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Adaptive asymptotic tracking control of uncertain
time-driven switched linear systems

Shuai Yuan∗, Bart De Schutter∗, Senior Member, IEEE, and Simone Baldi∗

Abstract—This paper establishes a novel result for adaptive
asymptotic tracking control of uncertain switched linear systems.
The result exploits a recently proposed stability condition for
switched systems. In particular, a time-varying positive definite
Lyapunov function is used to develop a novel piecewise continu-
ous model-reference adaptive law and a dwell-time switching law.
In contrast with previous research, where asymptotic tracking
was possible only in the presence of a common Lyapunov
function for the reference models, in this work asymptotic
tracking is shown in a more general setting. Additionally, in the
presence of persistence of excitation, the controller parameter
estimation errors will converge to zero asymptotically. The main
contribution of this work consists in establishing a symmetry
between adaptive control of classical non-switched linear systems
and adaptive control of switched linear systems. A practical
example with an electro-hydraulic system is adopted to illustrate
the results.

Index Terms—Adaptive asymptotic tracking control, switched
linear systems

I. INTRODUCTION

As a special class of hybrid systems, switched systems
have attracted a lot of attention in the last decade. Switched
systems can be utilized to model complex systems that are
characterized by hybrid dynamics and arise in many fields,
such as automotive industry [1], aircraft and air traffic [2],
and smart buildings [3].

When controlling such complex systems, a ubiquitous prob-
lem is the presence of large parametric uncertainties. Widely
used for coping with parametric uncertainties in classical non-
switched systems [4], adaptive control of switched systems
subject to parametric uncertainties has been also investigated
[5], [6], [7], [8] in the later years. The work in [5] and
[6] can be cited as representative research for uncertain
state-dependent switched systems and uncertain time-driven
switched systems, respectively. For state-dependent switched
systems, di Bernardo et al. [5] developed an adaptive law based
on the so-called minimal control synthesis algorithm, which
can guarantee that the plant states asymptotically track the
reference trajectory. For time-driven switched systems, Sang
and Tao [6] proposed a switching law based on the dwell
time and an adaptive law with parameter projection for each
subsystem. Two crucial properties of the Lyapunov function
are exploited in [6]: an exponential rate of decrease during
the active intervals between two consecutive switching instants
and a bounded increment at switching instants. Because of this,
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asymptotic stability can be guaranteed only in the presence of
a common Lyapunov function for the reference models. For
general settings when no common Lyapunov function exists,
the control method proposed in [6] can only guarantee (non-
asymptotic) stability of the closed-loop switched system and
that the tracking error is bounded in a mean square sense.
Furthermore, parameter projection is a necessary tool to keep
the estimates bounded, even in the absence of any disturbance.
These results are not consistent with the well-known results on
adaptive tracking control for classical non-switched systems,
where parameter projection is not needed in the noiseless case,
and asymptotic tracking can be guaranteed [9]. From this point
of view, the following questions automatically arise: how to fill
the aforementioned theoretical gap between adaptive control of
switched linear systems and non-switched linear systems? in
other words, can we develop an adaptive law and a switching
law for uncertain time-driven switched systems to achieve
the same asymptotic stability results of adaptive control of
classical non-switched systems? Furthermore, in the presence
of a persistently exciting reference input, can we guarantee
asymptotic convergence of the controller parameter estimation
errors to zero?

Recently, a new asymptotic stability condition for switched
linear systems has been proposed based on a dwell-time
switching law [10]. There are some distinguishing properties
of this new stability condition with respect to those proposed
in [11], [12], [13]. In particular, the dwell time guaranteeing
the asymptotic stability can be calculated without involving an
exponential term. Moreover, instead of a single positive defi-
nite matrix, a family of positive definite matrices is associated
to each subsystem, which can be used to construct a time-
varying positive definite matrix using the linear interpolation
method for a quadratic Lyapunov function. The resulting
Lyapunov function is decreasing during the intervals between
two consecutive switching instants and non-increasing at the
switching instants. In light of this, the current work exploits
the aforementioned stability result to develop a novel model
reference adaptive law for uncertain switched linear systems
to guarantee asymptotic stability. The main contributions of
the work can be summarized as follows: first, in contrast
with previous work involving two properties of the Lyapunov
function, the proposed adaptive laws completely remove these
requirements; second, there is no need for parameter projection
and of the a priori knowledge of upper and lower bounds
for the parameters when the switched system is not subject
to disturbances; finally, asymptotic stability is established
for the first time, i.e., the tracking error converges to zero
asymptotically, even when no common Lyapunov function for
the reference models exists. Furthermore, if the reference is
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persistently exciting, we can also guarantee that the parameter
estimates of the state-feedback controller converge to the
nominal parameters asymptotically, which makes the closed-
loop switched system behave like the reference model. In view
of these achievements, a symmetry between adaptive control of
switched linear systems and adaptive control of non-switched
systems is established.

The paper is organized as follows: Section 2 presents the
control problem and some preliminaries for later analysis.
Section 3 proposes an adaptive law and a switching law
to solve the adaptive asymptotic tracking problem. Stability
results of closed-loop switched system based on a quadratic
Lyapunov function are presented Section 4. Section 5 adopts a
practical example to illustrate the proposed results. The paper
is concluded in Section 6.

Notation: The notation used in this paper is as follows:
R, R+, and N+ represent the set of real numbers, positive
real numbers, and positive natural numbers, respectively. The
notation P = PT > 0 indicates a symmetric positive definite
matrix. In addition, the superscript T represents the transpose
of matrix. The operator tr(·) represents the trace of a matrix.
The notation ∥·∥ represents the Euclidean norm. The function
sgn[∗] takes the sign of ∗. The identity matrix of compatible
dimensions is denoted by I. The operator λmax[P] returns the
maximum eigenvalue of the square matrix P, and diag{· · ·}
represents a block-diagonal matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES

This paper focuses on uncertain time-driven switched linear
systems described by the following differential equation:

ẋ(t) = Aσ(t)x(t)+bσ(t)u(t), σ(t) ∈ M = {1, . . . ,M} (1)

where x ∈ Rn is the state vector, and u ∈ R represents some
piecewise continuous input. The matrices Ap ∈ Rn×n and
vectors bp ∈Rn are assumed to be unknown for all p∈M . The
switching law σ(·) is a piecewise function taking values in M ,
and the capital letter M denotes the number of subsystems.

To develop the adaptive tracking scheme, a reference
switched system representing the desired behavior of (1) is
given as follows:

ẋm(t) = Amσ(t)xm(t)+bmσ(t)r(t), σ(t) ∈ M (2)

where xm ∈ Rn is the desired state vector, and r ∈ R is a
bounded reference input. The matrices Amp ∈Rn×n and vectors
bmp ∈Rn are known, and Amp are Hurwitz matrices for p∈M .
Suppose that (Amp, bmp) is controllable for each p ∈ M and
each subsystem in (1) has its own corresponding reference
sub-model. We assume the measurements of x(t) and xm(t)
are available. Hence, the nominal state feedback controller that
makes the switched system behave like the reference model is
given as follows:

u∗(t) = k∗T
σ(t)(t)x(t)+ l∗

σ(t)(t)r(t)

where the nominal parameters k∗p ∈Rn and l∗p ∈R exist under
the assumption that the following matching condition holds
[6], [9], [14]:

Ap +bpk∗T
p = Amp, bpl∗p = bmp. (3)

However, since Ap and bp are unknown, we cannot obtain k∗p
and l∗p from (3). In light of this, the state-feedback controller
is developed as:

u(t) = kT
σ(t)(t)x(t)+ lσ(t)(t)r(t) (4)

where kp and lp are the estimates of k∗p and l∗p, respectively. In
addition, we define the tracking error as: e(t) = x(t)− xm(t).

Substituting (4) into (1), and subtracting (2), the dynamics
of the tracking error are as follows:

ė(t) = Amσ(t)e(t)+bσ(t)(k̃
T
σ(t)(t)x(t)+ l̃σ(t)(t)r(t)) (5)

where k̃p = kp − k∗p and l̃p = lp − l∗p are the parameter estima-
tion errors.

The following definitions will be used in this work:
Definition 1: (Class K and KL) We say that a function

α : [0,∞) → [0,∞) is of class K , and write α ∈ K , when α

is continuous, strictly increasing, and α(0) = 0. We say that a
function β : [0,∞)× [0,∞)→ [0,∞) is of class KL , and write
β ∈ KL when β (·, t) is of class K for each fixed t ≥ 0 and
β (s, t) decreases to 0 as t → ∞ for each fixed s ≥ 0.

Definition 2: (Dwell-time switching) Switching laws with
the switching sequence S := {t1, t2, . . .} are said to be dwell-
time admissible if there exists a number τd > 0 such that ti+1−
ti ≥ τd holds for all i ∈ N+. A positive number τd, for which
these constraints hold for all i ∈N+, is called dwell time, and
the set of dwell-time admissible switching laws is denoted by
D(τd).

Definition 3: (Global asymptotic stability) [15] A
switched system is said to be globally asymptotically stable
if there exists a class KL function such that for all switching
signals σ(·) and for any initial condition x(0) the following
inequality is satisfied: |x(t)| ≤ β (|x(0)|, t), ∀t ≥ 0.

Definition 4: (L2 class) A vector signal ϕ(·) is said to
belong to L2, denoted by ϕ(·) ∈ L2, if

∫
∞

0 ϕ(t)T ϕ(t)dτ <
∞, ∀t ≥ 0.

Definition 5: (L∞ class) A vector signal ϕ(·) is said to
belong to L∞, denoted by ϕ(·) ∈ L∞, if maxt≥0 ∥ϕ(t)∥ <
∞, ∀t ≥ 0.

Definition 6: (Persistently exciting condition) [9] Consider
a signal vector ν generated, with some abuse of notation, as
ν(t) = H(s)ξ (t) where ξ ∈ R, and H(s) is a vector whose
elements are transfer functions that are strictly proper with
stable poles. If the complex vectors H( jω1), . . . ,H( jωn) are
linearly independent on the complex space ∀ω1, . . . ,ωn, where
ωi ̸= ω j for i ̸= j, then we say ν is persistently exciting if and
only if ξ contains at least n/2 different nonzero frequencies.

Thus, the problem addressed in this paper is presented as
follows:

Problem 1: Develop an adaptive law for kp and lp in (4) and
a switching law σ(·) such that the switched system (1) with
the state-feedback controller (4) can asymptotically track the
reference switched system (2), i.e., the tracking error e(t)→ 0
as t → ∞.

Before presenting the main results, we assume that the sign
of l∗p is known, ∀p ∈ M , which is widely used in adaptive
control problems to ensure the boundedness of signals in
closed-loop systems [9].
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III. METHODOLOGY

To guarantee that the states x of the uncertain switched
system track xm asymptotically, firstly, we need to develop
a dwell-time admissible switching law σ(·) to guarantee
the global stability of the reference switched system with
a bounded reference input r. It has been established that
the globally asymptotic stability of the homogeneous system,
ẋm(t) = Ampxm(t), p ∈ M , is sufficient to lead to global
stability of (2) [15]. Hence, using the stability condition
proposed in [10], the following lemma is stated,

Lemma 1: The switched system ẋm = Ampxm, p ∈ M , is
globally asymptotically stable for any switching law σ(·) ∈
D(τd) if there exist: a collection of symmetric matrices Pp,k ∈
Rn×n, p ∈ M , k = 0, . . . ,K, and a sequence {δk}K

k=1 > 0 with
∑

K
k=1 δk = τd such that the following hold:

Pp,k > 0 (6a)

(Pp,k+1 −Pp,k)/δk+1 +Pp,K Amp +AT
mpPp,K < 0 (6b)

for K = k,k+1; k = 0, . . . ,K −1

Pp,KAmp +AT
mpPp,K < 0 (6c)

Pp,K −Pq,0 ≥ 0 (6d)
for q = 1, . . . , p−1, p+1, . . .M,

where K is an integer that may be chosen a priori, according
to the allowed computational complexity.

By solving the LMIs in (6), a collection of symmetric
matrices Pp,k and a dwell time τd can be obtained that will be
utilized to develop a new adaptive law. Let us define a time se-
quence {ti,0, . . . , ti,K} with ti,k+1− ti,k = δk+1, k = 0, . . . , K−1.
Note that ti,0 = ti and ti,K − ti,0 = τd, as shown in Fig. 1.

Fig. 1. The time sequence between two consecutive switching instants

Therefore, the adaptive law is proposed as follows:

k̇σ(t)(t) =− sgn[l∗
σ(t)]Γσ(t)x(t)e

T (t)Pσ(t)(t)bmσ(t)

l̇σ(t)(t) =− sgn[l∗
σ(t)]γσ(t)r(t)e

T (t)Pσ(t)(t)bmσ(t),
(7)

where Γp ∈ Rn×n and γp ∈ R are given adaptive gains for p ∈
M and the time-varying matrix Pp(t) is defined as:

Pp(t) =

{
Pp,k +

Pp,k+1−Pp,k
δk+1

(t − ti,k), for ti,k ≤ t < ti,k+1

Pp,K , for ti,K ≤ t < ti+1
(8)

The sequence of switch-in instants of subsystem p is repre-
sented by

{
tp1 , tp2 , tp3 , . . .

}
, and the sequence of its switch-

out instants is represented by
{

tp1+1, tp2+1, tp3+1, . . .
}

. Note
that the proposed adaptive law (7) is to be implemented as
follows: at a switch-in instant of subsystem p the initial
conditions of (7) are taken from the estimates available at
the previous switch-out instant of the same subsystem, i.e.,

kp(tpl ) = kp(tp(l−1)+1), and lp(tpl ) = lp(tp(l−1)+1) for any l ∈
N+. Therefore, kp and lp evolve continuously.

Remark 1: Compared with adaptive laws proposed in
previous research, the following considerations are in order:

• In contrast with [6], [7], [8], projection laws are not
necessary in (7) due to non-increasing behavior of the
Lyapunov function at the switching instants, as will be
demonstrated in the next section. Therefore, the knowl-
edge of a priori bounds for kp(t) and lp(t) is not needed
for (7).

• The adaptive laws introduced in [6], [7], [8] derive from a
classical Lyapunov function consisting of quadratic terms
of the tracking error and of the parameter estimation
errors, where a constant positive definite matrix Pp for
each subsystem is adopted. In this paper, we propose a
new adaptive law that uses a time-varying positive definite
matrix Pp(t) for each subsystem.

• In [6], [7], [8] the adaptive law is derived independently
of the switching law (and vice versa). That is, the design
of the switching law and of the adaptive law is decoupled.
In the approach proposed here adaptive and switching
laws are coupled via the solution of (6), which depends
on the dwell time.

IV. MAIN RESULTS OF STABILITY

n this section, the stability results of the proposed control
scheme will be presented.

Theorem 1: With the adaptive law (7)–(8) and any switching
law σ(·) ∈ D(τd), the tracking error e(t) converges to zero
asymptotically as t → ∞.

Proof: Consider the following Lyapunov function:

V (t) = eT (t)Pσ(t)(t)e(t)+
M

∑
p=1

1
|l∗p|

(
k̃T

p (t)Γ
−1
p k̃p(t)

)
+

M

∑
p=1

1
|l∗p|

(
l̃2
p(t)γ

−1
p

) (9)

which is continuous during any interval between two con-
secutive switching instants and discontinuous at switching
instants considering the fact that Pσ(·)(·) is continuous during
intervals and discontinuous at switching instants. Without loss
of generality, let us consider an interval [ti, ti+1) between two
consecutive switching instants ti and ti+1 and let σ(ti) = p
and σ(ti+1) = q with i ∈ N+ and p,q ∈ M . Then, for t ∈
[ti, ti+1), subsystem p is active and thus k j and l j for all
j ∈ M /{p} maintain constant and their values are those at
the last switched-out instant of subsystem j before the time
instant ti. Therefore, using (5) and (7), the derivative of V (t)
with respect to time is

V̇ (t) = ėT (t)Pp(t)e(t)+ eT (t)Pp(t)ė(t)+ eT (t)Ṗp(t)e(t)

+2
1
|l∗p|

k̃T
p (t)Γ

−1
p

˙̃kp(t)+2
1
|l∗p|

l̃p(t) ˙̃lp(t)γ−1
p

= eT (t)Qp(t)e(t)

(10)

with Qp(t) defined as

Qp(t) = AT
mpPp(t)+ Ṗp(t)+Pp(t)Amp (11)
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which is continuous for t ∈ [ti, ti+1) due to the continuity of
Pp(t) for t ∈ [ti, ti+1).

To analyze the properties of Qp(t) for t ∈ [ti, ti+1), first we
consider t ∈ [ti,k, ti,k+1), k = 0, . . . ,K −1. Note that

Qp(t) = AT
mpPp(t)+(Pp,k+1 −Pp,k)/δk+1 +Pp(t)Amp

= η1
[
(Pp,k+1 −Pp,k)/δk+1 +Pp,kAmp +AT

mpPp,k
]

+η2
[
(Pp,k+1 −Pp,k)/δk+1 +Pp,k+1Amp +AT

mpPp,k+1
]

(12)
where η1 = 1− (t − ti,k)/δk+1, η2 = (t − ti,k)/δk+1. Accord-
ing to (6b), it follows from (12) that

Qp(t)< 0, t ∈ [ti,k, ti,k+1). (13)

Then, let us consider t ∈ [ti,K , ti+1) for the case that ti+1− ti >
τd. We have Pp(t) = Pp,K according to (7), which indicates by
(6c) that

Qp(t) = AT
mpPp,K +Pp,KAmp < 0, t ∈ [ti,K , ti+1). (14)

Therefore, it follows from (13)–(14) that Qp(t)< 0 due to the
continuity of Qp(t) as t ∈ [ti, ti+1), which implies that V (t) is
strictly decreasing for any e(t) ̸= 0 for t ∈ [ti, ti+1), i.e.,

V̇ (t) = eT (t)Qp(t)e(t)< 0, t ∈ [ti, ti+1). (15)

Since the signals e(·), k̃σ(·)(·), and l̃σ(·)(·) are continuous
according to (5) and (7), it follows, at switching instant ti+1,
that

Vσ(ti+1)(ti+1)−V
σ(t−i+1)

(t−i+1)

= eT (ti+1)Pσ(ti+1)(ti+1)e(tl+1)− eT (t−i+1)Pσ(t−i+1)
(t−i+1)e(t

−
i+1)

= eT (ti+1)(Pσ(ti+1)−P
σ(t−i+1)

)e(ti+1)

= eT (ti+1)
(
Pq,0 −Pp,K

)
e(ti+1)

which indicates that V (·) is non-increasing at switching instant
ti+1 considering Pq,0 −Pp,K ≤ 0 for p,q ∈ M . Since V (·) is
strictly decreasing during any interval between two consecu-
tive switching instants and non-increasing at each switching
instant for any e(t) ̸= 0, now we can conclude that V (t) is
strictly decreasing for any t > 0 and e(t) ̸= 0. This implies
the boundedness of V (·) and therefore all the signals in the
closed-loop switched system according to (9). Integrating (15)
from 0 to ∞, we have

∫
∞

0 eT (t)Qp(t)e(t)dt <V (0)−V (∞)<∞.
Due to the boundedness of Pp(·), Qp(·) is also bounded, which
implies

∫
∞

0 eT (t)e(t)dt < ∞, i.e., e(·) ∈ L2. According to (9),
since V (·)∈ L∞, we have e(·)∈ L∞. Additionally, the dynamics
of e(·) in (5) gives rise to ė(·) ∈ L∞. Since e(·) ∈ L2 and
ė(·)∈ L∞, it can be concluded that e(t)→ 0 as t →∞ according
to Barbalat’s lemma [16]. This completes the proof.

Remark 2: Note that Pp(·) is constructed using a family
of discrete matrices satisfying (6) for each subsystem. The
computational complexity of constructing Pp(·) is dependent
on the number K. A larger K leads to a smaller dwell time τd
that can guarantee asymptotic tracking. However, there always
exists a constant K∗ such that ∀K > K∗, the dwell time τd
is equivalent to the result obtained by the stability condition
proposed in [12], i.e., for p ̸= q ∈ M ,

Pp,Pq > 0, PpAmp+AT
mpPp < 0, eAT

mpτdPqeAmpτd −Pp < 0 (16)

Remark 3: According to Remark 2, a question may arise
automatically: why cannot we use the stability condition (16)
directly to obtain the result of Theorem 1 instead of condition
(6)? The reason is explained in the following.

The differences between the stability conditions in (6)
and (16) have a significant impact on the derivative of the
Lyapunov function (9). Note that it is not necessary to de-
velop the derivative in (10) during the intervals between two
consecutive switches into an exponential decay formulation,
i.e., V̇ (t)≤−αV (t) with a compatible number α > 0, which
is needed in the approach followed in [6], [7], [8]. On the other
hand, using (16), the following classical Lyapunov function as
in [6] is considered:

V (t) = eT (t)Pσ(t)e(t)+
M

∑
p=1

1
|l∗p|

(
k̃T

p (t)Γ
−1
p k̃p(t)

)
+

M

∑
p=1

1
|l∗p|

(
l̃2
p(t)γ

−1
p

) (17)

whose derivative is, for t ∈ [ti, ti+1)

V̇ (t) = eT (t)(PpAmp +AmpPp)e(t)

+
1
|l∗p|

(k̃T
p (t)Γ

−1
p fxp(t)+ γ

−1
i l̃p(t) frp(t))

≤−V (t)/ρ − (V (t)−B)/(sρ)

(18)

where fxp and frp are projection laws, and the positive
numbers ρ , s , and B can be calculated as shown in [6].
The derivative in (18) can be shown to be decreasing at an
exponential rate only when V (t)≥ B. According to condition
in (16), asymptotic stability can be guaranteed only if the
Lyapunov function in (17) is decreasing at an exponential rate
for t ∈ R+/S which cannot be satisfied according to (18).
In light of this, we cannot utilize (16) obtain the result of
Theorem 1 due to the presence of the exponential term eAmpτd

in (16), while it does not appear in (6).
Remark 4: In the literature on adaptive control of switched

systems, the switching laws based on dwell time [6], average
dwell time [7], or mode-dependent dwell time [8] are designed
based on the following two properties of the Lyapunov func-
tion: an exponential decreasing rate during active intervals
between two consecutive switching instants, and a bounded
increment at switching instants. Note that switching laws
based on these two properties and adaptive laws with constant
positive definite matrices Pp prevent asymptotic tracking from
being achieved, following the same reasoning as in Remark 3.

Remark 5: Since subsystem matrices are necessary to
calculate the dwell time using Theorem 1 in [10], the method
proposed in [10] can only guarantee asymptotic stability of
switched systems with uncertainties residing in a known poly-
tope. However, the Lyapunov function (9) exploits the matrices
of the reference modes. As a consequence, the proposed
adaptive laws (7) with time-varying matrices Pp(·) can achieve
asymptotic stability of switched systems with more general
(possibly non-polytopic) uncertainties.

Theorem 2: If the reference input signal r(·) is persistently
exciting with respect to system (2) (i.e., r(·) has at least (n+
1)/2 different frequencies), then k̃p(t), l̃p(t), p ∈ M , and e(t)
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converge to zero asymptotically as t → ∞, with the adaptive
law (7)–(8) and any switching law σ(·) ∈ D(τd), where M
represents the set of subsystems that are active intermittently
over infinite intervals.

Proof: Define θ̃p(t) = [k̃T
p (t) l̃p(t)]T for t ∈ Tp, where

Tp = ∪[tpl , tpl+1) with l ∈ N+ denoting the total time period
when subsystem p is active. Then, we can express (7) as:

θ̇p(t) =−sgn[l∗p]Γpω(t)bT
mpPp(t)e(t)

where Γp = diag
{

Γp, γp
}

and φ(t) =
[
x(t) r(t)

]T . Define
χ(t) = [eT (t) θ̃ T (t)]T . Then we have

χ̇(t) = Ap(t)χ(t), e(t) =CT
p χ(t)

where

Ap(t) =
[

Amp bpφ T (t)
−sgn[l∗p]Γpφ(t)bT

mpPp(t) 0

]
, Cp =

[
I
0

]
.

Consider the time-varying positive definite matrix Pp(t) =
diag

{
Pp(t), 1

|l∗p|
Γ
−1
p

}
, where Pp(t) is defined in (8). We con-

sider the following Lyapunov function:

Vp(t) = χ
T (t)Pp(t)χ(t)

= eT (t)Pp(t)e(t)+
1
|l∗p|

(
k̃T

p (t)Γ
−1
p k̃p(t)+ l̃2

p(t)γ
−1
p

)
.

For an interval [tpl , tpl+1) with l ∈ N+ when subsystem p is
active, the derivative of the Lyapunov function is given by

V̇p(t) = χ
T (t)

(
AT

p (t)Pp(t)+Pp(t)Ap(t)+ Ṗp(t)
)

χ(t)

= eT (t)
(
AT

mpPp(t)+ Ṗp(t)+Pp(t)Amp
)

e(t)

= eT (t)Qp(t)e(t).

Based on the proof of Theorem 1, it is clear that Vp(t)
is strictly decreasing for any e(t) ̸= 0, i.e., V̇p(t) < 0 for
t ∈ [tpl , tpl+1). Therefore, there exist positive constants υp =
−sup

{
λmax[Qp(t)]

}
such that

V̇p(t)≤ −υpeT (t)e(t)

≤ −υpχ(t)TCpCT
p χ(t), t ∈ [tpl , tpl+1).

(19)

Furthermore, since the reference input r(·) is persistently
exciting and (Amp, bmp) is controllable, it follows that
φm(·) := [xm(·) r(·)]T is also persistently exciting [17], which,
together with (19), implies that φ(·) is weakly persistently
exciting (according to Definition 3 in [18]). This only leads to
asymptotic convergence to zero of the system χ̇(t)=Ap(t)χ(t)
(see Theorem 4 of [18]) for t ∈ [tpl , tpl+1). Next, we compare
the value of Vp(t) at the switch-out instant tpl+1 and the switch-
in instant tp(l+1) of subsystem p. Due to kp(tp(l+1)) = kp(tpl+1),
and lp(tp(l+1)) = lp(tpl+1), and the result that V (t) in (9) is
strictly decreasing for any e(t) ̸= 0, we have

Vp(tp(l+1))−Vp(tpl+1) = V (tp(l+1))−V (tpl+1)

= e(tp(l+1))
T Pp(tp(l+1))e(tp(l+1))

− e(tpl+1)
T Pp(tpl+1)e(tpl+1)

< 0

(20)

which shows that Vp(t) is strictly decreasing for all t ∈ Tp
together with (19). Now, we construct a continuous time line t

by joining the intervals when subsystem p is active, i.e., taking
tp(l+1) = tpl+1 for all l ∈N+ and t0 = tp0 . Therefore, according
to (19)–(20), it holds that the system χ̇(t) = Ap(t)χ(t) is
asymptotically stable for the time line t, that is, χ(t)→ 0 as
t → ∞, which indicates that e(t), k̃p(t), and l̃p(t) converge to
zero asymptotically, as t ∈ Tp → ∞.

V. EXAMPLE

In this section, an electro-hydraulic system [19], as shown
in Fig. 2, is used to demonstrate the effectiveness of the
proposed adaptive asymptotic tracking control scheme. Two
operating conditions with respect to different supply pressures,
11.0 MPa and 1.4 MPa, are selected, and the corresponding
transfer functions are:

G1(s) =
62.4

s(s+4.58)
, G2(s) =

47.2
s(s+9.19)

which can be written in canonical form:

ẋ =
[

0 1
0 −4.58

]
x+

[
0

62.4

]
u(t)

ẋ =
[

0 1
0 −9.19

]
x+

[
0

47.2

]
u(t)

where x = [x1 x2]
T with x1, x2 representing the displacement

of arm and the velocity of the arm, respectively; the input is
the control voltage.

Fig. 2. The schematic diagram of the electro-hydraulic system

The desired behavior is represented by:

ẋm =

[
0 1

−15 −8

]
xm +

[
0

31.2

]
r(t), 11.0 MPa

ẋm =

[
0 1

−27 −12

]
xm +

[
0

23.6

]
r(t), 1.4 MPa.

With K = 1 we have a dwell time τd = 1 and the matrices
obtained by solving the LMIs in (6) are:

P1,1 =

[
1.2605 0.0546
0.0546 0.0540

]
, P1,2 =

[
2.0107 0.0491
0.0491 0.1216

]
P2,1 =

[
1.3832 0.0305
0.0305 0.0443

]
, P2,2 =

[
2.1008 0.0279
0.0279 0.0818

]
.
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Without loss of generality, we select the switching interval
ti+1 − ti = τd for all i of the switching law σ(·). Therefore,
the time-varying positive matrix Pp(t) for p ∈ {1,2} can be
calculated by Pp(t) = (t − τd ·floor(t/τd)) · (Pp,2 −Pp,1)/τd +
Pp,1, where floor(t/τd) rounds t/τd to the nearest integer
less than or equal to t/τd. The initial conditions are cho-
sen as: x(0) =

[
0 0

]T , xm(0) =
[
3 0

]T , lp(0) = 0.5l∗p and
kp(0) = 0.5k∗p, p ∈ {1,2}. The adaptive gains Γp = 10I,
γp = 5, p ∈ {1,2}, are selected. In addition, a persistently
exciting reference input r(t) = 3sin(πt)+2cos(2t) is chosen.
The simulation results are shown in Fig. (3)–(5), which
indicate that the tracking error converges to 0 and the pa-
rameter estimates of the controller k1(t), l1(t), k2(t) and
l2(t) converge to k∗1 =

[
−0.2404 −0.0548

]T , l∗1 = 0.5, k∗2 =[
−0.5720 −0.0595

]T , and l∗2 = 0.5 asymptotically, respec-
tively.

Fig. 3. The tracking error

Fig. 4. The parameter estimation errors of the controller for subsystem 1

Fig. 5. The parameter estimation errors of the controller for subsystem 2

VI. CONCLUSION

The adaptive asymptotic tracking control problem of uncer-
tain switched linear systems has been investigated. An adaptive

law based on a time-varying positive definite matrix and a
dwell-time switching law have been developed. The proposed
control scheme can guarantee the asymptotic stability of the
tracking error. Furthermore, with the presence of a persis-
tently exciting reference input, the parameter estimates of the
controller converge to the real values asymptotically. In light
of this, the proposed method has filled the theoretical gap
between adaptive control of switched linear systems and non-
switched linear systems. A practical example of an electro-
hydraulic system has demonstrated the effectiveness of the
proposed adaptive control scheme.
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