] to solve the
MPC optimization problem. In particular, to find the
suboptimal solution of the MPC problem, we apply
the resilient back-propagation (RProp) proposed by
Riedmiller et al. [11].

In Section II, we formulate the optimization prob-
lem of the MPC. Section III introduces the internal
model of the controller including the S-model and
VERSIT+. We then show how to render these models
smooth to apply a gradient-based optimization ap-
proach. Section IV explains the gradient-based opti-
mization method, which uses RProp. In Section V, the
simulation results are given for a case study. Finally,
Section VI concludes the work and topics for future
work are discussed.

II. FORMULATION OF THE URBAN TRAFFIC MPC
CONTROLLER

In this section, we represent the formulation of
the optimization problem of the MPC controller and
the selected objective function. The designed MPC
controller performs in the discrete-time domain, with
kctrl denoting the control time step, Tctrl the con-
trol sampling time, kd the simulation time step for
intersection d, and Td the simulation sampling time
for intersection d. Note that, in general, Td and Tctrl

may not be equal. Hence, the internal model of the
MPC controller estimates the states corresponding to
the downstream intersection d at time steps kd, which
might be different from the time steps kctrl, at which
the controller should make a decision about the best
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Figure 1. MPC in the continuous-time domain.
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Figure 2. Piecewise constant suboptimal control signal within one
prediction interval.

control strategy. There may also be an offset between
kd and kctrl (this will be discussed in more detail later
in Section II-A).

Suppose that at time step kctrl the controller should
make a decision about the control signals of the
intersections within the network. Then the controller
should minimize an objective function J (·) and find
the suboptimal control sequence g for the entire
prediction horizon. Assume that the prediction horizon
is of length Lp = NpTctrl, i.e., it includes Np control
time steps. Since the MPC controller performs in the
discrete-time domain, the optimization problem com-
putes the optimal control signal of each intersection d
at discrete time steps kctrl, kctrl+1, . . . , kctrl+Np−1
along the prediction horizon (see Figure 2). We con-
sider to have a piecewise constant suboptimal con-
trol signal within [kctrlTctrl, (kctrl +Np)Tctrl), i.e. the
control signal remains the same within [kTctrl, (k +
1)Tctrl) for k ∈ {kctrl, . . . , (kctrl +Np − 1)Tctrl}.

Therefore, for intersection d, a vector gd in-
cluding all variables that should be optimized, i.e.,

[gd(kctrl) . . . gd(kctrl +Np − 1)]
⊤

is considered.
Since we should solve the optimization problem for
the entire network, the optimization variable g will be
a vector that includes the entries of all vectors gd for
all intersections d within the traffic network. Then we
can formulate the optimization problem of the MPC

controller at time step kctrl as

min
g(kctrl)

J (kctrl),

such that

C1. Integrated flow-emission model estimates

dynamics of the urban network,

C2. Geq(g(kctrl)) = 0,

C3. Gineq(g(kctrl)) < 0,
(1)

where Geq(·) and Gineq(·) are functions that operate on
the optimization variable and expressing the equality
and inequality constraints of the optimization problem.

As we mentioned before, the aim of the de-
signed MPC controller is to find a balanced trade-
off between reduction of the total time spent by the
vehicles and reduction of the total emissions. There-
fore, we define the objective function as a weighted
combination of the total time spent (divided by its
typical order of the magnitude) and the total emis-
sions of CO, HC, and NOx (divided by their typi-
cal order of the magnitudes). Note that we consider
CO, HC, and NOx as an example for the pollutant
types we want to reduce. We can write

J (kctrl) = wT

∑∑∑

k∈T

TTS(k)

TTSt

+ wCO

∑∑∑

k∈T

TECO(k)

TECO,t

+ wHC

∑∑∑

k∈T

TEHC(k)

TEHC,t

+ wNOx

∑∑∑

k∈T

TENOx
(k)

TENOx,t

,

(2)
where T = {kctrl, kctrl + 1, . . . , kctrl +Np − 1}, and
TTS(·) and TEe(·) are functions that give the total
time spent by the vehicles and the total emissions of
the pollutant e. The subscript “t” indicates the typical
order of the magnitude for the given function.

A. Synchronization of the simulation model and the
MPC controller

In order to compute the total time spent and
the total emissions of the vehicles in (2), we need
the internal model of the MPC controller to give
us an estimate of the network’s state (including the
number of the vehicles within the network), and the
corresponding driving behaviors during the prediction
interval. The integrated flow and emission model can
provide us with this information. An extensive discus-
sion regarding the integrated flow and emission model
used in this paper is given in [8], where the model
first detects the governing traffic scenario (under-
saturated, saturated, over-saturated) within each link
of the network, and then computes the number of
vehicles that move with different traffic behaviors
(e.g., uniform speed, accelerating, idling, etc.).

The internal model of the MPC controller esti-
mates the network’s state at every simulation time
step (e.g., at kd for intersection d). As we explained
in Section II, since the simulation sampling time and
the control sampling time are not necessarily equal,
then kd and kctrl also indicate different time instants.
However, since the total time spent and the total
emissions should be computed by the MPC controller,
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Figure 3. Two options for computing the states at control time
steps based on the values at simulation time steps.

it needs to know the estimated state values of the
network at kctrl. Therefore, we propose two options
to synchronize the simulation model and the MPC
controller, i.e.,

1) Assume that x(·) is piecewise constant within
the interval [kdTd, (kd + 1)Td) (see the top plot
in Figure 3). Hence, from the following relation
between kd and kctrl,

kd(kctrl) =

⌊

kctrlTctrl

Td

⌋

, (3)

we can substitute x(kctrl) by x(kd(kctrl)).
2) The second option is to consider a linear ex-

trapolation approximation for the states based on
the current and the previous values of the state
estimated by the internal flow model of the MPC
controller (see the bottom plot in Figure 3), i.e.,

x(kctrl) = x(kd(kctrl)) +

(

kctrl
Tctrl

Td

− kd(kctrl)

)

·

(x(kd(kctrl))− x(kd(kctrl)− 1))
(4)

where kd(kctrl) is found by (3).

III. FLOW AND EMISSION MODELS

For the internal flow and emission models of the
MPC controller, we use, respectively, the S-model [7]
and the VERSIT+ [9]. Next, we briefly discuss the
original models, and we also show how to render these
models smooth.

A. Nonsmooth S-model

The S-model is a nonlinear and nonsmooth
discrete-time urban traffic flow model that was intro-
duced by Lin et al. in [7]. The simulation sampling
time of the S-model might differ for various links,
and it is considered to be equal to the cycle time
Td of the downstream intersection d of a link (u, d)
(with u the upstream intersection of that link). The
state vector xu,d(kd) of link (u, d) at time step kd,
includes xn

u,d(kd), which is the total number of the ve-

hicles observed on link (u, d) during the time interval

[kdTd, (kd + 1)Td), and xqo

u,d(kd) (for all1 o ∈ Ou,d),
which is the total number of the vehicles that are
idling in a queue on link (u, d) within the mentioned
time interval, and that intend to move towards the
subsequent intersection o. Then, the state vector of
link (u, d) is updated at every simulation time step by

xu,d(kd + 1) = xu,d(kd) + aTd, (5)

with

a =













αenter
u,d (kd)− αleave

u,d (kd)

α
arrive,qo1

u,d (kd)− α
leave, qo1

u,d (kd)
...

α
arrive,qoN

u,d (kd)− α
leave, qoN

u,d (kd)













,

with N the number of entries within Ou,d, αenter
u,d (kd)

and αleave
u,d (kd) the total entering and leaving flow rates

of link (u, d) during the time interval [kdTd, kdTd +

1) , and α
arrive,qoi

u,d (kd) and α
leave, qoi

u,d (kd) the arriving
and the leaving flow rates within the mentioned time
interval for the queue of vehicles that intend to move
towards oi.

B. Smooth S-model

The S-model includes minimum function, which is
nonsmooth. Hence, the resulting optimization problem
is also nonsmooth, and prevents us from implementing
gradient-based optimization approaches for solving it.
We propose the following smooth form:

min{x1, x2, x3} ≈
1

4

(

x1 + x2 + 2x3 −
√

(x1 − x2)2 + α
)

−

√

1

4

(

x1 + x2 − 2x3 −
√

(x1 − x2)2 + α
)2

+ α.

(6)
Here is the reason of proposing (6); suppose that we
have x1 ≤ x2, then

x1 − x2 = −|x1 − x2|,

and also

min{x1, x2} = x1 =
1

2
(x1 + x2 + (x1 − x2)) ,

which results in

min{x1, x2} =
1

2
(x1 + x2 − |x1 − x2|) . (7)

We now approximate the nonsmooth function | · |
by a smooth expression. We propose to use

|x| ≈
√

x2 + α,

with α the smoothening parameter. Note that when
α → 0, the right-hand side of the equation becomes
close to |x|, and the sharpness of the corresponding
graph increases, i.e., the level of smoothness de-
creases. From (7), we have

min{x1, x2} ≈
1

2

(

x1 + x2 −
√

(x1 − x2)2 + α
)

.

(8)
Finally, by implementing (8) twice, we obtain (6).

1Ou,d is a set that includes all the subsequent intersections that
are connected to link (u, d) via intersection d.



C. Emission model VERSIT+

VERSIT+ [9] is a microscopic emission model
that gives the instantaneous emissions, in gram per
second, for different categories of the speed range
that is typical for the Netherlands. The instantaneous
emissions Ee of the pollutant e for each individual
vehicle are computed as follows (note that the units
for speed and acceleration are m/s and m/s2):

• for v < 1.4 and a < 0.5 (idling),

Ee = E0,e; (9)

• for v < 14 (no idling),

Ee = E1,e+E2,e max{D, 0}+E3,e max{D−1, 0};
(10)

• for 14 ≤ v < 22.2,

Ee = E4,e+E5,e max{D, 0}+E6,e max{D−1, 0};
(11)

• for v > 22.2,

Ee = E7,e+E8,e max{D−0.5, 0}+E9,e max{D−1.5, 0},
(12)

with D = a + 0.004v, v and a denote, respectively,
the speed and the acceleration of the vehicle, and
Ei,e, i = 1 . . . , 9 are fixed parameters for different
pollutants e.

Note that from (8), we have

min{x, 0} ≈
1

2

(

x−
√

x2 + α
)

. (13)

We also know that

max{x, 0} = −min{−x, 0}. (14)

Therefore, in the given equations for VERSIT+, we
can substitute

max{D, 0} ≈
1

2

(

D +
√

D2 + α
)

, (15)

and obtain a smooth emission model as well.

IV. SOLVING THE SMOOTH OPTIMIZATION

PROBLEM

To solve the smooth form of the optimization
problem, we use the Pontryagin’s minimum principle
[12], which states that a necessary condition for a
solution to be an optimal solution of the optimization
problem is that it should minimize the corresponding
Hamiltonian of the problem. The Hamiltonian of the
optimization problem (1) with the objective function
given by (2) is defined as

H(k,λ(k + 1),x(k), g(k)) =

J (k) + λ⊤(k + 1) · f(k,x(k), g(k)),
(16)

with λ(·) the costate and f(·) the model expression
that computes the states of the system.

In order to find the control signal that mini-
mizes (16), we use the resilient back-propagation
(RProp) [11] approach. In this approach, the gradient
of the Hamiltonian is computed at every optimization
iteration, and is compared with its value from the pre-
vious iteration. If the gradient has not changed sign, it

means that we are still on the right track to find a local
optimum. Therefore, RProp decreases the absolute
value of the increment of the optimization variable,
while keeping its previous sign (see Figure IV).

However, if the gradient has changed sign, it
means that we have jumped over a local optimum.
Therefore, RProp increases the absolute value of the
increment of the optimization variable, and it changes
the sign of the increment w.r.t. the previous iteration
(see Figure 4(b)).

V. RESULTS

In this section, we compare the CPU time and the
efficiency (i.e., the value of the objective function) for
implementing the gradient-based RProp approach for
solving the smooth formulation of the MPC problem,
and for implementing a genetic algorithm approach for
solving the nonsmooth formulation of the problem.

We consider the urban traffic network shown in
Figure 5 for our case study. The network consists
of four entrances, for which the corresponding en-
tering flow rates are shown by αenter

1 , . . . , αenter
4 .

There are eleven one-way links within the network,
where each of these links has only one lane and a
length of 0.5 [km]. The parameters β1, . . . , β4 indicate
the turning rates of the vehicles at junctions, where
β1 = β3 = 60% and β2 = β4 = 40%.

There are three traffic lights in the network, where
all these lights have the same cycle time of 60 [s].
The free-flow and the idling speed of the vehicles
are respectively 14 [m/s] and 0.4 [m/s]. The average
length of the vehicles in the network is 7 [m], and
the acceleration and deceleration of the vehicles are
2 [m/s2] and -2 [m/s2]. The simulations will be
implemented for three different demand profiles (the
demand profiles are illustrated in Figure 6). Each
simulation is run for 30 [min].

For implementing the gradient-based approach, we
benefit from the minimum principle of Pontryagin (see
Section IV, and for more details see [10], [12], [13]),
and by defining the Hamiltonian of the optimization
problem and setting the partial derivative of the Hamil-
tonian w.r.t. the optimization variable equal to zero. To
find the control signals that satisfy this condition, we
use RProp. The results of the simulations for both the
smooth and the nonsmooth optimization are shown in
Tables I (for RProp) and II (for genetic algorithm).
From these results we see that the gradient-based
(smooth) approach for solving the optimization prob-
lem significantly outperforms the genetic algorithm
(nonsmooth) approach. The CPU time can decrease
up to a factor of 50 using the gradient-based approach,
and the optimal value of the objective function can be
up to 3.5 times less for the gradient-based approach
w.r.t. the nonsmooth approach. Therefore, based on
these simulation results, we see that when the op-
timization problem of the MPC is formulated as a
smooth problem, and is solved via a gradient-based
approach, it is clearly more efficient than a nonsmooth
approach.
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Figure 4. The resilient back-propagation (RProp) algorithm (note that l denotes the iteration number).

Table I. SIMULATION RESULTS FOR THE GRADIENT-BASED (SMOOTH OPTIMIZATION) APPROACH

CPU time [s] Objective function TTS [s] TECO [kg] TEHC [kg] TENOx
[kg]

Demand 1 6690.31 16.90 2.6165 × 105 4.735 0.306 0.528

Demand 2 1386.4 9.96 2.9032 × 105 5.307 0.341 0.594

Demand 3 1209.3 8.52 4.0235 × 105 3.035 0.323 0.367

Table II. SIMULATION RESULTS FOR THE GENETIC ALGORITHM (NONSMOOTH OPTIMIZATION) APPROACH

CPU time [s] Objective function TTS [s] TECO [kg] TEHC [kg] TENOx
[kg]

Demand 1 57711.5 40.91 1.1894 × 106 22.247 1.432 2.456

Demand 3 10115.5 43.18 1.2592 × 106 22.968 1.479 2.565

Demand 2 9797.9 29.19 8.5275 × 105 15.364 1.003 1.691

β1

β2 β3

β4

αenter
1

αenter
2

αenter
3

αenter
4

Figure 5. Urban traffic network with 4 entrances.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have designed an efficient model-
predictive control system, where the control aim is
to reduce the total time spent and the emissions
in and urban traffic network. The controller uses a
smooth integrated flow and emission model to es-
timate the future states and emissions of the net-
work and to solve its optimization problem via a
gradient-based approach that uses the resilient back-
propagation (RProp) approach. In the paper, we have
also presented the smooth form of the urban flow S-
model.

Simulations have been implemented for an urban
traffic network with four entrances and eleven links.
For the simulations, we have used both the smooth
MPC optimization formulation solved by the gradient-
based RProp approach and the nonsmooth formulation
of the MPC problem that has been solved via a genetic
algorithm. The simulation results show a significant
improvement in both the CPU time and the value of
the objective function, when the optimization problem

is solved via RProp compared with when the nons-
mooth optimization formulation is considered.

Topics for future work include an extensive case
study for different optimization approaches (smooth
and nonsmooth) and comparing the corresponding
CPU time and efficiency (i.e., the optimal value of
the objective function). Moreover, we can use other
urban flow and emission models (e.g., cell transmis-
sion model [14] and VT-micro [15]) for both the
smooth and the nonsmooth formulation of the MPC
optimization problem.

ACKNOWLEDGMENT

This research has been supported by the Eu-
ropean COST Action TU1102 and by the NWO-
NSFC project “Multi-level predictive traffic control
for large-scale urban networks” (629.001.011), which
is partly financed by the Netherlands Organization for
Scientific Research (NWO). For the second and the
fourth author, the research leading to these results
has received funding from the European Commission
under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / FP7-ICT-2013.3.4, project
LOCAL4GLOBAL (n. 611538)

REFERENCES

[1] C. Diakaki, M. Papageorgiou, and K. Aboudolas, “A mul-
tivariable regulator approach to traffic-responsive network-
wide signal control,” Control Engineering Practice, vol. 10,
no. 2, pp. 183–195, 2002.

[2] C. Diakaki, V. Dinopoulou, K. Aboudolas, M. Papageor-
giou, E. Ben-Shabat, E. Seider, and A. Leibov, “Extensions
and new applications of the traffic-responsive urban control
strategy: Coordinated signal control for urban networks,”
Transportation Research Record, vol. 1856, pp. 202–211,
2003.



5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

Simulation time [min]

E
n
te

ri
n
g
 f
lo

w
 r

a
te

s
 [
v
e
h
/s

]

 

 

α
enter

1

α
enter

2

α
enter

3

α
enter

4

5 10 15 20 25 30
0

0.005

0.01

0.015

Simulation time [min]

E
n
te

ri
n
g
 f
lo

w
 r

a
te

s
 [
v
e
h
/s

]

 

 

α
enter

1

α
enter

2

α
enter

3

α
enter

4

5 10 15 20 25 30
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Simulation time [min]

E
n
te

ri
n
g
 f
lo

w
 r

a
te

s

 

 

α
enter

1

α
enter

2

α
enter

3

α
enter

4

Figure 6. Demand profiles used for simulations.

[3] T. Bellemans, B. De Schutter, and B. De Moor, “Model
predictive control for ramp metering of motorway traffic: A
case study,” Control Engineering Practice, vol. 14, no. 7, pp.
757–767, 2006.

[4] K. Aboudolas, M. Papageorgiou, A. Kouvelas, and E. Kos-
matopoulos, “A rolling-horizon quadratic-programming ap-
proach to the signal control problem in large-scale con-
gested urban road networks,” Transportation Research Part

C, vol. 18, no. 5, pp. 680–694, 2010.

[5] B. De Schutter, “Model predictive traffic control for green
mobility,” in Proceedings of the 2014 European Control

Conference, Strasbourg, France, June 2014, pp. 2260–2263.

[6] J. Maciejowski, Predictive Control with Constraints. Lon-
don, UK: Prentice Hall, 2002.

[7] S. Lin, B. De Schutter, Y. Xi, and H. Hellendoorn, “Efficient
network-wide model-based predictive control for urban traffic
networks,” Transportation Research Part C, vol. 24, pp. 122–
140, oct 2012.

[8] A. Jamshidnejad, I. Papamichail, M. Papageorgiou, and B. De
Schutter, “Model-predictive control for green mobility in
urban traffic networks: Efficient solution based on general
smoothening methods – addendum,” Delft Center for Sys-
tems and Control, Delft University of Technology, Delft, The
Netherlands, Tech. Rep. 15-033a, Dec. 2015.

[9] N. E. Ligterink, R. D. Lange, and E. Schoen, “Refined
vehicle and driving-behaviour dependencies in the VERSIT+
emission model,” in Proceedings of the ETAPP Symposium,
Toulouse, France, June 2009, pp. 177–186.

[10] H. Kagiwada, R. Kalaba, and Y. Thomas, “Exact solution of
Pontryagin’s equations of optimal control - part 1,” Journal

of Optimization Theory and Applications, vol. 5, no. 1, pp.
12–22, 1970.

[11] M. Riedmiller and H. Braun, “A directive adaptive method for
faster backpropagation learning: the RPROP algorithm,” in
Proceedings of the IEEE International Conference on Neural

Networks, San Francisco, USA, 1993, pp. 586–591.

[12] F. L. J. Lewis, Optimal Control. USA: John Wiley & Sons,
Inc., 1986.

[13] M. Papageorgiou and M. Marinaki, “A feasible direction
algorithm for the numerical solution of optimal control prob-
lems.” Dynamic Systems & Simulation Laboratory, Technical
University of Crete, Chania, Greece, Tech. Rep., 1995.

[14] C. F. Daganzo, “The cell transmission model: A dynamic
representation of highway traffic consistent with the hydro-
dynamic theory,” Transportation Research Part B: Method-

ological, vol. 28, no. 4, pp. 269–287, 1994.

[15] K. Ahn, A. Trani, H. Rakha, and M. van Aerde, “Microscopic
fuel consumption and emission models,” in Proceedings of

the 78th Annual Meeting of the Transportation Research

Board, Washington DC, USA, Jun.–Jul. 1999.


	Introduction
	Formulation of the urban traffic MPC controller
	Synchronization of the simulation model and the MPC controller

	Flow and emission models
	Nonsmooth S-model
	Smooth S-model
	Emission model VERSIT+

	Solving the smooth optimization problem
	Results
	Conclusions and future work
	References

