
Delft University of Technology
Delft Center for Systems and Control

Technical report 16-028

Reinforcement learning applied to an
electric water heater: From theory to

practice∗

F. Ruelens, B.J. Claessens, S. Quaiyum, B. De Schutter, R. Babuška,
and R. Belmans

If you want to cite this report, please use the following reference instead:
F. Ruelens, B.J. Claessens, S. Quaiyum, B. De Schutter, R. Babuška, and R. Belmans,
“Reinforcement learning applied to an electric water heater: From theory to practice,”
IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3792–3800, 2018. doi:10.1109/
TSG.2016.2640184

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/16_028.html

https://doi.org/10.1109/TSG.2016.2640184
https://doi.org/10.1109/TSG.2016.2640184
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/16_028.html

1

Reinforcement Learning Applied to an Electric
Water Heater: From Theory to Practice

F. Ruelens, B. J. Claessens, S. Quaiyum, B. De Schutter, R. Babuška, and R. Belmans

Abstract—Electric water heaters have the ability to store
energy in their water buffer without impacting the comfort of
the end user. This feature makes them a prime candidate for
residential demand response. However, the stochastic and non-
linear dynamics of electric water heaters, makes it challenging to
harness their flexibility. Driven by this challenge, this paper for-
mulates the underlying sequential decision-making problem as a
Markov decision process and uses techniques from reinforcement
learning. Specifically, we apply an auto-encoder network to find
a compact feature representation of the sensor measurements,
which helps to mitigate the curse of dimensionality. A well-
known batch reinforcement learning technique, fitted Q-iteration,
is used to find a control policy, given this feature representation.
In a simulation-based experiment using an electric water heater
with 50 temperature sensors, the proposed method was able to
achieve good policies much faster than when using the full state
information. In a lab experiment, we apply fitted Q-iteration to
an electric water heater with eight temperature sensors. Further
reducing the state vector did not improve the results of fitted
Q-iteration. The results of the lab experiment, spanning 40 days,
indicate that compared to a thermostat controller, the presented
approach was able to reduce the total cost of energy consumption
of the electric water heater by 15%.

Index Terms—Auto-encoder network, demand response, elec-
tric water heater, fitted Q-iteration, machine learning, reinforce-
ment learning.

I. INTRODUCTION

THE share of renewable energy sources is expected to
reach 25% of the global power generation portfolio by

2020 [1]. The intermittent and stochastic nature of most
renewable energy sources, however, makes it challenging to
integrate these sources into the power grid. Successful inte-
gration of these sources requires flexibility on the demand
side through demand response programs. Demand response
programs enable end users with flexible loads to adapt their
consumption profile in response to an external signal. Dynamic
pricing, reflecting the dynamic nature of the underlying cost
of electricity, is one way to engage end users [2]. This way,
end users are incentivized to modify their demand pattern in
order to achieve a more efficient power system in which the
operation of renewable energy is integrated [3].

A prominent example of flexible loads are electric water
heaters with a hot water storage tank [4], [5]. These loads

F. Ruelens and R. Belmans are with the Department of Electrical Engineer-
ing, KU Leuven/EnergyVille, Belgium (frederik.ruelens@esat.kuleuven.be).

B. J. Claessens is with the Energy Department of Vito/EnergyVille, Belgium
(bert.claessens@vito.be).

S. Quaiyum is with the Department of Electrical Engineering, Uppsala
University, Sweden.

B. De Schutter and R. Babuška are with the Delft Center for Systems and
Control, Delft University of Technology, The Netherlands.

have the ability to store energy in their water buffer without
impacting the comfort level of the end user. In addition
to having significant flexibility, electric water heaters can
consume about 2 MWh per year for a household with a daily
hot water demand of 100 liters [6]. As a result, electric water
heaters are a prime candidate for residential demand response
programs. Previously, the flexibility offered by electric water
heaters has been used for frequency control [7], local voltage
control [8], and energy arbitrage [9], [10]. Amongst others,
two prominent control paradigms in the demand response
literature on electric water heaters are model-based approaches
and reinforcement learning.

Perhaps the most researched control paradigm applied to
demand response are model-based approaches, such as Model
Predictive Control (MPC) [9], [10], [11]. Most MPC strategies
use a gray-box model, based on general expert knowledge
of the underlying system dynamics, requiring a system iden-
tification step. Given this mathematical model, an optimal
control action can be found by solving a receding horizon
problem [12]. In general, the implementation of MPC consists
of several critical steps, namely, selecting accurate models,
estimating the model parameters, estimating the state of the
system, and forecasting of the exogenous variables. All these
steps make MPC an expensive technique, the cost of which
needs to be balanced out by the possible financial gains [13].
Moreover, possible model errors resulting from an inaccurate
model or forecast, can effect the stability of the MPC con-
troller [14], [15].

In contrast to MPC, Reinforcement Learning (RL) tech-
niques [16] do not require expert knowledge and consider their
environment as a black-box. RL techniques enable an agent
to learn a control policy by interacting with its environment,
without the need to use modeling and system identification
techniques. In [17], Ernst et al. state that the trade-off in apply-
ing MPC and RL mainly depends on the quality of the expert
knowledge about the system dynamics that could be exploited
in the context of system identification. In most residential
demand response applications, however, expert knowledge
about the system dynamics or future disturbances might be
unavailable or might be too expensive to obtain relative to the
expected financial gain. In this context, RL techniques are an
excellent candidate to build a general purpose agent that can
be applied to any demand response application.

This paper proposes a learning agent that minimizes the
cost of energy consumption of an electric water heater. The
agent measures the state of its environment through a set
of sensors that are connected along the water buffer of the
electric water heater. However, learning in a high-dimension

2

state space can significantly impact the learning rate of the RL
algorithm. This is known as the “curse of dimensionality”.
A popular approach to mitigate its effects is to reduce the
dimensionality of the state space during a pre-processing step.
Inspired by the work of [18], this paper applies an auto-
encoder network to reduce the dimensionality of the state
vector. By so doing, this paper makes following contributions:
(1) we demonstrate how a well-established RL technique, fitted
Q-iteration, can be combined with an auto-encoder network
to minimize the cost of energy consumption of an electric
water heater; (2) in a simulation-based experiment, we assess
the performance of different state representations and batch
sizes; (3) we successfully apply an RL agent to an electric
water heater equipped with eight temperature sensors in a lab
environment (Fig. 1).

Although, the cost of obtaining expert knowledge would
reduce for mass-produced products, such as an electric water
heater, it is our intention to set a generic example in the context
of demand response that can be extended to other flexible
loads.

The remainder of this paper is organized as follows. Sec-
tion II gives a non-exhaustive literature overview of RL related
to demand response. Section III maps the considered demand
response problem to a Markov decision process. Section IV
describes how an auto-encoder network can be used to find
a low-dimensional state representation, followed by a descrip-
tion of the fitted Q-iteration algorithm in Section V. Section VI
presents the results of the simulation-based experiments and
Section VII presents the results of the lab experiment. Finally,
Section VIII draws conclusions and discusses future work.

II. REINFORCEMENT LEARNING

This section gives a non-exhaustive overview of recent
developments related to Reinforcement Learning (RL) and
demand response. Perhaps the most widely used model-free
RL technique applied to a demand response setting is stan-
dard Q-learning [19], [20], [21], [22]. After each interaction
with the environment, Q-learning uses temporal difference
learning [16] to update its state-action value function or Q-
function. A major drawback of Q-learning is that the given
observation is discarded after each update. As a result, more
interactions are needed to spread already known information
through the state space. This inefficient use of information
limits the application of Q-learning to real-world applications.

In contrast to Q-learning, batch RL techniques [23], [24],
[25] are more data efficient, since they store and reuse past
interactions. As a result, batch RL techniques require less
interactions with their environment, which makes them more
practical for real-world applications, such as demand response.
Perhaps the most popular batch RL technique which has been
applied to a wide range of applications [18], [26], [27] is fitted
Q-iteration developed by Ernst et al. [23]. Fitted Q-iteration
iteratively estimates the Q-function given a fixed batch of past
interactions. An online version that uses a neural network,
neural fitted Q-iteration, has been proposed by Riedmiller et
al. in [24]. Finally, an interesting alternative is to combine
experience replay to an incremental RL technique such as Q-
learning or SARSA [28]. In [29], the authors demonstrate how

Fig. 1. Setup of the electric water heater used during the lab experiment.
Eight temperature sensors were placed under the insulation material of the
buffer tank.

fitted Q-iteration can be used to control a cluster of electric
water heaters. The results indicate that fitted Q-iteration was
able to reduce the cost of energy consumption of a cluster of
100 electric water heaters after a learning period of 40 days.
In addition, [30] shows how fitted Q-iteration can be extended
to reduce the cost of energy consumption of a heat-pump
thermostat given that a forecast of the outside temperature is
provided.

A promising alternative to the previously mentioned model-
free techniques are model-based or model-assisted RL tech-
niques. For example, the authors of [31] present a model-based
policy search method that learns a Gaussian process to model
uncertainties. In addition, inspired by [32], the authors of [33]
demonstrate how a model-assisted batch RL technique can be
applied to control a building heating system.

III. PROBLEM FORMULATION

The aim of this work is to develop a controller or agent
that minimizes the cost of energy consumption of an electric
water heater, given an external price profile. This price profile
is provided to the agent at the start of each day. The agent
can measure the temperature of the water buffer through a
set of temperature sensors that are connected along the hull
of the buffer tank. Following the approach presented in [30],
the electric water heater is equipped with a backup controller
that overrules the control action from the agent when the
safety or comfort constraints of the end user are violated. A
challenge in developing such an agent is that the dynamics of
the electric water heater, the future hot water demand and the
settings of the backup controller are unknown to the agent. To
overcome this challenge, this paper leverages on the previous
work of [18], [23], [30] and applies techniques from RL.

A. Markov decision process framework

To apply RL, this paper formulates the underlying se-
quential decision-making problem of the learning agent as a
Markov decision process formulation. The Markov decision
process formulation is defined by its d-dimensional state space

3

X ⊂ Rd, its action space U ⊂ R, its stochastic discrete-time
transition function f , and its cost function ρ. The optimization
horizon is considered finite, comprising T ∈ N \ {0} steps,
where at each discrete time step k, the state evolves following:

xk+1 = f(xk, uk,wk) ∀k ∈ {1, ..., T − 1}, (1)

where a random disturbance wk is drawn from a conditional
distribution pW(·|xk), uk ∈ U is the control action and xk ∈
X the state. Associated with each state transition, a cost ck is
given by:

ck = ρ(xk, uk,wk) ∀k ∈ {1, ..., T}. (2)

The goal of the learning agent is to find an optimal control
policy h∗ : X → U that minimizes the expected T -stage
return for any state in the state space. The expected T -stage
return Jh

T starting from x1 and following a policy h is defined
as follows:

Jh
T (x1) = E

pW(·|xk)

[
T∑

k=1

ρ(xk, h(xk),wk)

]
, (3)

where E denotes the expectation operator over all possible
stochastic realizations.

A more convenient way to characterize a policy is by using
a state-action value function or Q-function:

Qh(x, u) = E
pW(·|x)

[
ρ(x, u,w) + Jh

T (f(x, h(x),w))
]
, (4)

which indicates the cumulative return starting from state x and
by taking action u and following h thereafter.

The optimal Q-function corresponds the best Q-function that
can be obtained by any policy:

Q∗(x, u) = min
h

Qh(x, u). (5)

Starting from an optimal Q-function for every state-action pair,
the optimal policy h∗ is calculated as follows:

h∗(x) ∈ arg min
u∈U

Q∗(x, u), (6)

where Q∗ satisfies the Bellman optimality equation [34]:

Q∗(x, u) = E
w∼pW(·|x)

[
ρ(x, u,w) + min

u′∈U
Q∗(f(x, u,w), u′)

]
.

(7)

Following the notation introduced in [30], the next three
paragraphs give a description of the state, the action, and the
cost function tailored to an electric water heater.

B. Observable state vector

The observable state vector of an electric water heater con-
tains a time-related component and a controllable component.
The time-related component xt describes the part of the state
related to timing, which is relevant for the dynamics of the
system. Specifically, the tap water demand of the end user is
considered to have diurnal and weekly patterns. As such, the
time-related component contains the day of the week and the
quarter in the day. The controllable component xph represents
physical state information that is measured locally and is
influenced by the control action. The controllable component

contains the temperature measurements of the ns sensors
that are connected along the hull of the storage tank. The
observable state vector is given by:

xk = (d, t︸︷︷︸
xt

k

, T 1
k , . . . , T

i
k, . . . , T

ns

k︸ ︷︷ ︸
xph

k

), (8)

where d ∈ {1, . . . , 7} is the current day of the week,
t ∈ {1, . . . , 96} is the quarter in the day and T i

k denotes the
temperature measurements of sensor i at time step k.

C. Control action

The learning agent can control the heating element of the
electric water heater with a binary control action uk ∈ {0, 1},
where 0 indicates off and 1 on. However, the backup mecha-
nism, which enacts the comfort and safety constraints of the
end user, can overrule this control action of the learning agent.
The function B : X × U → Uph maps the control action
uk ∈ U to a physical action uph

k ∈ Uph according to:

uph
k = B(xk, uk,θ), (9)

where the vector θ defines the safety and user-defined comfort
settings of the backup controller. In order to have a generic
approach we assume that the logic of the backup controller is
unknown to the learning agent. However, the learning agent
can measure the physical action uph

k enforced by the backup
controller (see Fig. 2), which is required to calculate the cost.

The logic of the backup controller of the electric water
heater is defined as:

B(x, u,θ) =

 P e if xsoc(x,θ) ≤ xsoc(θ)
uP e if xsoc(θ) < xsoc(x,θ) < x̄soc(θ),
0 if xsoc(x,θ) ≥ x̄soc(θ)

(10)

where P e is the electrical power rating of the heating element,
xsoc(x,θ) is the current state of charge and xsoc(θ) and
x̄soc(θ) are the upper and lower bounds for the state of charge.
A detailed description of how the state of charge is calculated
can by found in [5].

D. Cost function

At the start of each optimization period T∆t, the learning
agent receives a price vector λ = {λk}Tk=1 for the next T time
steps. At each time step, the agent receives a cost ck according
to:

ck = uph
k λk∆t, (11)

where λk is the electricity price during time step k, and ∆t
the length of one control period.

IV. BATCH OF FOUR-TUPLES

Generally, batch RL techniques estimate the Q-function
based on a batch of four-tuples (xl, ul,x

′
l, cl). This paper,

however, considers the following batch of four-tuples:

F = {(xl, ul,x
′
l, u

ph
l), l = 1, . . . ,#F}, (12)

where for each l, the next state x′
l, and the physical action uph

l

have been obtained as a result of taking control action ul in

4

Electric water heater

FEATURE VECTOR
Te

m
pe

ra
tu

re
 s

en
so

rs

 Backup
controller

uph

T1

Tn

Ti

u

xph

xph

z ph

Learning agent

price forecast

w22

w11b

b

Fig. 2. Setup of the simulation-based experiment. An auto-encoder network
is used to find a compact representation of the temperature measurements.

the state xl. Note that, F does not include the observed cost
cl, since the cost depends on the price vector that is provided
to the learning agent at the start of each day.

As defined by (8), xl contains all temperature measurements
of the sensors connected to the hull of the water buffer.
Learning in a high-dimensional state space requires more
observations from the environment to estimate the Q-function,
as more tuples are needed to cover the state-action space.
This is known as the “curse of dimensionality”. This curse
becomes even more pronounced in practical applications,
where each observation corresponds to a “real” interation with
the environment.

A pre-processing step can be used to find a compact and
more efficient representation of the state space and can help to
converge to a good policy much faster [35]. A popular tech-
nique to find a compact representation is to use a handcrafted
feature vector based on insights of the considered control
problem [36]. Alternative approaches that do not require prior
knowledge are unsupervised feature learning algorithms, such
as auto-encoders [18] or a principal component analysis [35].

As illustrated in Fig. 2, this paper demonstrates how an auto-
encoder can be used to find a compact representation of the
sensory input data. An auto-encoder network is an artificial
neural network, commonly used in deep learning [37], for
learning efficient features by mapping its output back to its
input. By selecting a lower number of neurons in the middle
hidden layer than in the input layer p < d, the auto-encoder
can be used to reduce the dimensionality of the input data.
The reduced feature vector zl ∈ Z ⊂ Rp can be calculated as
follows:

zl = (xt
l,Φenc(x

ph
l ,w, b)), (13)

where w and b denote the weights and the biases that connect
the input layer with the middle hidden layer of the auto-
encoder network. The function Φenc : X → Z is an encoder
function and maps the observed state vector xl to the feature
vector zl. To train the weights of the auto-encoder, a conjugate
gradient descent algorithm is used as presented in [38].

In the next section, fitted Q-iteration is used to find a policy
h : Z → U that maps every feature vector to a control action

Algorithm 1 Fitted Q-iteration [23] using feature vectors.

Input: R =
{
(zl, ul, z

′
l, u

ph
l), l = 1, . . . ,#R

}
, {λt}Tt=1

1: initialize Q̂0 to zero
2: for N = 1, . . . , T do
3: for l = 1, . . . ,#R do
4: cl ← uph

l λt ▷ where t is to the quarter in the day of
the time-related component xt

l = (d, t) of state zl
5: QN,l ← cl + min

u∈U
Q̂N−1(z

′
l, u)

6: end for
7: use a regression technique to obtain Q̂N from
Treg =

{(
(zl, ul) , QN,l

)
, l = 1, . . . ,#R

}
.

8: end for
Output: Q̂∗ = Q̂T

using batch R:

R = {(zl, ul, z
′
l, u

ph
l), l = 1, . . . ,#R}, (14)

which consists of feature vectors with a dimensionality p.
Since we apply the auto-encoder on the input data of the

supervised learning algorithm, we assume that all input data
is equally important. As such, it is possible that we ignore
low-variance yet potentially useful components during the
learning process. A possible route of future work would be
to add a regularization term to the regression algorithm of the
supervised learning algorithm to prevent the risk of overfitting
without the risk of ignoring potentially important data.

V. FITTED Q-ITERATION

This section describes the learning algorithm and the ex-
ploration strategy of the agent based on the batch of feature
vectors R presented in the previous section.

A. Fitted Q-iteration

Fitted Q-iteration iteratively builds a training set Treg with
all state-action pairs (z, u) in R as the input. The target
values consist of the corresponding Q-values, based on the
approximation of the Q-function of the previous iteration. In
the first iteration (N = 1), the Q-values approximate the
expected cost (line 5 in Algorithm 1). In the subsequent
iterations, Q-values are updated using an approximation of
the Q-function Q̂N−1 of the previous iteration N − 1 and
information about the current cost cl and successor state z′

l in
each tuple. As a result, Algorithm 1 needs T iterations until the
Q-function contains all information about the successor states.
Note that, the cost corresponding to each tuple is recalculated
using price vector λ that is provided at the start of the day
(line 4 in Algorithm 1). As a result, the algorithm can reuse
past experiences to find a control policy for the next day.
Following [23], Algorithm 1 applies an ensemble of extremely
randomized trees as a regression algorithm to estimate the Q-
function. An empirical study of the accuracy and convergence
properties of extremely randomized trees can be found in [23].
However, in principle, any regression algorithm, such as neural
networks [25], [26], can be used to estimate the Q-function.

5

3 5 10 25 50 75 100 150 200
2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6
x 10

5

Batch size [# days]

O
b

je
ct

iv
e

AE 1

AE 3

AE 5

AE 15

Full state

Fig. 3. Simulation-based results of fitted Q-iteration using five state represen-
tations and different batch sizes. The full state contains 50 temperature mea-
surements. A non-linear dimensionality reduction with Auto-Encoder (AE) is
used to find a compact representation of the temperature measurements. Each
marker point represents the average result of 100 simulation runs.

B. Boltzmann exploration

During the day, the learning agent uses a Boltzmann explo-
ration strategy [39] and selects an action with the following
probability:

P (u|z) = eQ̂
∗(z,u)/τd

Σu′∈UeQ̂
∗(z,u′)/τd

, (15)

where τd is the Boltzmann temperature at day d, Q̂∗ is the Q-
function from Algorithm 1 and z is the current feature vector
measured by the learning agent. If τd → 0, the exploration will
decrease and the policy will become greedier. Thus by starting
with a high τd the exploration starts completely random,
however as τd decreases the policy directs itself to the most
interesting state-action pairs. In the evaluation experiments,
Q̂∗ in (15) is linearly scaled between [0, 100] and the τ1 is set
to 100 at the start of the experiment, which will result in an
equal probability for all actions. The Boltzmann temperature
is updated as follows τd = τd−1 − ∆τ , which increases the
probability of selecting higher valued actions.

VI. SIMULATION-BASED RESULTS

This section describes the results of the simulation-based
experiments, which use a non-linear stratified tank model with
50 temperature layers. A detailed description of the stratified
tank model can be found in [5]. The specifications of the elec-
tric water heater are chosen in correspondence with the electric
water heater used during the lab experiment (see Section VII).
The simulated electric water heater has a power rating of
2.36kW and has a water buffer of 200 liter. The experiments
use realistic hot water profiles with a mean daily consumption
of 120 liter [40] and use price information from the Belgian
day-ahead [41] and balancing market [42]. The learning agent
can measure the temperature of the 50 temperature layers

50 100 150 200 250 300 350

50

100

150

200
Day−ahead prices

Days

C
o
st

 [
€
]

Fitted Q−iteration (AE 5)

Thermostat controller

50 100 150 200 250 300 350

50

100

150

200
Intraday imbalance prices

Days

C
o
st

 [
€
]

Fitted Q−iteration (AE 5)

Thermostat controller

a

b

Fig. 4. Cumulative energy cost of fitted Q-iteration with a non-linear
dimensionality reduction and of the thermostat controller. Results for one
year using day-ahead prices (a) and imbalance prices (b).

obtained with the simulation model. Two comfort settings are
applicable: Tmin = 45◦C and Tmax = 65◦C, where Tmin is the
minimum temperature at which water is allowed to leave the
buffer and Tmax is the maximum temperature for the water
in the buffer. To guarantee a minimum comfort reserve, the
minimum and maximum state of charge in (10) are set to
25% and 100%. If the state of charge drops below 25%, the
backup controller in (10) is activated, which forces the buffer
to build up a sufficient reserve to safeguard the comfort of the
end user. The aim of the first simulation-based experiment is
to find a compact state representation using an auto-encoder
network and to assess the impact of the state representation on
the performance of fitted Q-iteration. The second simulation-
based experiment compares the result of fitted Q-iteration with
the default thermostat controller.

A. Step 1: feature selection

This experiment compares the performance of fitted Q-
iteration combined with different feature representations for
different fixed batch sizes. An auto-encoder (AE) network
that reduces the original sensory input vector (50 temperature
sensors) to 5 dimensions is denoted by AE 5. The simulations
are repeated for 100 simulation days. The average cost of
energy consumption of these 100 simulations is depicted in
Fig. 3. As can be seen in Fig. 3, the performance of fitted Q-
iteration combined with a specific state representation depends
on the number of tuples in the batch. For example for a batch
size of 10 days, AE 3 results in a lower cost than AE 15,
while after 75 days, AE 15 will result in a lower cost than AE
3. In addition, as can be seen from Fig. 3, AE 1 resulted in a
relatively bad policy, independent of the batch size.

In general, it can be concluded that for a batch of lim-
ited size, fitted Q-iteration with a low-dimensional feature
vector will outperform fitted Q-iteration using the full state

6

a

b

Fig. 5. Simulation-based results of a mature agent using fitted Q-iteration
with a non-linear dimensionality reduction. a, Temperature profiles of the
50 simulation layers. b, Power consumption (black) and imbalance prices
(dotted).

information, i.e. 50 temperature measurements. By learning
in a low-dimensional state space, it is possible to learn with
a smaller and more efficient representation. As a result, the
agent requires less observations to converge to a better control
policy than when the full state information is used. In addition,
as more observations will result in a more efficient coverage
of the state-action space, it can be seen from Fig. 3 that
the result of fitted Q-iteration with the full state improves
significantly as the batch size increases. In the following
subsection, we present the results of AE 5 in more detail.
A method for selecting an appropriate feature representation
during the learning process will be part of our future work
(Section VIII).

B. Step 2: evaluation

Fig. 4 compares the total cost of energy consumption using
fitted Q-iteration combined with AE 5 against the default
thermostat controller for two relevant price profiles, i.e. day-
ahead prices (top plot) and imbalance prices (bottom plot).
The default thermostat controller enables the heating element
when the state-of-charge drops below its minimum threshold
and stays enabled until the state-of-charge reaches 100%. Note
that in contrast to the learning agent, the default controller is
agnostic about the price profile.

The experiment starts with an empty batch and the tuples
of the current day are added to the given batch at the end
of each day. At the start of each day, the auto-encoder is
trained to find a batch of compact feature vectors, which are
then used by fitted Q-iteration to estimate the Q-function for
the next day. Online, the learning agent uses a Boltzmann
exploration strategy with ∆τ set to 10, which results in 10
days of exploration.

The results of the experiment indicate that fitted Q-iteration
was able to reduce the total cost of energy consumption by
24% for the day-head prices and by 34% for the imbalance

a

b

Fig. 6. Simulation-based results of a mature agent using fitted Q-iteration
with a non-linear dimensionality reduction. a, Temperature profiles of the
50 simulation layers. b, Power consumption (black) and day-ahead prices
(dotted).

prices compared to the default strategy. Note, imbalance prices
are generally more volatile than the day-ahead prices, as
they reflect real-time imbalances due to forecasting errors of
renewable energy sources, such as wind and solar, which were
not foreseen in the day-ahead market. The standard deviation
of the day-ahead prices is 12.7, while it is 33.4 for the
imbalance prices.

The temperature profiles of the simulation layers and power
profiles of a “mature” learning agent (batch size of 100 days)
for the day-ahead and imbalance prices are depicted in Fig. 5
and Fig. 6. It can be seen in the bottom plot of both figures
that the mature learning agent reduces the cost of energy
consumption by consuming energy during low price moments.

A comparison between the presented model-free method
and a model-based approach can be found in the Appendix
section of this paper.

VII. LAB RESULTS

The aim of our lab experiment is to demonstrate that fitted
Q-iteration can be successfully applied to minimize the cost
of energy consumption of a real-world electric water heater.

A. Lab setup

The setup used in the lab experiment was part of a pilot
project on residential demand response in Belgium [43], where
a cluster of 10 electric water heaters was used for direct load
control. Fig. 1 shows the electric water heater used during
the lab experiment. The electric water heater is a standard
unit that was equipped with eight temperature sensors and
a controllable power relay. A controllable valve connected
to the outlet of the buffer tank is used to simulate the
hot water demand of a household with a mean daily flow
volume of 120liter [40]. An Arduino prototyping platform
with a JSON/RPC 2.0 interface is used to communicate with a

7

a

b

Fig. 7. Lab results of a mature agent using fitted Q-iteration with the full
state (eight temperature measurements). a, Measurements of the temperature
sensors. b, Power consumption (black) and imbalance prices (dotted).

computer in the lab1, which runs the learning agent that uses
fitted Q-iteration. Fitted Q-iteration is implemented in Python
and Scikit-learn [44] is used to estimate the Q-function, using
an ensemble of extremely randomized trees [23].

Similar as in the previous simulation-based experiments,
it is assumed that the learning agent is provided with a
deterministic external price profile for the following day. The
learning agent uses a Boltzmann exploration strategy with ∆τ
set to 10, which results in 10 days of exploration. In order
to compare the performance of the lab experiment with the
performance of the simulation-based experiments, we used
both day-ahead prices and imbalance prices.

B. Evaluation

The performance of the learning agent was evaluated using
different feature vectors as presented in Section VI. The best
performance, however, was obtained by including the eight
temperature measurements in the observable state vector.

Using identical price profiles and tap water demands, Fig. 7
and Fig. 8 show the temperature measurements and the power
profiles of the mature learning agent using imbalance prices
and day-ahead prices. As can be seen, the learning agent was
able to successfully minimize the cost of energy consumption
by consuming during low price moments.

Fig. 9 depicts the experimental results, spanning 40 days,
of fitted Q-iteration and the default thermostat controller. The
top plot of this figure indicates the cumulative costs of energy
consumption and the bottom plot indicates the daily costs of
energy consumption. After 40 days, fitted Q-iteration was able
to reduce the cost of energy consumption by 15% compared
to the default thermostat controller. Furthermore, by excluding
the first ten exploration days, this reduction increases to 28%.

1Intel Core i5 - 4GB Memory

a

b

Fig. 8. Lab results of a mature agent using fitted Q-iteration with the full
state (eight temperature measurements). a, Measurements of the temperature
sensors. b, Power consumption (black) and day-ahead prices (dotted).

VIII. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated how an auto-encoder network
can be used in combination with a well-established batch
reinforcement learning algorithm, called fitted Q-iteration,
to reduce the cost of energy consumption of an electric
water heater. The auto-encoder network was used to find
a compact representation of the state vector. In a series of
simulation-based experiments using an electric water heater
with 50 temperature sensors, the proposed method was able
to converge to good policies much faster than when using
the full state information. Compared to a default thermostat
controller, the presented approach has reduced the cost of
energy consumption by 24% using day-ahead prices and by
34% using imbalance prices.

In a lab experiment, fitted Q-iteration has been successfully
applied to an electric water heater with eight temperature
sensors. A reduction of the state vector did not improve the
performance of fitted Q-iteration. Compared to the thermostat
controller, fitted Q-iteration was able to reduce the total cost
of energy consumption by 15% within 40 days of operation.

Based on the results of both experiments the following four
conclusions can be drawn: (1) learning in a compact feature
space can improve the quality of the control policy when the
number of observations is relatively small (25 days); (2) when
the number of observations increases it is advisable to switch
to higher state-space representation; (3) when only a limited
number of temperature sensors is available, i.e. 1-10 sensors, it
is recommended to use the full state vector; (4) when applied
to a real-world stetting, fitted Q-iteration was able to obtain
good control policies within 20 days of operation.

In our future research, we aim at developing a method for
selecting an appropriate state representation during the learn-
ing process. A promising route is to construct experts, where
each expert combines a learning algorithm with a different
feature representation. A metric based on the performance of
each expert, as presented in [45], could then be used to select

8

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

Time [days]

T
o
ta

l
co

st
 [

€
]

Fitted Q−iteration (8 temperature sensors)

Thermostat controller

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

Time [days]

D
ai

ly
 c

o
st

 [
€
]

a

b

Fig. 9. Lab results of the learning agent using fitted Q-iteration (dashed line)
and of the default thermostat (solid line) during 40 days. a, Cumulative energy
cost. b, Daily energy cost.

the expert with the highest metric as described in [46]. In
addition, it would be interesting to investigate the impact of
computing the control policy at every time step, using a new
price forecast, instead of after each T time steps.

APPENDIX: BENCHMARK

In this section, we apply a Model Predictive Control (MPC)
approach to the considered control problem. Similar as in [47],
[48], the MPC approach uses a linear model with a deter-
ministic forecast of the tap water profile of the next day. The
average temperature based on the eight sensors is used to keep
the transition function linear. However, the nonlinear mixing
problem, as presented in [49], is used to update the states of
the simulator. At each control step t, an optimal sequence on
the prediction horizon T is found by solving the following
MPC problem:

minimize
t+T−1∑
k=t

uph
k λk∆t

subject to xk+1 = Axk +Buk

T av ≤ Tav,k ≤ T av,

uph
t ∈ {0, Pmax},

with xt the state of the system defined by [Tav,k, Tamb, Tin,k],
ut the action defined by [uph

k , dtap,k] and T av and T av are
the minimum and maximum average temperature. To ensure
feasibility, the temperature constraints are defined as soft
constraints using a slack variable as presented by [50]. The
first control action uph

k of the solution is implemented on the
process and the procedure is repeated at the next control step.
The overall MPC problem is modeled using CVXPY [51] and
is solved using Gurobi [52]. Fig. 10 depicts the daily and
cumulative electricity cost of FQI and MPC for a horizon of 30
days. The matrices A an B were estimated using an ordinary
least squares method [44]. It can be seen from this figure

0 5 10 15 20 25
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Thermostat controllerFQI MPC

Time [days]

Co
st

[a
.u

.]
Co

st
[a

.u
.]

Fig. 10. Simulation-based results. Cumulative (top) and daily (bottom)
electricity cost using Model Predictive Control (MPC), Fitted Q-iteration
(FQI) and the default thermostat.

that both FQI and MPC clearly outperform the thermostat
controller and that MPC achieves a slightly better results than
FQI (2.8%). It should be noted that this is a reasonable result
since the MPC approach used prescient knowledge about the
future tap demand, whereas FQI had no information about
future tap demands.

ACKNOWLEDGMENT

The authors would like to thank Davy Geysen, Geert Jacobs,
Koen Vanthournout, and Jef Verbeeck from Vito for providing
us with the lab setup. This work was supported by a Ph.D.
grant of the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen) and by
Stable MultI-agent LEarnIng for neTworks (SMILE-IT).

REFERENCES

[1] F. Birol et al., “World Energy Outlook 2013: Renewable Energy
Outlook, An annual report released by the International Energy
Agency,” http://www.worldenergyoutlook.org/media/weowebsite/2013,
Paris, France, [Online: accessed July 21, 2015].

[2] M. Albadi and E. El-Saadany, “Demand response in electricity markets:
An overview,” in IEEE Proc. Power Engineering Society General
Meeting, June 2007, pp. 1–5.

[3] B. DUPONT, “Dresidential demand response based on dynamic elec-
tricity pricing: Theory and practice,” PhD Thesis, 2015.

[4] B. Hastings, “Ten years of operating experience with a remote controlled
water heater load management system at detroit edison,” IEEE Trans.
on Power Apparatus and Syst., no. 4, pp. 1437–1441, 1980.

[5] K. Vanthournout, R. D’hulst, D. Geysen, and G. Jacobs, “A smart
domestic hot water buffer,” IEEE Trans. on Smart Grid, vol. 3, no. 4,
pp. 2121–2127, Dec. 2012.

[6] U.S. Department of Energy, “Energy cost calculator for electric and
gas water heaters,” http://energy.gov/eere/femp/energy-cost-calculator-
electric-and-gas-water-heaters-0#output, [Online: accessed November
10, 2015].

[7] R. Diao, S. Lu, M. Elizondo, E. Mayhorn, Y. Zhang, and N. Samaan,
“Electric water heater modeling and control strategies for demand
response,” in Proc. 2012 IEEE Power and Energy Society General
Meeting,, 2012, pp. 1–8.

[8] S. Iacovella, K. Lemkens, F. Geth, P. Vingerhoets, G. Deconinck,
R. D’Hulst, and K. Vanthournout, “Distributed voltage control mech-
anism in low-voltage distribution grid field test,” in Proc. 4th IEEE PES
Innov. Smart Grid Technol. Conf. (ISGT Europe), Oct 2013, pp. 1–5.

9

[9] S. Koch, J. L. Mathieu, and D. S. Callaway, “Modeling and control of
aggregated heterogeneous thermostatically controlled loads for ancillary
services,” in Proc. 17th IEEE Power Sys. Comput. Conf. (PSCC),
Stockholm, Sweden, Aug. 2011, pp. 1–7.

[10] J. Mathieu and D. Callaway, “State estimation and control of heteroge-
neous thermostatically controlled loads for load following,” in Proc. 45th
Int. Conf. on System Science, Maui, HI, US, Jan. 2012, pp. 2002–2011.

[11] F. Sossan, A. M. Kosek, S. Martinenas, M. Marinelli, and H. Bindner,
“Scheduling of domestic water heater power demand for maximizing PV
self-consumption using model predictive control,” in Proc. 4th IEEE PES
Innov. Smart Grid Technol. Conf. (ISGT Europe), Oct 2013, pp. 1–5.

[12] E. F. Camacho and C. Bordons, Model Predictive Control, 2nd ed.
London, UK: Springer London, 2004.

[13] J. Cigler, D. Gyalistras, J. Širokỳ, V. Tiet, and L. Ferkl, “Beyond theory:
the challenge of implementing model predictive control in buildings,”
in Proc. 11th REHVA World Congress, Czech Republic, Prague, 2013.

[14] Y. Ma, “Model predictive control for energy efficient buildings,” Ph.D.
dissertation, University of California Berkeley, Mechanical Engineering,
Berkeley, CA, 2012.

[15] M. Maasoumy, M. Razmara, M. Shahbakhti, and A. Sangiovanni Vincen-
telli, “Selecting building predictive control based on model uncertainty,”
in Proc. American Control Conference (ACC), Portland, OR, June 2014,
pp. 404–411.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[17] D. Ernst, M. Glavic, F. Capitanescu, and L. Wehenkel, “Reinforcement
learning versus model predictive control: a comparison on a power
system problem,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 39, no. 2,
pp. 517–529, 2009.

[18] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in
reinforcement learning,” in Proc. IEEE 2010 Int. Joint Conf. on Neural
Networks (IJCNN), Barcelona, Spain, July 2010, pp. 1–8.

[19] E. C. Kara, M. Berges, B. Krogh, and S. Kar, “Using smart devices for
system-level management and control in the smart grid: A reinforcement
learning framework,” in Proc. 3rd IEEE Int. Conf. on Smart Grid
Commun. (SmartGridComm), Tainan, Taiwan, Nov. 2012, pp. 85–90.

[20] G. P. Henze and J. Schoenmann, “Evaluation of reinforcement learning
control for thermal energy storage systems,” HVAC&R Research, vol. 9,
no. 3, pp. 259–275, 2003.

[21] Z. Wen, D. O’Neill, and H. Maei, “Optimal demand response using
device-based reinforcement learning,” IEEE Trans. on Smart Grid,
vol. 6, no. 5, pp. 2312–2324, Sept 2015.

[22] M. González, R. Luis Briones, and G. Andersson, “Optimal bidding of
plug-in electric vehicles in a market-based control setup,” in Proc. 18th
IEEE Power Sys. Comput. Conf. (PSCC), Wroclaw, Poland, 2014, pp.
1–7.

[23] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforce-
ment learning,” Journal of Machine Learning Research, pp. 503–556,
2005.

[24] M. Riedmiller, “Neural fitted Q-iteration–first experiences with a data
efficient neural reinforcement learning method,” in Proc. 16th European
Conference on Machine Learning (ECML), vol. 3720. Porto, Portugal:
Springer, Oct. 2005, p. 317.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[26] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, “Reinforcement
learning for robot soccer,” Autonomous Robots, vol. 27, no. 1, pp. 55–73,
2009.

[27] R. Fonteneau, L. Wehenkel, and D. Ernst, “Variable selection for
dynamic treatment regimes: a reinforcement learning approach,” in Proc.
European Workshop on Reinforcement Learning (EWRL), Villeneuve
d’Ascq, France, 2008.

[28] S. Adam, L. Busoniu, and R. Babuška, “Experience replay for real-
time reinforcement learning control,” IEEE Trans. on Syst., Man, and
Cybern., Part C: Applications and Reviews, vol. 42, no. 2, pp. 201–212,
2012.

[29] F. Ruelens, B. J. Claessens, S. Vandael, S. Iacovella, P. Vingerhoets, and
R. Belmans, “Demand response of a heterogeneous cluster of electric
water heaters using batch reinforcement learning,” in Proc. 18th IEEE
Power Sys. Comput. Conf. (PSCC), Wrocław, Poland, 2014, pp. 1–8.

[30] F. Ruelens, B. J. Claessens, S. Vandael, B. De Schutter, R. Babuska,
and R. Belmans, “Residential demand response of thermostatically
controlled loads using batch reinforcement learning,” IEEE Trans. on
Smart Grid, vol. PP, no. 99, pp. 1–11, 2016.

[31] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-
efficient approach to policy search,” in Proc. of the 28th International
Conference on machine learning (ICML-11), Bellevue, WA, US, 2011,
pp. 465–472.

[32] T. Lampe and M. Riedmiller, “Approximate model-assisted neural fitted
Q-iteration,” in Proc. 2014 International Joint Conference on Neural
Networks (IJCNN), July 2014, pp. 2698–2704.

[33] G. Costanzo, S. Iacovella, F. Ruelens, T. Leurs, and
B. Claessens, “Experimental analysis of data-driven control for
a building heating system,” Sustainable Energy, Grids and
Networks, vol. 6, pp. 81 – 90, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352467716000138

[34] R. Bellman, Dynamic Programming. New York, NY: Dover Publica-
tions, 1957.

[35] W. Curran, T. Brys, M. Taylor, and W. Smart, “Using PCA to efficiently
represent state spaces,” in The 12th European Workshop on Reinforce-
ment Learning (EWRL 2015), Lille, France, 2015.

[36] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Nashua,
NH: Athena Scientific, 1996.

[37] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,”
2016, book in preparation for MIT Press. [Online]. Available:
http://www.deeplearningbook.org

[38] M. Scholz and R. Vigário, “Nonlinear PCA: a new hierarchical ap-
proach.” in ESANN, 2002, pp. 439–444.

[39] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, pp. 237–
285, 1996.

[40] U. Jordan and K. Vajen, “Realistic domestic hot-water profiles in
different time scales: Report for the international energy agency, solar
heating and cooling task (IEA-SHC),” Universität Marburg, Marburg,
Germany, Tech. Rep., 2001.

[41] “Belpex - Belgian power exchange,” http://www.belpex.be/, [Online:
accessed March 21, 2015].

[42] “Elia - Belgian electricity transmission system operator,”
http://www.belpex.be/, [Online: accessed March 21, 2015].

[43] B. Dupont, P. Vingerhoets, P. Tant, K. Vanthournout, W. Cardinaels,
T. De Rybel, E. Peeters, and R. Belmans, “LINEAR breakthrough
project: Large-scale implementation of smart grid technologies in distri-
bution grids,” in Proc. 3rd IEEE PES Innov. Smart Grid Technol. Conf.
(ISGT Europe), Berlin, Germany, Oct. 2012, pp. 1–8.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[45] R. Fonteneau, S. A. Murphy, L. Wehenkel, and D. Ernst, “Batch mode
reinforcement learning based on the synthesis of artificial trajectories,”
Annals of Operations Research, vol. 208, no. 1, pp. 383–416, 2013.

[46] M. Devaine, P. Gaillard, Y. Goude, and G. Stoltz, “Forecasting electricity
consumption by aggregating specialized experts,” Machine Learning,
vol. 90, no. 2, pp. 231–260, 2013.

[47] E. Vrettos, K. Lai, F. Oldewurtel, and G. Andersson, “Predictive control
of buildings for demand response with dynamic day-ahead and real-
time prices,” in IEEE, European Control Conference (ECC), 2013, pp.
2527–2534.

[48] F. Sossan, A. M. Kosek, S. Martinenas, M. Marinelli, and H. Bindner,
“Scheduling of domestic water heater power demand for maximizing pv
self-consumption using model predictive control,” in IEEE PES ISGT
Europe 2013, Oct 2013, pp. 1–5.

[49] S. A. Klein, TRNSYS, a transient system simulation program. Solar
Energy Laboratory, University of Wisconsin, Madison, 1979.

[50] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[51] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[52] Gurobi Optimization, “Gurobi optimizer reference manual,” http://www.
gurobi. com/, [Online: accessed March 21, 2015].

