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Chance-Constrained Model Predictive Controller Synthesis for
Stochastic Max-Plus Linear Systems

Vahab Rostampour, Dieky Adzkiya, Sadegh Esmaeil Zadeh Soudjani, Bart De Schutter and Tamás Keviczky

Abstract— This paper presents a stochastic model predictive
control problem for a class of discrete event systems, namely
stochastic max-plus linear systems, which are of wide practical
interest as they appear in many application domains for
timing and synchronization studies. The objective of the control
problem is to minimize a cost function under constraints on
states, inputs and outputs of such a system in a receding
horizon fashion. In contrast to the pessimistic view of the robust
approach on uncertainty, the stochastic approach interprets the
constraints probabilistically, allowing for a sufficiently small
violation probability level. In order to address the resulting non-
convex chance-constrained optimization problem, we present
two ideas in this paper. First, we employ a scenario-based
approach to approximate the problem solution, which optimizes
the control inputs over a receding horizon, subject to the
constraint satisfaction under a finite number of scenarios of the
uncertain parameters. Second, we show that this approximate
optimization problem is convex with respect to the decision
variables and we provide a-priori probabilistic guarantees
for the desired level of constraint fulfillment. The proposed
scheme improves the results in the literature in two distinct
directions: we do not require any assumption on the underlying
probability distribution of the system parameters; and the
scheme is applicable to high dimensional problems, which
makes it suitable for real industrial applications. The proposed
framework is demonstrated on a two-dimensional production
system and it is also applied to a subset of the Dutch railway
network in order to show its scalability and study its limitations.

I. INTRODUCTION

Max-Plus Linear (MPL) systems are a class of discrete
event systems with a continuous state space characterizing
the timing of the underlying sequential discrete events [1].
MPL systems are predisposed to describe the timing synchro-
nization between interleaved processes, without concurrency
or choice. MPL systems have been used in the analysis and
scheduling of infrastructure networks, such as communica-
tion and railway systems [2], production and manufacturing
lines [3], [4], or biological systems [5].

Stochastic max-plus linear systems are MPL systems in
which the delays between successive events, e.g. the pro-
cessing or transportation times, are characterized by random
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quantities [2], [6], [7]. In practical applications stochastic
MPL systems are more realistic than non-probabilistic MPL
ones: for instance in a model of a production system,
processing times in general depend on machine conditions
and in a railway network, transportation times depend on
passengers’ transfer time conditions. Thus, they are more
suitably modeled by random variables, instead of determin-
istic constants.

Only a few approaches have been developed in the litera-
ture to study the steady-state behavior of stochastic MPL
systems, for example by employing Lyapunov exponents
and asymptotic growth rates [8], [9], [10], [11], [12]. The
Lyapunov exponent of a stochastic MPL system is analogues
to the max-plus eigenvalue of an autonomous MPL system.
The Lyapunov exponent of stochastic MPL systems has been
studied in [8] under some assumptions, and later extended
to approximate computations in [9, p. 251] under other tech-
nical assumptions. Verifying properties of stochastic MPL
systems is recently studied in [13], [14], where the authors
have proposed approximation algorithms for checking speci-
fications of the MPL system that are encoded through certain
logic. This approach uses formal abstraction techniques [15],
[16] implemented in the software tool FAUST2 [17].

The application of model predictive control (MPC) to
MPL systems is initially studied in [18], and consequently,
extended to stochastic MPL systems in [19]. In order to de-
crease the complexity, [20] and [21] leverage variability ex-
pansion and raw moments of random variables, respectively.
Finally [22] discusses system identification of stochastic
MPL systems. Specifically in [19], the authors described an
MPC framework to control the stochastic MPL systems and
showed their convexity properties with respect to the control
input variables. In this paper, we provide a simpler succinct
theoretical proof for the convexity of the set of stochastic
max-plus-nonnegative-scaling functions. Our proof relies on
the convexity definition of a set of functions that simplifies
the proof in [19] considerably.

Stochastic MPC is an alternative approach to achieve a less
conservative solution compared to a robust MPC formulation
[23], [24]. Robust MPC provides a control law that satisfies
the problem constraints for all admissible uncertain variables
by assuming that the uncertainty is bounded. Moreover,
it treats all uncertainty realizations equally. In stochastic
MPC the constraints are treated in a probabilistic sense
(chance constraints), meaning that the constraints need to
be satisfied only probabilistically up to a pre-assigned level.
The resulting optimization problem, however, is in general
hard to solve and nonconvex. One way to approximate such



problems is to employ randomized algorithms that require
substituting the chance constraints with a finite number of
hard constraints corresponding to samples of the uncertainty
set. Interestingly, there is no need for any assumptions on
the uncertainty set and its distribution using a randomization
approach.

In this paper, we first present the convexity property
of max-plus-nonnegative-scaling functions using a different
approach to the existing results, which yields a considerably
simpler proof. This leads to a finite-horizon optimal control
problem for stochastic MPL systems with a convex feasible
set. However, the convexity of the feasible set in the problem
is typically lost when chance constraints are introduced. To
address this issue a randomized technique is employed to
tackle the finite-horizon chance-constrained optimal control
problem. This leads to a computationally tractable approxi-
mation to the aforesaid optimization problem in which only
finitely many uncertainty realizations are considered due to
the fact that the underlying problem is a convex program
with respect to the decision variables. We then investigate
the performance and the improvements of the proposed
framework for an uncertain production system as a case study
by a comparison with a benchmark approach by means of
Monte Carlo simulation. The main contributions of this paper
are as follows:

• An introduction on Max-Plus algebra together with con-
vexity proof of a set of max-plus-nonnegative-scaling
functions. We then describe the MPL models with the
extension into the uncertain systems, which leads to the
stochastic MPL models.

• An overview on the stochastic control problem formula-
tion for the general stochastic systems. Then, a detailed
steps toward stochastic MPC problem formulation is
provided by having defined a probabilistically feasible
system trajectories for such a dynamical system us-
ing a chance constraint representation. However, this
formulation is intractable due to the involvement with
probabilistic constraints.

• A tractable framework is developed using a randomiza-
tion technique in order to approximate the underlying
probabilistic nature of the problem. Although MPL
systems are naturally having a nonlinear behavior, they
are inherently having the convexity properties with
respect to their control input signal. Therefore, we
are able to provide a-priori probabilistic performance
guarantees for the feasibility of obtained solution with
high confidence level.

• Simulation study for two different cases, namely pro-
duction system case and Dutch railways system case
studies are provided. The former is to demonstrate steps
of the proposed framework on a small-scale problem
and the latter is to illustrate applicability of such a
framework for the large-scale problems as real industrial
applications.

The layout of this paper is as follows. After a preliminaries
section that consists of the notations used throughout the

paper and an introduction to the basics of max-plus alge-
bra, in Section II, we describe a general stochastic MPC
framework for stochastic (perturbed) MPL systems. Section
III provides a tractable framework using a randomization
technique to approximate the proposed chance-constrained
optimization problem together with theoretical probabilistic
performance guarantees on the feasibility of the solution.
In Section IV, the proposed framework is applied to an
uncertain production system as the first case study to show
detailed steps of the proposed framework. To demonstrate
the efficiency and practical improvements of the proposed
methodology, we then implement it to the Dutch railway
case study as a large-scale problem and compare it against
a deterministic approach. We conclude the paper in Section
V and provide some future research directions.

PRELIMINARIES

In this section, we introduce the notations used throughout
the paper and describe the fundamental concepts of max-plus
linear algebra. We also present simple steps to show that
max-plus-nonnegative-scaling functions are convex functions
which is used in Section III to provide a tractable scheme.

Notations

The symbols N, Nn, R and R+ represent the set of
positive integers {1, 2, . . .}, the first n positive integers
{1, 2, . . . , n}, the set of real numbers and the nonnegative
real numbers, respectively. Furthermore Rε and ε are defined
respectively as R ∪ {ε} and −∞. For α, β ∈ Rε, introduce
the two operations α⊕ β = max{α, β} and α⊗ β = α+ β,
where the element ε is considered to be absorbing w.r.t. ⊗
[1, Def. 3.4]. In this paper, the conventional multiplication
symbol × is usually omitted, whereas the max-algebraic
multiplication symbol ⊗ is always written explicitly. The
rules for the order of evaluation of the max-algebraic oper-
ators correspond to those in the conventional algebra: max-
algebraic multiplication has a higher precedence than max-
algebraic addition [1, Sec. 3.1].

For the analysis in Section III, given a metric space ∆,
its Borel σ-algebra is denoted by B(∆). Throughout the
paper, measurability always refers to Borel measurability.
In a probability space (∆,B(∆),P), we denote the N -
Cartesian product set of ∆ by ∆N with the respective product
measure by PN .

Max-Plus Algebra

The max-plus algebraic operations over scalars are ex-
tended to matrices as follows. If A,B ∈ Rm×n

ε , C ∈ Rm×p
ε ,

D ∈ Rp×n
ε and α ∈ Rε, then

[α⊗A]ij = α⊗Aij = α+Aij ,

[A⊕B]ij = Aij ⊕Bij = max{Aij , Bij} ,

[C ⊗D]ij =

p⊕
k=1

Cik ⊗Dkj = max
k∈Np

{Cik +Dkj} ,

for each i ∈ Nm and j ∈ Nn. Note the analogy between ⊕,
⊗ and respectively +, × for matrix and vector operations in
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the conventional algebra. In this paper, the following notation
is adopted for reasons of convenience. A vector with each
component being equal to 0 and −∞ is also denoted by 0 and
ε, respectively. Let Smpns be the set of max-plus-nonnegative-
scaling functions [19], i.e. functions f of the following form

f(z) = max
i∈Nm

{αi,1z1 + · · ·+ αi,nzn + βi} , (1)

where z ∈ Rn
ε , αi,· ∈ R+ and βi ∈ R. In the sequel,

we write f(z) ∈ Smpns to emphasize that f is a max-
plus-nonnegative-scaling function of z. The set Smpns is
closed under the operations ⊕, ⊗ and scalar multiplication
by a nonnegative scalar [19, Lemma 1]. In the following
proposition, we show that Smpns is a convex set and its
elements are convex functions.

Proposition 1. Given Smpns a max-plus-nonnegative-scaling
function of z with each element f(z) ∈ Smpns is in the form
of (1). Then for any θ ∈ [0, 1]:

1) the set Smpns is a convex set, if

∀g(z), h(z) ∈ Smpns ⇒ θg(z) + (1− θ)h(z) ∈ Smpns.

2) f(·) is a convex function in the convex set Smpns , if
for all v, w ∈ Rn

ε

f
(
θv + (1− θ)w

)
≤ θf(v) + (1− θ)f(w).

Proof. As a consequence of the fact that the set Smpns is
closed under the operations of max{·, ·}, plus and multipli-
cation with a nonnegative scalar, then θg(z)+(1−θ)h(z) ∈
Smpns and therefore, Smpns is a convex set.

As for the second part of the proof, consider f(z) =
max{f1(z), · · · , fm(z)} ∈ Smpns where fi(z) = αi,1z1 +
· · · + αi,nzn + βi. Note that fi(z) is an affine function of
each element of z and thus, it is a convex function. Now
define z = θv + (1 − θ)w, where variables v, w ∈ Rn

ε

and θ ∈ [0, 1]. The following relation leads to the required
convexity condition of f(z):

f(z) = f
(
θv + (1− θ)w

)
= max

{
f1
(
θv + (1− θ)w

)
, · · ·

· · · , fm
(
θv + (1− θ)w

)}
≤ max

{
θf1(v) + (1− θ)f1(w), · · ·

· · · , θfm(v) + (1− θ)fm(w)
}

≤ max
{
θf1(v), · · · , θfm(v)

}
+ max

{
(1− θ)f1(w), · · · , (1− θ)fm(w)

}
= θmax

{
f1(v), · · · , fm(v)

}
+ (1− θ) max

{
f1(w), · · · , fm(w)

}
= θf(v) + (1− θ)f(w) .

The proof is completed by noting that the first inequality
is using the convexity property of each element fi, and the
second inequality is due to the simple fact that if a, b, c, d ∈
R+, then max{a+ c, b+ d} ≤ max{a, b}+ max{c, d}.

II. PROBLEM STATEMENT

In this section, we first introduce the mathematical model
description of MPL systems and further, the extension to
stochastic MPL systems. Then a stochastic control problem
formulation for stochastic MPL systems is provided. In
particular, we formulate a stochastic MPC problem.

A. Mathematical Model Description

Consider an MPL system in the following form:

xk+1 = A⊗ xk ⊕B ⊗ uk ,
yk = C ⊗ xk ,

(2)

where A ∈ Rn×n
ε , B ∈ Rn×m

ε , C ∈ R`×n
ε . The inde-

pendent variable k denotes an increasing occurrence index.
The variables xk, uk and yk define the (continuous) time
of the k-th occurrence of the internal, input and output
events, respectively. Since the real system is subject to
a measurement noise (uncertainty), we extend the MPL
system (2) to the following stochastic MPL system (3) where
the uncertainties caused by disturbances and errors in the
estimation of physical variables are gathered in a vector δk
as random variables.

A stochastic MPL system is an extension of event-invariant
MPL system (2) where the system matrices are uncertain.
This system is described as

xk+1 = A(δk)⊗ xk ⊕B(δk)⊗ uk ,
yk = C(δk)⊗ xk ,

(3)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control
input vector, yk ∈ R` is the output vector, δk ∈ ∆ ⊆ Rd is
the random vector defined on a probability space (∆,P) for
k ∈ N ∪ {0}. Next we describe the assumptions. First it is
assumed that ∆ is endowed with a σ−algebra D, and that
P is a probability measure defined over D. Furthermore the
augmented matrix A(δk) ∈ Sn×nmpns (δk), B(δk) ∈ Sn×mmpns (δk)
and the output matrix C(δk) ∈ S`×nmpns(δk) are assumed to be
irreducible [25, p. 17], and are measurable functions with
respect to D. Then each entry of the system matrices is an
independent and identically distributed random variable with
respect to k ∈ N. It is assumed that each random variable has
a fixed support [25, Def. 1.4.1]. The uncertain realizations
(scenarios) {δ0, δ1, · · · } capture the complete event-varying
aspect of the system and are independent and identically
distributed (i.i.d.) random variables on a probability space
∆, where a sufficient number of i.i.d. samples from δk can
be obtained either empirically or by a random process. In
fact for this work, all we need is only a finite number of
scenarios, and we do not require the probability space ∆
and the probability measure P to be known explicitly. For
such technical details the reader is referred to [26, Sec. 3.3].

B. Stochastic Control Problem

Consider the discrete event nonlinear dynamics formula-
tion of the aforementioned uncertain system (3) in a compact
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format as {
xk+1 =Mx(xk, uk, δk)

yk =My(xk, δk)
, (4)

where Mx,My are the stochastic MPL system functions.
xk, uk, yk, and the random variable (uncertainty) δk are
defined as before that appear in the stochastic MPL system
equations. It is assumed that the entire state vector of the
aforementioned nonlinear dynamical system can be com-
puted due to the fact that all future state variables can be
eliminated recursively given the initial state of system (4).

Let us consider output events that are desired to occur
before a given deadline while delaying the input events. In
this work, we consider an N step finite-horizon stochastic
control problem to determine the latest time of input events
such that the output events occur before a given deadline with
a high confidence level. Therefore, only the input variables
remain as free variables and we are interested in constructing
a feedback control law

uk := κ(xk) where κ : Rn → Rm , (5)

that generates an input sequence {u0, u1, · · · } to control the
stochastic MPL system (4), and to be chosen from a set of
feasible inputs U ⊆ Rm based only on the current state of
the system. The set U can be characterized via the set of
constraints on the input control variables.

Define now a full prediction horizon that contains N
steps into the future, and a subscript ‘k’ in our notation is
introduced to characterize the occurrence index k ∈ NN

within the horizon. The initial value of the states is denoted
by x0, whereas xk and uk are defined to be the state and input
vector at occurrence index k of the horizon, respectively.
The minimization of the objective function is subject to
keeping the state inside a feasible set X ⊆ Rn, that can be
determined using the state variables constraints, for a given
prediction horizon steps which maybe too conservative, and
results in a poor performance. In particular, this is the case
when the best performance is achieved close to the boundary
of X, and thus, constraint violations will be unavoidable
due to the fact that the MPL models are imperfect and
uncertain. To tackle such a problem, we define a chance
constraint on the state trajectories to avoid violation of
the state variables constraints probabilistically even if the
disturbance has unbounded support. Notice that a robust
problem formulation [24] cannot cope with problems having
an unbounded disturbance set.

Definition 1 (Probabilistically Feasible). Given α ∈ (0, 1)
as an admissible constraint violation parameter, the state
variables are called probabilistically feasible if

Pδ
[
xk+i|k ∈ X , i ∈ NN

]
≥ 1− α . (6)

Note that the index of Pδ denotes the dependency of xk+i|k
on the string of random scenarios {δ0, δ1, · · · , δN−1}.

C. Stochastic Model Predictive Control
According to (4) the predicted time of output events

for i occurrences into the future is denoted by yk+i|k =

ϕ(xk, ũ, δ̃), where xk is assumed to be the current state.
We define the augmented vector of planned input control
and random scenarios by ũ := (u0, · · · , ui) and δ̃ :=
(δ0, · · · , δi) to capture an incomplete sequence of them
until event step i. Consider now a complete sequence of
random scenarios to be δ := (δ0, δ1, · · · , δN−1) ∈ ∆N ,
and a complete sequence of the planned input control to
be u := (u0, u1, · · · , uN−1) ∈ UN . The main objective
function for a stochastic MPL control problem is to penalize
the delayed deliveries for the output elements at event step k,
and furthermore, to promote input feeding as late as possible
at each event step k over a finite horizon while satisfying
state and input constraints, and taking into account that the
uncertainty manifests itself in the form of a random variable
in the system characteristics. Moreover, we define a desired
behavior to be the output events occur before the deadline
while trying to delay the input events as late as possible. We
define

‖max{yk+i|k − rk+i, 0}‖1 − γ‖uk+i|k‖1 := J
(
xk, ũ, δ̃

)
,

where rk+i is the deadline for the (k + i)-th occurrence of
the output events and γ is a cost coefficient term for the
input variables. J (·) is a stage cost function that reflects
our control purpose, i.e., desired set-point tracking for all
elements of the output sequence and maximizing (as late
as possible) the occurrence of input events. Consider the
following stochastic objective function:

J(xk,u, δ) :=

N∑
i=1

J
(
xk, ũ, δ̃

)
, (7)

where J is a random variable. Note that the index of sum-
mation appears in the augmented vectors ũ, δ̃. We consider
E [J(xk,u, δ)] to obtain a deterministic objective function.

Now we can formulate a chance-constrained finite-horizon
optimal control problem for each event step k:

min
u∈U

E [J(xk,u, δ)] (8a)

s.t. uk+(i+1)|k − uk+i|k ≥ 0 , (8b)

Pδ



yk+i|k ∈ Y
Euk+i|k + F yk+i|k ≤ H
i ∈ {1, · · · , N}

 ≥ 1− α , (8c)

where Y ⊆ R` represents a desired convex bound on the
predicted output events at each horizon step i ∈ NN .
The constraint (8b) corresponds to the fact that the time
between consecutive input events should be given by a
nonnegative value. The constraints (8c) represent chance
constraints on the inputs and the value of the output events,
where E, F, H are matrices of appropriate dimensions. The
solution of (8) is the optimal planned input sequence u∗ :=
{u∗0, u∗1, · · · , u∗N−1}. The proposed optimization problem (8)
is solved at each event step ‘k’ by using the current mea-
surement of the state xk, and based on the model predictive
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control algorithm: the current input is set to uk := u∗0
and continue in a receding horizon fashion. Due to the
presence of chance constraints, the feasible set is, in general,
nonconvex and hard to determine explicitly. In the following
section, we propose a tractable formulation to solve (8).

III. PROPOSED FRAMEWORK

Our proposed framework is based on the approximation
of chance-constrained optimization problems (8) using a ran-
domized approach to avoid introducing arbitrary assumptions
on P and its moments. The randomized approach is a tool
to approximate chance constraints and substitute the chance
constraints with a finite number of pointwise constraints at
independently generated scenarios of the uncertain parame-
ters. However, the number of scenarios is a crucial parameter
to achieve the desired level of approximation and has to
be selected carefully. The authors of [27] have developed
an elegant approach based on the randomization technique,
namely the scenario approach, that provides a lower bound
for the number of extracted scenarios to establish the desired
probabilistic guarantees with high confidence for feasibility
of the optimization problem.

The main requirement of this approach is that the theo-
retical bound only holds for convex problems, i.e., when the
cost and the constraint functions are convex in the decision
variables for each realization of uncertainties. As it is shown
in [28], this property is not met for general nonlinear
systems. Therefore, we need to first show convexity of the
proposed optimization problem (8) to employ the scenario
approach, and then develop a tractable framework for such
a problem. In order to show convexity of the cost function
and constraint function of the proposed chance-constrained
optimization problem (8), we have to prove that future output
events belong to the set of max-plus-nonnegative-scaling
functions Smpns.

Proposition 2. Given a stochastic MPL system in the form of
(4), the future output events yk+i|k belong to the set of max-
plus-nonnegative-scaling functions Smpns for all i ∈ NN .

Proof. Since Mx(·) and My(·) are convex functions, by
definition both functions belong to Smpns. Note that the
composition of two convex functions is a convex function.
Thus ϕ(·) :=My (Mx(·)) is a convex function.

Notice that the cost function is a convex function since
the expected operator E[·] is a linear operator, and any
linear and max{·, ·} operator over two convex functions
yields another convex function. We are now able to employ
the scenario approach to determine the number of required
uncertain scenarios to approximate the proposed chance-
constrained (8c). Consider the sets W0 := {δ(1), · · · , δ(S0)}
and W1 := {δ(S0+1), · · · , δ(S0+S1)} to be a set of ‘S0’
scenarios that is used to empirically approximate the cost
function J and a set of ‘S1’ scenarios to probabilistically
enforce the state constraints for the full predicted stages.
Consider now the following tractable formulation of (8),

called randomized MPC:

min
u∈U

∑
δ(k)∈W0

J(xk,u, δ
(k)) , (9a)

s.t. uk+(i+1)|k − uk+i|k ≥ 0 , (9b){
yk+i|k = ϕ(xk,u, δ

(l)) ∈ Y
Euk+i|k + F yk+i|k ≤ H

,

{
∀ i ∈ NN

∀ δ(l) ∈W1
,

(9c)

where (S0, S1) are nonnegative integers and full horizon
uncertainty scenarios S = (S0+S1) are drawn independently
with respect to ∆N . We assume a feasible solution is
admitted for every realization of uncertainties. In the case
of having an infeasible solution, we have to generate a new
set of S random scenarios. We state the following result that
descends from [27, Th. 1].

Theorem 1. Define the positive constant parameters α, β ∈
(0, 1) to be a probability of constraint violations and a
confidence level, respectively. If

S1 ≥ g(α, β,mN) :=
2

α
ln

1

β
+ 2mN +

2mN

α
ln

2

α
,

then the optimal solution of the tractable formulation (9) is
a feasible solution for the chance-constrained optimization
problem (8) with confidence level of (1− β).

Applying a receding horizon policy in the MPC frame-
work, the problem in (9) must be solved at each event step
with an updated initial state xk and the current input uk :=
u?0 is set to the first element of the feasible solution u∗ :=
{u∗0, u∗1, · · · , u∗N−1}. Note that the user-defined scenario size
S0 can be seen as a tuning variable to approximate the cost
function for the predicted stages. The proposed procedure is
summarized in Algorithm 1.

Algorithm 1 Randomized MPC

1: Fix S0 ∈ N to approximate the cost function and select
S1 according to Theorem 1.

2: Generate S = (S0 + S1) scenarios of δ ∈ ∆N .
3: Solve (9) and determine a feasible solution u∗.
4: if the problem (9) is infeasible then go to step 2.
5: Apply the first input of solution uk := u?0 to the

uncertain real MPL system (4).
6: Measure state xk.
7: Go to step 2.

Remark 1. The proposed framework in Algorithm 1 provides
a solution to the stochastic MPL system (4) with a proba-
bilistic feasibility certificate and it does not necessarily lead
to the optimal solution. This is due to the fact that a set of S0

random scenarios is used as a tuning variable to empirically
approximate the cost function J . We refer the reader for a
performance bound on the sub-optimality of the obtained
solution to [26].
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IV. SIMULATION STUDY

In this section we provide two different case studies. In
the first case study, a production system is considered (cf.
Section IV-A). We use a small-scale problem to illustrate
detailed steps of our proposed framework. To demonstrate
the applicability of our proposed scheme we then study a
high-dimensional problem by using a subset of Dutch railway
systems in Section IV-B, which shows that our approach is
suitable for real industrial applications. In the latter case
study, we also adapt our framework with the framework
developed in [29] which is called “Robust Randomized
MPC”. In this framework, we first determine a probabilistic
bound for the generated samples and then, we solve a robust
optimization problem at each event step.

The uncertainty δk is assumed to be an independent and
identically distributed random variable that takes values from
an exponential distribution δk ∼ exp(λ), where λ is the rate
parameter. In both case studies, the mean (i.e. the reciprocal
of λ) is chosen to be 5% of the nominal values. The
prediction horizon and simulation steps in both case studies
are assumed to be 10 and 30 steps, respectively, and the cost
coefficient term is γ = 0.5. We consider α = 0.05, and
β = 0.00001 as in Theorem 1. We carry out a comparison
with two different deterministic approaches to illustrate the
performance of Algorithm 1 (Randomized MPC). In one
of the deterministic formulations, we consider the nominal
system model without uncertain elements, and then, a de-
terministic MPC formulation is solved. Whereas in the next
approach the nominal system model is formulated together
with considering the mean value of the uncertain elements
distribution. The simulation environment is MATLAB while
using YALMIP toolbox [30] as an interface for the GUROBI
solver [31] on a desktop PC with a CPU 2.6 GHz Intel Core
i5 processor.

A. Production Systems Case Study

We consider the example of a production system in Figure
1, which is taken from [19]. This system comprises of two
machines M1 and M2, that operate in batches. Machine M1

requires raw material and yields an intermediate product.
Machine M2 requires the intermediate product generated by
M1 and yields a final product. We assume that each machine
starts working as soon as the required material is available
and the machine is idle. A machine is idle when the previous
batch has been processed. We define uk as the time instant at
which the k-th batch of raw materials enters the system, yk
as the time instant at which the k-th batch of final products
leaves the system, xik as the time instant at which machine
Mi starts processing the k-th batch, tik as the transportation
time of the k-th batch, dik as the time spent by machine Mi

to process the k-th batch. The system equations are given by
(3), where

A =

[
d1k−1 ε

d1k−1 + d1k + t2k d2k−1

]
B =

[
t1k

d1k + t1k + t2k

]
, C =

[
ε d2k + t3k

]
.

We assume that the transportation times are constant: t1k = 0,
t2k = 1, t3k = 0. Furthermore the processing time of machines
M1 and M2 is assumed to be d1k = 5 + δk and d2k = 1,
respectively. The due date signal is given by rk = 10+40 ·k,
where the initial state is equal to x0 =

[
40 10

]>
.

Figure 2 depicts the difference (yk − rk) between the
output signal yk and the due date signal rk when the cost
coefficient term is given by γ = 0.5. The ‘green’ solid,
‘blue’ dotted and ‘red’ dashed lines correspond respectively
to the results of our developed framework (see Algorithm
1), the nominal deterministic approach for the nominal
system model, and nominal deterministic approach together
with taking into account the mean value of the uncertain
elements’ distributions. In this simulation study, we consider
to have a probabilistic constraint on the output signal as
(yk − rk) ≤ 10 where in Figure 2 the boundary condition
is shown by the ‘black’ line. As it can be seen in Figure 2,
both deterministic approaches lead to infeasible closed-loop
trajectories, whereas the solution obtained via the proposed
Algorithm 1 yields a feasible solution trajectory and better
performance since almost all the results at each event step
are negative which means that the due date signal is reached.

The difference (uk − rk) between the input signal uk and
the due date signal rk is shown in Figure 3. Following the
same results, the obtained cost associated with the input
signal uk via the proposed Algorithm 1 is much lower
than that of both deterministic approaches. In conclusion,
the obtained feasible solution highlights a less conservative
solution together with a better performance in terms of
value function of the problem compared to the deterministic
solutions.

B. Dutch Railways Case Study

As an additional case study, we transform the deterministic
MPL system developed in [32, p. 31] to the following
stochastic MPL systems that take into account the uncer-
tainties:

x1k+1 = (38 + δ1k)⊗ x8k ⊕ u1k
x2k+1 = (36 + δ2k)⊗ x8k ⊕ u2k
x3k+1 = (55 + δ3k)⊗ x1k ⊕ (54 + δ4k)⊗ x2k ⊕ u3k
x4k+1 = (35 + δ5k)⊗ x3k ⊕ u4k
x5k+1 = (54 + δ6k)⊗ x4k ⊕ u5k
x6k+1 = (58 + δ7k)⊗ x4k ⊕ u6k
x7k+1 = (90 + δ8k)⊗ x5k ⊕ (93 + δ9k)⊗ x6k ⊕ u7k
x8k+1 = (16 + δ10k )⊗ x7k ⊕ u8k

yik = xik , ∀ i ∈ N8 ,

where xik and yik, for all i ∈ N8 represent the k-th departure
time of trains at the stations Den Haag CS to Amersfoort
(via Utrecht), Rotterdam CS to Amersfoort (via Utrecht),
Amersfoort to Zwolle, Zwolle to Leeuwarden and to Gronin-
gen, Leeuwarden to Amersfoort (via Zwolle), Groningen to
Amersfoort (via Zwolle), Amersfoort to Utrecht, Utrecht to
Den Haag CS and to Rotterdam CS, respectively. Finally uik
for i ∈ N8 represents the lower bound on the k-th departure
time of trains at the previous routes. Let us now clarify
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Fig. 1. An example of a production system. The system comprises of two subsystems M1 and M2 that operate in batches.

Fig. 2. Production system case study; the difference (yk − rk) between
the output signal yk and the due date signal rk with γ = 0.5. The ‘green’
solid line is related to the result of our developed framework (see Algorithm
1), the ‘blue’ dotted and ‘red’ dashed lines are based on the deterministic
approach. The ’red’ dashed line corresponds to the nominal system model,
whereas the ‘blue’ dotted line shows the results for the nominal system
model together with taking into account the mean value of the uncertain
elements. The ‘black’ line is the boundary for (yk − rk) ≤ 10.

Fig. 3. Production system case study; the difference (uk − rk) between
the input signal uk and the due date signal rk with γ = 0.5. The ‘green’
solid line is related to the result of our developed framework (see Algorithm
1), the ‘blue’ dotted and ‘red’ dashed lines are based on the deterministic
approach. The ’red’ dashed line corresponds to the nominal system model,
whereas the ‘blue’ dotted line shows the results for the nominal system
model with taking into account the mean value of the uncertain elements.

Fig. 4. Dutch railway network case study; the difference (yk−rk) between
the output signal yk and the due date signal rk with γ = 0.5. The ‘green’
solid line is related to the result of our developed framework (see Algorithm
1), the ‘red’ dashed line is based on the deterministic approach where the
nominal system model is considered. The ‘black’ lines are the boundaries
for (yk − rk) ≤ x0.

the difference between yk, rk and uk. yk is the actual k-
th departure (same with xk). rk is the deadline for the actual
k-th departure. uk is the earliest possible k-th departure. This
means that any train cannot depart before the earliest possible
departure time, i.e. yk cannot be earlier than uk. Furthermore
if there is a problem, a train may depart after the earliest
possible departure time, i.e. yk may be later than uk. Our
objective is the following: given rk, we want to find uk (as
late as possible) such that yk is not later than rk. We consider
an exponential distribution for uncertainties. The due date
signal is given by rk = x0 + 55 · k, where the initial state
is equal to x0 =

[
8 6 14 6 6 10 53 20

]>
. We

also introduce some constraints for the passengers transfer
time. This is possible by requiring a minimum time interval
between the two consecutive arrival and departure of a train.
In this case, the constraints are given by (yk+1 − yk) ≥
0 which are quite difficult to handle because it contains
variables at two consecutive event steps k + 1 and k.

Figure 4 shows the difference (yk−rk) between the output
signal yk and the due date signal rk with γ = 0.5. In this
figure the result of our proposed Algorithm 1 is determined
via the ‘green’ solid line, and the result of the nominal deter-
ministic approach by the ‘red’ dashed line. The ‘black’ lines
are the boundaries for (yk−rk) ≤ x0. This constraint implies
that the difference between departure and due date for any
train should be smaller than the initial state. Moreover, we
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impose this constraint by considering uncertain behavior
of the railway network. The obtained results via ‘green’
solid lines as it was guaranteed by our proposed framework
(see Algorithm 1), yields a feasible closed-loop trajectories
whereas the solution of the deterministic approach using
‘red’ lines leads to an infeasible network trajectories.

V. CONCLUSIONS

In this paper, we formulated a chance-constrained MPC
control problem for stochastic MPL systems as a rich class of
stochastic hybrid dynamical systems which is of wide prac-
tical interest. We then developed a computationally tractable
framework for such a problem while providing theoretical
guarantees on the feasibility of the solution in a proba-
bilistic sense. The scalability of the proposed framework
is demonstrated via Dutch railway case study as a large-
scale stochastic MPL system. In our ongoing research, we
are focusing on combining this approach with formal method
techniques in order to obtain a more generalized framework
for this class of systems.
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