
Delft University of Technology
Delft Center for Systems and Control

Technical report 16-023

Optimal nonlinear solutions for reverse
Stackelberg games with incomplete

information∗

Z. Su, S. Baldi, and B. De Schutter

If you want to cite this report, please use the following reference instead:
Z. Su, S. Baldi, and B. De Schutter, “Optimal nonlinear solutions for reverse Stack-
elberg games with incomplete information,” Proceedings of the 55th IEEE Con-
ference on Decision and Control, Las Vegas, Nevada, pp. 5304–5309, Dec. 2016.
doi:10.1109/CDC.2016.7799082

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/16_023.html

https://doi.org/10.1109/CDC.2016.7799082
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/16_023.html

Optimal Nonlinear Solutions for Reverse Stackelberg Games with

Incomplete Information

Zhou Su, Simone Baldi and Bart De Schutter

Abstract— The reverse Stackelberg game provides a suitable
decision-making framework for hierarchical control problems
like network pricing and toll design. We propose a novel
numerical solution approach for systematic computation of
optimal nonlinear leader functions, also known as incentives,
for reverse Stackelberg games with incomplete information and
general, nonconcave utility functions. In particular, we apply
basis function approximation to the class of nonlinear leader
functions, and treat the incentive design problem as a standard
semi-infinite programming problem. A worked example is
provided to illustrate the proposed solution approach and to
demonstrate its efficiency.

I. INTRODUCTION

The Stackelberg game, a hierarchical leader-follower game

first introduced in the 1930s in economic context [1], has

received growing recognition in the systems and control

field since the 1970s [2], [3]. In a Stackelberg game, the

leader makes her decision first; then the followers, informed

of the leader’s decision, make their decisions accordingly.

The reverse Stackelberg game, in which the leader proposes

a function mapping from the followers’ decision spaces

to the leader’s decision space, instead of making a direct

decision, can be viewed as a more general case of the original

Stackelberg game. The reverse Stackelberg games have been

successfully applied to many hierarchical decision making

problems like nonlinear network pricing [4], optimal routing

[5], and toll design [6].

We follow the “type” notation proposed in [7] for games with

incomplete information, where at least one player possesses

certain important attributes, the actual value of which is

only known to himself. These attributes can be, e.g., the

production cost or risk attitude. The type of a player is then

characterized by a vector of these attributes. The actual type

of a player is only known to himself, and his opponents

only know the type space and the type distribution, i.e. all

possible alternatives of each attribute and the probability of

each possible combination. Moreover, we consider no type

for the leader in reverse Stackelberg games with incom-

plete information. Compared with the situation of complete

information, the leader’s lack of information regarding the

followers produces a less desirable results for her [4].

Solving the Stackelberg game is equivalent to solving a

This work is sponsored by the NWO/ProRail project “Multi-party risk
management and key performance indicator design at the whole system
level (PYRAMIDS)”, project 438-12-300, which is partly financed by the
Netherlands Organisation for Scientific Research (NWO).

Z. Su, B. De Schutter and S. Baldi are with Delft Center for Systems and
Control, Delft University of Technology, 2628 CD, Delft, the Netherlands
Z.Su-1@tudelft.nl, B.DeSchutter@tudelft.nl,

S.Baldi@tudelft.nl

bilevel programming problem [8], and even the simplest

linear bilevel programming problem has been proved is

NP-hard [9]. The more general reverse Stackelberg games

are even more difficult to solve, especially when a wide

class of leader functions are considered and the players

have general, nonconcave utility functions. Most papers that

discuss nonlinear leader functions often focus on deriving

analytic solutions for problem-specific utility functions [4],

[10], [11]. A systematic approach to compute optimal non-

linear leader functions for reverse Stackelberg games with

general utility functions is proposed in [12], but under the

restrictive assumption of complete information. Therefore,

in this paper, we focus on numerical solution approaches for

the more realistic Stackelberg game with incomplete infor-

mation, considering nonlinear leader functions and general

utility functions.

The key contribution of this paper is a systematic solution

approach based on basis functions and semi-infinite program-

ming for reverse Stackelberg games with incomplete infor-

mation, considering nonlinear leader functions and general,

nonconcave utility functions.

The paper is organized as follows. We describe the reverse

Stackelberg game and its formulation in Section II, and

propose the solution approach based on basis functions

and semi-infinite programming in Section III. A numerical

example is provided in Section IV to illustrate the solution

approach. Finally we conclude this study and list some

directions of future work in Section V.

II. PRELIMINARIES

We consider a two-person reverse Stackelberg game with

the player set {L, F}, where L denotes the leader and F

denotes the follower. The leader’s decision is dL ∈ DL ⊂
R

nL and the follower’s decision is dF ∈ DF ⊂ R
nF , where the

decision spaces DL and DF are both continuous and compact.

The follower’s type is denoted by t ∈ T , with the type space

T a discrete and compact set. The follower’s type is only

known to himself, but the type distribution P : T → [0, 1]
is known to both players. The leader’s utility function is

UL : DL × DF → R, and the follower’s utility function is

UF : DL×DF×T → R. Let UF,t be the reservation utility of

the agent, which specifies the minimum utility the follower

requires to participate in the game.

In a reverse Stackelberg game, the leader moves first by

announcing a leader function γL : DF → DL. The set of

admissible leader functions is denoted by ΓL. The follower

then decides his best response dBR
F to the announced leader

function. If the best response gives a utility strictly lower

than his reservation utility1, the follower will quit and the

game terminates. Otherwise, the follower executes dBR
F and

the game ends by the leader executing the promised decision

γL(d
BR
F).

A. Game Formulation

Under incomplete information, the leader’s objective is to

maximizes her expected utility over all possible follower’s

types, which is achieved by announcing a leader function

that maximizes her expected utility, considering all possible

responses from the follower. As proposed in [4], [12], we

decompose the problem of designing the optimal leader

function into two sequential optimization problems: the

leader’s global optimization problem, which yields the global

optimum (if it exists), and the incentive design problem,

which induces the follower to adopt the global optimum,

under the assumption of full rationality2.

Let t ∈ T denote the follower’s type. Furthermore, define

dL,t and dF,t as the decision variable of the leader and the

follower regarding the follower of type t, respectively. Let

UF,t denote the reservation utility of a follower of type

t. The optimization problem to find the global optimum,

which is called the desired point (also called team solution

in literature [4]), that maximize the leader’s expected utility

can be formulated as:

To find

{(d∗L,t, d∗F,t)}t∈T ∈
argmax

{(dL,t, dF,t)∈DL×DF}t∈T

∑

t∈T

P (t)UL(dL,t, dF,t) (1)

subject to:

UF(d
∗
L,t, d

∗
F,t, t) ≥ UF,t ∀t ∈ T (2)

UF(d
∗
L,t, d

∗
F,t, t) ≥ UF(d

∗
L,t̂

, d∗
F,t̂
, t) (3)

∀t, t̂ ∈ T.

Constraint (2) is the participation constraint, which garantees

the participation of the follower, and constraint (3) is the

incentive compatibility constraint, which ensures that the

follower has no incentive to pretend to be of any type other

than his true type.

Assume that the leader’s global optimum {(d∗L,t, d∗F,t)}t∈T

exists, which can be found by global optimization techniques

like multi-start; then the incentive design problem is to find

a leader function γL ∈ ΓL that induces the follower to adopt

the team solution, i.e.

To find

γL ∈ ΓL (4)

subject to:

d∗F,t ∈ argmax
dF∈DF

UF(γL(dF), dF, t) ∀t ∈ T (5)

γL(d
∗
F,t) = d∗L,t ∀t ∈ T. (6)

1Reservation utility is the lowest utility that a player will accept to
participate in a game.

2In game theory, a player is said to have full rationality if he always acts
in a way to maximize his utility.

Constraint (5) ensures that the follower has no incentive to

deviate from the leader’s global optimum, regardless of his

type. Constraint (6) ensures that the optimal leader function

passes through the desired point for any type of follower.

The team solution {(d∗L,t, d∗F,t)}t∈T is called incentive con-

trollable, if the feasibility program (4)-(6) has a solution. A

leader function is called game-optimal, if it is a solution to

(4)-(6) for the leader’s global optimum3.

In summary, an optimal leader function should pass through

the desired point for any type. Moreover, it should not

intersect with the 0-level curve of the function

ginf(dL, dF, t) := UF(dL, dF, t)− UF(d
∗
L,t, d

∗
F,t, t) (7)

and it should remain inside the sublevel set

Λ := {(dL, dF) ∈ DL ×DF|ginf(dL, dF, t) ≤ 0} (8)

for any t ∈ T .

III. SOLUTION APPROACH BASED ON BASIS FUNCTIONS

AND SEMI-INFINITE PROGRAMMING

The computation of the team solution (1)-(3) is a tractable

standard optimization problem, as the number of decision

variables and constraints are both finite. Assume the leader’s

global optimum {(d∗L,t, d∗F,t)}t∈T exists and is unique 4. An

analytic solution for a general nonlinear leader function to

the incentive design problem (4)-(6) is difficult to obtain,

especially for general, nonconcave utility functions. The

difficulties in solving the incentive design problem (4)-(6)

lie in the fact that the decision space ΓL is a function space

of infinite dimensions, and that the equilibrium constraint

(5) is also numerically challenging for general nonconvex

utility functions, as it involves solving a global optimization

problem.

A. Basis Function Approach

Basis functions are universal approximators that can ap-

proximate any given function with arbitrary accuracy when

the set of selected basis functions is rich enough [13]. A finite

set of basis functions B = {bi : RnF → R
nL}ni=1 is used

to approximate the leader function γL. Each of these basis

functions is further denoted by bi(·; ξi), i = 1, . . . , n, to

emphasize its dependence on the parameter vector ξi, which

contains information regarding the location and the shape of

each basis function (e.g. the center and the width of a radial

basis function). The leader function γL can be represented

by a linear combination of the selected basis functions5

γL(·) =
n∑

i=1

αi ⊙ bi(·; ξi) (9)

with weights αi ∈ R
nL and parameter vectors ξi ∈ Ξ. As for

the basis functions, we denote the leader function represented

3When the leader has multiple global optima, a leader function is called
game-optimal if it is the solution to (4)-(6) for at least one global optimum.

4If there are multiple global optima, we can repeat (4)-(6) for each global
optimum, and choose the γL that gives the highest expected follower utility
over his type space.

5The operator ⊙ represents the elementwise (Schur) product.

by basis function approximation (9) as γL(·; α, ξ), to high-

light its dependence on the parameters and weight of each

basis function, with α = [αT
1 · · ·αT

n]
T and ξ = [ξT

1 · · · ξT
n]

T.

Then we can approximate the incentive design problem (4)-

(6) by the following feasibility program:

To find:

(α, ξ) ∈ R
nL×n × Ξn (10)

subject to:

ginf(γL(dF), dF, t) = UF

(
n∑

i=1

αi ⊙ bi(dF; ξi), dF, t

)

−UF

(
d∗L,t, d

∗
F,t, t

)
≤ 0 ∀dF ∈ DF, ∀t ∈ T (11)

n∑

i=1

αi ⊙ bi(d
∗
F,t; ξi) = d∗L,t ∀t ∈ T (12)

n∑

i=1

αi ⊙ bi(dF; ξi) ∈ DL ∀dF ∈ DF. (13)

Constraint (11) and (12) corresponds to constraint (5) and

(6), respectively. Constraint (13) is to guarantee that the

resulting leader function indeed maps the follower’s decision

space to the leader’s decision space.

Constraint (11) and (13) are complicating, as they must be

satisfied on a continuous domain DF. Constraint (13) can

be replaced by a finite linear constraint if a stricter rule

is applied to the selection of basis functions. Instead of

B = {bi : R
nF → R

nL}ni=1, we can choose B̃ = {bi :
DF → DL}ni=1 as the set of selected basis functions. Then

constraint (13) can be replaced by the following two linear

constraints:

α ∈ [0, 1]nL (14)
n∑

i=1

αi = 1 (15)

In this way γL as a convex combination of the basis functions

in B̃ also maps DF to DL, and constraint (13) is satisfied by

construction. The feasibility program for the incentive design

problem thus becomes (10)-(12),(14),(15), with the new set

of selected basis function B̃.

B. Semi-Infinite Programming

The incentive design problem (10)-(12),(14),(15) is still

intractable, as there still remains one complicating constraint

(11), which must be satisfied on a continuous domain DF.

Mathematical programming problems with a finite number

of decision variables but an infinite number of constraints

are called Semi-Infinite Programming (SIP) problems [14].

Standard SIP problems can be represented by the following

general form6

min
x∈X

f(x) (16)

6For clarity we omit all finite constraints in Section III-B, as they can be
easily added to the resulting finite programming problem.

subject to:

gi(x, y) ≤ 0 ∀y ∈ Yi, ∀i ∈ {1, . . . , p} (17)

where X and Yi are continuous, compact subsets of R
nx

and R
ny , respectively, and the functions f : R

nx → R

and gi : Rnx × R
ny → R are real-valued and continuous

on their respective domains, for all i. For clarity we call

x the decision variable and y the index variable. Further-

more, we call the continuous set Yi the index set of each

infinite constraint gi. The intractable feasibility program

(10)-(12),(14),(15) can then be transformed to a tractable

standard SIP problem (16),(17) with |T | infinite constraints,

by treating the parameters of the basis function (α, ξ) as the

decision variable x, and dF as the index variable y of the

infinite constraints.

A comprehensive survey on numerical methods for semi-

infinite programming problems is given in [14]. The major

challenge in solving a semi-infinite programming problem

lies in the fact that to check the feasibility of a point x̄ ∈ X ,

the following lower-level optimization problem

max
y∈Yi

gi(x̄, y) (18)

must be solved to global optimality for each i ∈ {1, . . . , p}
[15]. Let y∗i denote the global optimum for the i-th lower-

level problem (18); then x̄ is feasible as long as:

max
i∈{1,...,p}

gi(x̄, y
∗
i) ≤ 0.

The difficulty of solving a semi-infinite programming prob-

lem depends on whether the lower-level problems are convex.

As the convexity of the lower-level problem is so crucial

in solving a semi-infinite programming problem, we now

provide several sufficient conditions to check the convexity

of the lower-level problem for the feasibility program (10)-

(12),(14),(15).

Theorem 1: Let UF and γL (in the form of (9)) be con-

tinuous and twice differentiable on their respective domains;

then the lower-level problem of the feasibility program (10)-

(12),(14),(15) is convex if any of the following conditions is

satisfied:

(1) UF(·, ·, t) is linear in dL and dF, and non-decreasing in

dL for all t ∈ T and γL is concave;

(2) UF(·, ·, t) is linear in dL and dF, and non-increasing in

dL for all t ∈ T and γL is convex;

(3) UF(·, ·, t) is concave in dL and dF, and non-decreasing

in dL for all t ∈ T , and γL is non-decreasing and

concave;

(4) UF(·, ·, t) is concave in dL and dF, and non-increasing

in dL for all t ∈ T , and γL is non-decreasing and convex;

The proof is given in the appendix. Remark: Theorem 1 can

also be applied to select proper basis functions when UF is

concave. As both convexity and monotonicity are preserved

by convex combination, Theorem 1 also holds if we replace

γL by “each basis function” in condition (1)-(4).

The importance of the convexity of the lower-level problems

is that it allows for the usage of equivalent reformulation

methods. When the lower-level problems are convex, the

semi-infinite programming problem (16)-(17) can be equiva-

lently transformed to a tractable finite programming problem

through bilevel reformulations [15], like the Mathematical

Program with Complementary Constraints (MPCC) refor-

mulation [16], and the reformulation based on lower-level

Wolfe duality [17]. However, such equivalent reformulation

methods cannot be directly applied when at least one lower-

level problem is nonconvex. Many numerical methods have

been developed for semi-infinite programming problems with

general, nonconvex lower-level problems. We refer the in-

terested readers to [14], [15] for a comprehensive survey.

Moreover, many numerical solvers have also been developed

for semi-infinite programming problems, like fseminf in the

Matlab Optimization Toolbox, and the AMPL-coded NSIPS

solver [18], [19] available in the NEOS server [20].

IV. NUMERICAL EXAMPLE

In this section we present a numerical example to illustrate

the procedure of a systematic computation of the optimal

non-linear leader function for reverse Stackelberg games

with incomplete information and general, nonconcave utility

functions.

A. Settings

Let the leader and the follower’s decision spaces be DL =
[−5, 5] and DF = [−2, 2], respectively. We denote dk and

dk the lower and upper bounds of Dk for k ∈ {L, F},

respectively. The follower’s type space is given by T =
{t1, t2} where t1 = 1 and t2 = 5, and the type distribution

is P (t1) = 0.75 and P (t2) = 0.25. The Rosenbrock function

[21], a popular valley-shaped non-convex testing function for

optimization algorithms, is selected as the utility functions7

for both players. In particular, we let the utility functions of

the leader and the follower to be:

UL = −(1 + dF)
2 − 100(dL + d2F)

2 (19)

UF = −(1− dF)
2 − 100(tdL − d2F)

2. (20)

The type t can be viewed as a parameter that influences the

shape of the follower’s utility uF.

Two radial basis function families, the Gaussian radial basis

functions and the inverse multiquadric functions, are selected

to approximate the leader function. The Gaussian radial basis

functions are defined by:

φ(r) = exp(− r2

∆2
) (21)

and the inverse multiquadric functions are defined by:

φ(r) =
1√

r2 +∆2
(22)

Then each basis function can be represented by:

bi(dF) =
dL − dL

φ− φ
φ(r) + dL (23)

7The signs are reversed as the Rosenbrock function is designed for
minimization problems.

where r = ‖dF − ci‖2 is the Euclidean distance to the center

of the i−th radial basis function, and φ and φ are the upper

and lower bounds of the selected radial basis function. The

centers {ci}ni=1 are equidistantly placed on DF, and the width

is fixed to ∆ =
dF − dF

n− 1
.

Since both the centers and widths are fixed for the radial

basis functions, the parameter vector ξ is empty as we only

optimize the weights α. Since we have the freedom to choose

a well-behaved objective function to the feasibility program

(10)-(12),(14),(15), we add the following quadratic objective:

min

n∑

i=1

α2
i . (24)

The leader’s global optimization problem (1)-(3) is solved

by the nonlinear programming solver SNOPT from Tomlab

8.0 with multi-start, and the standard semi-infinite program-

ming problem (24)(10)-(12),(14),(15) for the incentive design

problem is solved by fseminf from the Matlab Optimization

Toolbox. All simulations are performed on a desktop com-

puter with an Intel i5-3470 Quad core and 16 GB of RAM,

running Matlab R2015b on a 64-bit version of SUSE Linux

Enterprise Desktop 11.

As the semi-infinite programming solver fseminf uses a

discretization method, which does not guarantee feasibility of

each iteration, we will measure the violation of the infinite

constraint (11) after a leader function is obtained. A fine

uniform grid D̃L × D̃F (with 101 × 101 grid points) is

generated for DL × DF for post-evaluation of the infinite

constraint (12). The following measure is used to evaluate

the constraint violation:

vt =

max
d̃F∈D̃F

ginf(γL(d̃F), d̃F, t)

max
(d̃L, d̃F)∈D̃L×D̃F

ginf(d̃L, d̃F, t)
∀t ∈ T. (25)

The denominator represents the maximal violation of a given

constraint on the whole evaluation grid, and the numerator

calculates the maximal constraint violation when the result-

ing γL is implemented. In this way we can have a quantitative

measure on the performance of each leader function.

B. Discussions of Results

The team solution computed by SNOPT is

(−0.7450, −0.8634) for t1 and (−0.7445, −0.8637)
for t2. The leader functions obtained from different numbers

of Gaussian radial basis functions and inverse multiquadric

functions are shown in Figure 1. An optimal leader function

should pass through the leader’s desired points and does

not intersect with the 0-level curves of ginf, so that the

follower cannot obtain a strictly higher utility if he deviates

from the leader’s desired points, regardless of his type. As

we can see, all the leader functions are continuous and lie

in the leader’s decision space DL, and all of them pass

through the desired points8. Thus constraint (12) is satisfied

8Note that the global optimum in general includes two different points
for different types, but they are very close to each other in this example.

0

0

0

0

0

0

100

100

100

10
0

100

100

0

0
0

0

0

0

500

500
500

500

500

500

-2 -1 0 1 2

d
F

-5

0

5

d
L

d*

n=10

n=15

n=25

n=35

(a) Gaussian radial basis functions

0

0

0

0

0

0

100

100

10
0

100

100

100

0
0

0

0
0

0

500

500

500

500

500

500

-2 -1 0 1 2

d
F

-5

0

5

d
L

d*

n=10

n=15

n=25

n=35

(b) Inverse multiquadric basis functions

Fig. 1: Leader functions obtained from the indirect approach

based on basis function approximation and semi-infinite

programming. The solid and dashed contour lines are the

0-level curve of ginf for t1 and t2, respectively.

for all of them. However, not all resulting leader functions

satisfy the infinite constraint (11). For example, as shown

in Figure 1b, the leader functions obtained using 10 and 15

inverse multiquadric basis functions both intersect with the

0-level curve of g
inf

for t2. Gaussian radial basis functions

demonstrate a better performance in comparison, as shown

in Figure 1a, as even the leader function resulting from only

10 basis functions has no obvious intersection with either

0-level curve.

The performance of the two basis function families,

quantified by the constraint violation (25), is visualized in

Figure 2. Both basis function families show an improvement

of performance as the number of basis functions increases.

Gaussian radial basis functions obviously perform better

than inverse multiquadric functions, as the infinite constraint

for t1 is never violated (vt1 remains 0 in Figure 2a),

and the maximum violation of ginf for t1 is only 0.14,

compared to 1 for the inverse multiquadric case. Moreover,

the performance using 10 Gaussian basis functions is

10 15 20 25 30 35 40

number of basis functions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o
n
s
tr

a
in

t
v
io

la
ti
o
n

v
t

1

v
t

2

(a) Gaussian radial basis functions

10 15 20 25 30 35 40

number of basis functions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o
n
s
tr

a
in

t
v
io

la
ti
o
n

v
t

1

v
t

2

(b) Inverse multiquadric basis functions

Fig. 2: Measure of constraint violation of the infinite con-

straint ginf for both types.

better than the performance using 25 inverse multiquadratic

functions, and with 30 Gaussian radial basis functions

we can already find a “perfect” leader function with no

constraint violations. From Figure 2 we can conclude that a

selection of 30 basis functions is already sufficient to obtain

a well-performing leader function, as the maximal constraint

violation is no more than 0.1 for both Gaussian radial basis

functions and inverse multiquadric basis functions.

The mean CPU time to solve the incentive design problem

using fseminf with different numbers of Gaussian and

inverse multiquadric radial basis functions is shown in

Figure 3. We can see that neither choice of basis functions

is computationally very demanding, as the largest problems

(n = 40) can be computed within 1.6 seconds, and within 1

second we can already obtain a satisfactory leader function

(n = 30).

V. CONCLUSIONS AND FUTURE WORK

A structured numerical solution approach has been devel-

oped for the class of nonlinear leader functions for reverse

Stackelberg games with incomplete information and general

utility functions. Basis functions are used to approximate the

10 15 20 25 30 35 40

number of basis functions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

m
e
a
n
 C

P
U

 t
im

e
 (

s
e
c
o
n
d
s
)

Gaussian

Inverse multiquadric

Fig. 3: Mean CPU time for the compuation of the incentive

design problem using Gaussian radial basis functions and

inverse multiquadratic basis functions. The mean is taken

over 10 runs.

nonlinear leader function, transforming the incentive design

problems into a standard semi-infinite programming prob-

lem, which has been extensively studied in literature. The

worked example shows that the proposed solution approach

provides satisfactory results in relative short CPU time using

typical basis functions like Gaussian radial basis functions,

and standard semi-infinite programming solvers.

In future research, a comprehensive computational experi-

ment considering various nonconcave utility functions can

be performed to investigate more families of basis functions.

In addition, continuous type space for the follower will be

considered. In this case, even the computation of the leader’s

global optimum becomes intractable. Another direction will

be extending the proposed solution approach to dynamic

reverse Stackelberg games.

APPENDIX

Proof of Theorem 1

Proof: The key to determine the convexity of the lower-

level problem is to determine the concavity of the functions

ginf(γL(·), ·, t) for all t ∈ T . The second-order derivative of

ginf w.r.t dF is given by:

∂2ginf

∂d2F
=

∂2UF

∂d2L

(
dγL

ddF

)2

︸ ︷︷ ︸

term 1

+
∂UF

∂dL

d2γL

dd2F
︸ ︷︷ ︸

term 2

+ 2
∂2UF

∂dLdF

dγL

ddF
︸ ︷︷ ︸

term 3

+
∂2UF

∂d2F
︸ ︷︷ ︸

term 4

. (26)

First we prove condition (1) and (2). When UF(·, ·, t) is

linear, all its second-order derivatives become 0, so only term

2 remains in (26). If UF is non-decreasing in dL and γL is

concave, then
∂UF

∂dL

≥ 0 and
d2γL

dd2F
≤ 0; thus

∂2ginf

∂d2F
≤ 0,

and therefore ginf is concave in dF. So now condition (1)

is proved; condition (2) can be proved following similar

arguments.

Now we prove condition (3) and (4). When UF(·, ·, t) is

concave, then its Hessian is negative semi-definite, so term

1 and term 4 are both less than 0. Since γL is non-decreasing,
dγL

ddL

≥ 0, so term 3 is also less than 0. Moreover, term 2 is

non-positive if UF is non-decreasing and γL is concave, so

condition (3) is proved; or UF is non-increasing and γL is

convex, so condition (4) is proved.

REFERENCES

[1] H. von Stackelberg, Marktform und Gleichgewicht. J. Springer, 1934.
[2] J. Jose, “Leader-follower strategies for multilevel systems,” 1978.
[3] T. Başar and H. Selbuz, “Closed-loop Stackelberg strategies with

applications in the optimal control of multilevel systems,” IEEE

Transactions on Automatic Control, vol. 24, no. 2, pp. 166–179, 1979.
[4] H. Shen and T. Başar, “Optimal nonlinear pricing for a monopolistic

network service provider with complete and incomplete information,”
IEEE Journal on Selected Areas in Communications, vol. 25, no. 6,
pp. 1216–1223, 2007.

[5] N. Groot, B. De Schutter, and H. Hellendoorn, “Dynamic optimal
routing based on a reverse stackelberg game approach,” in 2012 15th

International IEEE Conference on Intelligent Transportation Systems

(ITSC). IEEE, 2012, pp. 782–787.
[6] K. Stanková, G. Olsder, and M. Bliemer, “Bilevel optimal toll design

problem solved by the inverse Stackelberg games approach,” Urban

Transport and the Environment in the 21st Century (C.A. Brebbia, V.

Dolezel, eds.), vol. 89, pp. 871–880, 2006.
[7] J. Harsanyi, “Games with incomplete information played by

“Bayesian” players, i–iii,” Management Science, vol. 14, no. 3, 5, 7,
pp. 159–182, 320–334, 486–502, 1968.

[8] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel
optimization,” Annals of Operations Research, vol. 153, no. 1, pp.
235–256, 2007.

[9] P. Hansen, B. Jaumard, and G. Savard, “New branch-and-bound rules
for linear bilevel programming,” SIAM Journal on Scientific and

Statistical Computing, vol. 13, no. 5, pp. 1194–1217, 1992.
[10] G. Olsder, “Phenomena in inverse Stackelberg games, part 1: Static

problems,” Journal of Optimization Theory and Applications, vol. 143,
no. 3, pp. 589–600, 2009.

[11] S.-Y. Zhang, “A nonlinear incentive strategy for multi-stage Stackel-
berg games with partial information,” in 1986 25th IEEE Conference

on Decision and Control. IEEE, 1986, pp. 1352–1357.
[12] N. Groot, B. De Schutter, and H. Hellendoorn, “On systematic

computation of optimal nonlinear solutions for the reverse stackel-
berg game,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, vol. 44, no. 10, pp. 1315–1327, 2014.
[13] A. Timan, Theory of Approximation of Functions of a Real Variable:

International Series of Monographs on Pure and Applied Mathematics.
Elsevier, 2014, vol. 34.

[14] M. López and G. Still, “Semi-infinite programming,” European Jour-

nal of Operational Research, vol. 180, no. 2, pp. 491–518, 2007.
[15] O. Stein, “How to solve a semi-infinite optimization problem,” Euro-

pean Journal of Operational Research, vol. 223, no. 2, pp. 312–320,
2012.

[16] ——, Bi-level Strategies in Semi-Infinite Programming. Springer
Science & Business Media, 2013, vol. 71.

[17] M. Diehl, B. Houska, O. Stein, and P. Steuermann, “A lifting method
for generalized semi-infinite programs based on lower level wolfe
duality,” Computational Optimization and Applications, vol. 54, no. 1,
pp. 189–210, 2013.

[18] A. Vaz, E. Fernandes, and M. Gomes, “A sequential quadratic pro-
gramming with a dual parametrization approach to nonlinear semi-
infinite programming,” Top, vol. 11, no. 1, pp. 109–130, 2003.

[19] ——, “SIPAMPL: Semi-infinite programming with AMPL,” ACM

Transactions on Mathematical Software (TOMS), vol. 30, no. 1, pp.
47–61, 2004.

[20] J. Czyzyk, M. Mesnier, and J. Moré, “The NEOS server,” Computing

in Science & Engineering, vol. 5, no. 3, pp. 68–75, 1998.
[21] H. Rosenbrock, “An automatic method for finding the greatest or least

value of a function,” The Computer Journal, vol. 3, no. 3, pp. 175–184,
1960.

