
Delft University of Technology

Delft Center for Systems and Control

Technical report 17-001

An algorithm for estimating the

generalized fundamental traffic variables

from point measurements using initial

conditions∗

A. Jamshidnejad and B. De Schutter

If you want to cite this report, please use the following reference instead:

A. Jamshidnejad and B. De Schutter, “An algorithm for estimating the general-

ized fundamental traffic variables from point measurements using initial conditions,”

Transportmetrica B: Transport Dynamics, vol. 6, no. 4, pp. 251–285, 2018.

Delft Center for Systems and Control

Delft University of Technology

Mekelweg 2, 2628 CD Delft

The Netherlands

phone: +31-15-278.24.73 (secretary)

URL: https://www.dcsc.tudelft.nl

∗This report can also be downloaded via https://pub.deschutter.info/abs/17_001.html

https://www.dcsc.tudelft.nl
https://pub.deschutter.info/abs/17_001.html


An algorithm for estimating the generalized fundamental traffic

variables from point measurements using initial conditions

A. Jamshidnejada∗ and B. De Schuttera

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD

Delft, The Netherlands

Fundamental macroscopic traffic variables (flow, density, and average speed) have been de-
fined and formulated in two different ways: the classical definitions (defined as either tempo-
ral or spatial averages) and the generalized definitions (defined as temporal-spatial averages).
The available literature has considered estimation of the classical variables, while estimation
of the generalized variables is still missing. This paper proposes a new efficient sequential
algorithm for estimating the generalized traffic variables using point measurements. The al-
gorithm takes into account those vehicles that stay between two consecutive measurement
points for more than one sampling cycle and that are thus not detected during these sampling
cycles. The algorithm is introduced for single-lane roads first, and then is extended to multi-
lane roads. For evaluation of the proposed approach, NGSIM data, which provides detailed
information on trajectories of the vehicles on a segment of the interstate freeway I-80 in San
Francisco, California is used. The simulation results illustrate the excellent performance of
the sequential procedure for estimating the generalized traffic variables compared with other
approaches.

Keywords: generalized traffic variables; sequential procedure; point measurements;

1. Contributions and organization of the paper

Generalized traffic variables (Edie 1963) play an important role in traffic theory and
applications. However, the available literature mostly focus on estimation of the traffic
variables in their classical definition. To the best of our knowledge, except for the work
by Jamshidnejad and De Schutter (2015), there is no papers on estimation of the gen-
eralized average speed from point measurements. This becomes more significant when
one takes into account the extensive use of the inductive loop detectors worldwide
(Klein, Mills, and Gibson 2006; Bickel et al. 2007), and the high costs of substituting
them with new technologies. The main contributions of this paper include the following
topics:

(1) We propose a new efficient method for estimation of the generalized fundamental
traffic variables from point measurements. The proposed approach is suitable es-
pecially for cases where there is missing, disrupted, or limited information about
the vehicles between two consecutive measurement points.

(2) We propose two methods to deal with the missing or disrupted information between
two measurement points. For the two methods, vehicles between two consecutive
measurement points follow two paradigms: constant speed and non-constant speed.
The non-constant speed case is inspired by the approach proposed by Coifman
(2002), but we have changed the method so that it does not need the future infor-
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Table 1. Mathematical notations used in the paper

A area of a sampling region,

nA total number of trajectories observed in the sampling region of area A,

t0 initial time instant,

tend final time instant,

nt total number of trajectories observed on a stretch of the road at time t,

Tj sampling time for loop detector Dj ,

ncyc
j number of (whole) sampling cycles occurring within

[

t0, tend
]

,

i time step counter,

wi,j time-space sampling window corresponding to road section j considered at step i,

NG,i,j number of vehicles from group G in the sampling window wi,j ,

GG,i,j set of indices of the vehicles from group G in the sampling window wi,j ,

ρA generalized density corresponding to sampling area A,

qA generalized flow corresponding to sampling area A,

v̄A generalized average speed corresponding to sampling area A,

ρi,j generalized density corresponding to sampling window wi,j ,

qi,j generalized flow corresponding to sampling window wi,j ,

v̄i,j generalized average speed corresponding to sampling window wi,j ,

Ai,j area of window wi,j ,

θc,i,j time instant, at which vehicle c is detected in wi,j by the inductive loop detector Dj ,

Lendpoint

nloop distance between the last loop detector and the endpoint of the road,

∆tGc total travel time of vehicle c from group G moving on a single-lane road,

sstart,Gc initial relative position w.r.t. upstream loop detector of vehicle c from group G on a single-lane road,

send,Gc final relative position w.r.t. upstream loop detector of vehicle c from group G on a single-lane road,

dGc traveled distance of vehicle c from group G moving on a single-lane road,

∆tG
c,ℓ

total travel time of vehicle c from group G moving on lane ℓ,

sstart,G
c,ℓ

initial relative position w.r.t. upstream loop detector of vehicle c from group G moving on lane ℓ,

send,G
c,ℓ

final relative position w.r.t. upstream loop detector of vehicle c from group G moving on lane ℓ,

dG
c,ℓ

traveled distance of vehicle c from group G moving on lane ℓ.

mation of a leading vehicle to produce the approximate trajectory of the following
vehicle at the current time instant. Therefore, our approach can also be used for es-
timation of the trajectory of vehicles between two consecutive measurement points
in real time.

(3) We develop a new sequential algorithm that takes into account the vehicles that
might stay on the same sampling road section and between the same two con-
secutive measurement points during a number of sampling cycles. Hence, these
vehicles are not detected at the measurement time instant. The proposed algo-
rithm keeps track of the detected vehicles from the time instant they are observed
at one measurement point, until they reach the next measurement point. Hence,
compared with previous work that does not take these vehicles into account, our
new approach can produce more accurate results.

(4) We show via real-life NGSIM data (captured on a segment of the interstate freeway
I-80 in San Francisco, California, US) that the proposed approach produces more
accurate results compared with the available approaches.

The rest of the paper is organized as follows. In Section 2.1 we give an overview of the
concepts used in this paper, and in Section 2.2 we discuss the previous work on estimation
of the fundamental traffic variables from point measurements. In Section 3 we explain
how the problem can be formulated in the time-space plane by defining the concept of
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Figure 1. Road map of the paper

sampling windows. Section 4 introduces the new sequential algorithm that keeps track
of the vehicles that are detected by inductive double-loop detectors, and produces the
generalized density, flow, and average speed of vehicles. In Section 4.1, first the algorithm
is developed for single-lane roads; and next, in Section 4.2, the algorithm is extended to
multi-lane roads. Section 5 explains how to find approximate trajectories of the vehicles
that are traveling on a sampling road section in between of two successive loop detectors.
In Section 6, we present the results of a case study using NGSIM real data in order to
assess the efficiency of the proposed algorithm compared with formulas available in the
literature. Finally, the paper is concluded in Section 7 and suggestions for future work
are proposed. A road map of the paper is illustrated in Figure 1. In addition to that,
Table 1 presents the mathematical notations that are used through the paper.

2. Background

2.1. Overview

Macroscopic fundamental traffic variables (density, flow, and average speed) are im-
portant in theory, analysis, control, and performance measurement of traffic (e.g.,
see (Messner and Papageorgiou 1990; Daganzo 1995; Kamijo et al. 2000; Sheu 2002;
Lee, Hellinga, and Saccomanno 2006; Wang, Papageorgiou, and Messmer 2006). These
variables have been defined and formulated in two different ways; classical and general-
ized. In the classical definition (see (Daganzo 1997) for detailed definitions), within the
time-space plane, density is a spatial average, flow is a temporal average, and average
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Figure 2. An arbitrary region in the time-space plane for defining the generalized fundamental traffic variables

speed is the ratio of flow and density (Edie 1963; Daganzo 1997; Wardrop 1952).
Edie (1963) proposes a more general definition for the fundamental traffic variables.

Consider an arbitrarily shaped region of area A in the time-space plane (see Figure 2).
Suppose that the dashed-dotted curves in Figure 2 illustrate the trajectories of some
vehicles, with nA the number of these vehicles. The generalized density, flow, and average
speed within region A are given by

ρA =
1

A

nA
∑

i=1

∆ti, qA =
1

A

nA
∑

i=1

∆xi, (1)

v̄A =
qA

ρA
(2)

Our focus in this paper is to propose an approach for estimating the generalized traffic
variables from point measurements.

2.2. Previous Work

Several papers exist on estimation of the classical average speed, called the space-mean
speed, from point measurements. To the best of our knowledge, there is no method
currently available for estimating the generalized fundamental traffic variables from point
measurements, except for the work by Jamshidnejad and De Schutter (2015). In this
section, we briefly explain previous work on estimation of the average speed.
Rakha and Zhang (2005) prove the formula introduced by Khisty and Lall (2003) for

estimating the space-mean speed vs, which is given by

vs ≈ vt −
σ2
t

vt
, (3)

where vt is the time-mean speed (see (Daganzo 1997) for the definition), and σt is
the temporal standard deviation of the individual speeds of the observed vehicles.
Soriguera and Robusté (2011) propose a formula to compute σt, where they assume a
normal distribution for the speeds of the vehicles:

σt =
v∗ − vt

φ−1
(nv∗

n

) , (4)

with v∗ a particular speed threshold, φ(·) the cumulative distribution function of the
standard normal distribution, nv∗ the number of observed vehicles moving with v∗, and
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n the total number of observed vehicles.
Wardrop (1952) proposes an equation for estimating the time-mean speed from a known

space-mean speed, i.e.,

vt = vs +
σ2
s

vs
, (5)

with σs the spatial standard deviation of the observed speeds. As reported by
Jamshidnejad and De Schutter (2015), (5) may produce complex values for vs. Han et al.
(2010) suggest a different representation of (5) that does not involve σs, but adds the
mean value of the individual speed values:

vs = 0.75vt + 0.25
√

9v2t − 8E[v2i ], (6)

where E(·) denotes the expected value, and vi is the observed speed of the vehicle i.
Estimation of the generalized average speed v̄A is considered by

Jamshidnejad and De Schutter (2015), where tight upper and lower bounds for v̄A
are given by

v̄low =
n− 0.5m+ 0.5

n−m+ 1 +
0.5m(m− 1)

M − 1

Hn−m+1, (7)

v̄up =
n− 0.5M + 1

n−m+ 1 +
0.5(M − 1)(2m−M)

m

Hn−m+1, (8)

in which

m =

⌊

L

hvmin

⌋

+ 1, M =

⌊

L

hvmax

⌋

+ 1, (9)

with L the distance between two consecutive measurement points, h the average time
headway of the observed vehicles, vmin and vmax the minimum and maximum of the
speeds, and Hn−m+1 the harmonic mean of the speeds of the first n −m + 1 observed
vehicles. Finally, Jamshidnejad and De Schutter (2015) introduce a convex combination
of the proposed bounds to estimate v̄, i.e.,

v̄ =
v̄up + γv̄low

1 + γ
, γ ≥ 0, (10)

where γ is either identified using an extensive dataset, or is computed as γ = vmax
vmin

.

In this paper, we propose a new method to estimate the generalized fundamental traffic
variables from point measurements. We first assume constant speeds for the vehicles, and
later we propose an approach for approximating the trajectories of the vehicles in the
time-space plane, which is inspired by Coifman (2002).
Coifman (2002) proposes a method to estimate trajectories of vehicles between two

consecutive double-loop detectors based on available point measurements. According to
Lighthill and Whitham (1955), if a change in speed occurs at a point of a certain traffic
stream, this change will back-propagate through the traffic stream with a fixed speed.
The speed of the back-propagation of the change depends on the governing traffic situa-
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Figure 3. Estimating the trajectories of vehicles based on the approach proposed by Coifman (2002).

tion (free-flow or congested). Coifman (2002) applies this result to find the approximate
trajectories. Suppose that speed measurements of two successive vehicles are available at
points “A” and “B” within the time-space plane (see Figure 3), with these points located
at the loop detector line and corresponding to time instants tA and tB.
Coifman (2002) plots the back-propagation lines (see the blue dashed-dotted lines in

Figure 3) with a fixed slope equal to the back-propagation speed. These back-propagation
lines originate at points in the time-space plane, where speed measurements are available
(e.g., at point “B” in Figure 3). As soon as a vehicle’s trajectory intersects with one of
these back-propagation lines, it changes its slope to the one of the trajectory of the
leading vehicle (e.g., at point “C” in Figure 3, the trajectory changes its slope to the
slope of the trajectory of the vehicle observed at point “B”).
This actually means that the vehicle observed at point “B” has been following the

vehicle observed at point “A”, and at point “B”, this vehicle adapts its speed to the
speed of the leading vehicle at point “C”. In practice, since the speed measurements
are available only at the loop detector line (i.e., at location xj in Figure 3, the slope
of the trajectory of the leading vehicle at point “C” can be extracted from the slope of
the trajectory of the following vehicle at point “B”. This is not a problem for off-line
processing of the dataset of course, but this approach cannot be implemented on-line.
Note that the approach proposed by Coifman (2002) is based on the Newell’s car

following model and on the assumption that the adapting point of the following vehicle,
i.e., the point in the time-space plane at which the following vehicle changes its speed to
that of the leading vehicle, is located at the loop detector line.
Inspired by the approach given by Coifman (2002), in Section 5, we will propose a new

method for estimating the trajectory of the leading vehicle without any need to capture
measurements from the following vehicle at some time ahead (e.g., measurements from
tB in Figure 3 for instant tC which occurs before tB). We propose a model for movement
of the main leading vehicle of a traffic stream that is based on the assumption that the
leading vehicle intends to reach the free-flow speed as soon as possible. Then, we just
need to know the initial speed of the leading vehicle in a sampling cycle to approximate
its trajectory, where this initial speed is either measured at a measurement point, or is
announced by the proposed sequential algorithm in case the leading vehicle is between two
consecutive measurement points at the beginning of the sampling time. The trajectories of
the following vehicles are then found using Newell’s car following model. Hence, trajectory
of a leading vehicle is extracted independent from that of the following vehicle, and this
makes our proposed methodology suitable for on-line applications.
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Figure 4. Mapping the real road into Cartesian coordinates

3. Sampling of road sections in the time-space plane

In this section, we first represent and define the problem introducing the concept of a
sampling road section, and its illustration in the time-space plane. Since our focus is on
computation of the generalized fundamental traffic variables, we first need to map the
problem into the time-space plane. Note that the main mathematical notations used in
this paper are listed in Table 1.
Consider a road of length Lroad, with nloop inductive loop detectors represented by Dj

installed at positions xj , j ∈ {1, 2, . . . , n
loop}, where Lj , i.e., the distance between any

two consecutive loop detectors Dj and Dj+1, is represented by:

Lj = xj+1 − xj (11)

Hence,

L
endpoint
nloop = xendpoint − xnloop

Note that to define the positions and distances on a road, we first consider a virtual curve
that can be plotted across the middle points of the road’s width, i.e., the centerline of the
road, and its shape follows the shape of the road (see the dashed curve in Figure 4(a)).
Then we consider an equivalent straight road, for which the length is equal to the length
of the centerline curve (see Figure 4(b)). The traffic conditions on the road will be
investigated for a total time period

[

t0, t
end

]

of length T road using data from inductive
loop detectors.
To present and process traffic data, trajectories of vehicles can be plotted in the time-
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space plane (Treiber and Kesting 2013), where the processing time is shown on the hor-
izontal axis, and the processed length of the road is shown on the vertical axis (see
Figure 5). We first consider a single-lane road, where the space axis is directed through
the direction of movement. The representation of the road in the time-space plane will be
a rectangular frame of length Lroad and of width T road (see the main frame in Figure 5).
Suppose that we want to find the fundamental traffic variables at time step ti (i.e., for
the time period between steps ti−1,j and ti,j) on a piece of the road that is extended
between two successive loop detectors Dj and Dj+1. The piece of the road of length Lj

with Dj and Dj+1 as its upstream and downstream loop detectors (j ∈ {1, 2, . . . , nloop})
is called a sampling road section, which is indexed by the index j; the representation
of the sampling road section j in the time-space plane is a window of length Lj and of
width Tj , which is called a sampling window, indexed by the time step counter i and by
the index of the upstream loop detector j. Figure 5 illustrates the time-space sampling
windows with a length of Lj and a width of Tj , with j ∈ {1, . . . , nloop}. For each sam-
pling window, the lower edge is located along the line x = xj , i.e., at the position of the
upstream inductive loop detector, of the corresponding sampling road section.
For a sampling window wi,j , with i ∈ {1, 2, . . . , n

cyc
j } and j ∈ {1, 2, . . . , nloop}, the

right, left, top, and bottom edges of the sampling window are denoted by, respectively,
E|i,j , |Ei,j , E i,j , and E i,j (see Figure 5). The trajectories of those vehicles that are
observed by the upstream loop detector during the current sampling cycle will intersect
the lower edge E i,j of the sampling window.
Now, it should be checked if any of the trajectories according to those vehicles that will

be observed within the area of wi,j might enter wi,j via the left edge of the window, |Ei,j ;
vehicles corresponding to these trajectories will spend some time in wi,j and, therefore,
will affect the average speed and the average density of this sampling window. However,
since they will not pass through the detection zone of the upstream loop detector at
x = xj in the current cycle, they will not be detected. Therefore, we should keep track
of them from the previous cycle(s), and then use their information, including their speed
and location at ti−1,j as the initial conditions for the current cycle time.
The main question here is whether we need to check all previous windows wℓ,m, for

ℓ = 1, 2, . . . , i−1 andm = 1, 2, . . . , j to process wi,j , or whether it is possible to reduce
the effort. Considering the rectangles in the same row of the grid shown in Figure 5 (e.g.,
the grey windows for processing wi,j) will be sufficient, because the trajectories of all
vehicles that enter wi,j and have previously traveled in the sampling windows located in
lower rows of the grid (i.e., with xm < xj), should definitely cross the line x = xj before
they enter wi,j and hence they will once be observed by loop detector Dj . However, the
vehicles that are located at position xc at ti,j with xj < xc < xj+1, i.e., vehicles that were
(partly) traveling in the same road section during the previous cycle, will not be detected
by the upstream loop detector. To keep track of these vehicles, we should consider the
sampling window located in the left-hand side of wi,j in the same row, i.e., wi−1,j (see
Figure 5); and similarly for wi−1,j we should keep track of the information in wi−2,j , and

so on. Consequently, we consider separate time indicators ti,j , i ∈ {1, . . . , n
cyc
j } for each

row of the sampling windows in Figure 5.
Note that in this paper we define four groups of vehicles for every sampling window

wi,j ; G1,i,j , G2,i,j , G3,i,j , and G4,i,j referring to, respectively, the group of vehicles that
enter the sampling road section j during cycle i, the group of vehicles that are already in
the sampling road section j at the beginning of cycle i, the group of vehicles that leave
the sampling road section by the end of cycle i, and the group of vehicles that will stay
on the sampling road section at the end of cycle i.
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Figure 5. The time-space plot for the sampling road sections on a road of length Lroad being processed during a
total time of T road using data from inductive loop detectors

4. A sequential algorithm for point measurements to keep track of all

vehicles

4.1. Single-lane roads

All discussions presented in this section are based on the following assumptions:

Assumption 1. The first loop detector on the processed road is located at the beginning
point of the road.

Assumption 2. The road is considered to have only a single lane (this assumption will
later on be relaxed in Section 4.2).

Assumption 3. All vehicles travel with a constant speed (reported by the upstream
loop detector) on each sampling road section, until a new speed value is detected
for them by the downstream loop detector (this assumption will be relaxed later
on in Section 5).

For the work presented in this paper, the assumption of stationary traffic conditions is
not required.
Figure 6(a) illustrates three sampling windows wi−1,j , wi,j , and wi+1,j in the time-space

plane that represent sampling road section j during three successive sampling cycles of
length Tj starting at ti−2,j , ti−1,j , and ti,j . Figure 6(b) illustrates wi,j and different groups
of vehicles that are observed in this window. The indices of those vehicles, for which the
trajectories pass through E i,j are stored in G1,i,j , and the indices of those vehicles, for
which the trajectories intersect |Ei,j are stored in G2,i,j . From Figure 6(a), for any vehicle
c1 ∈ {1, 2, . . . , N1,i,j} in wi,j we obtain:

Case 1. If s
end,G1,i,j

c1 ≥ Lj , then the vehicle leaves wi,j through its upper edge and will
not enter wi+1,j ; indices of those vehicles in G1,i,j that satisfy this condition are

stored in subgroup G
(1)
1,i,j of G1,i,j ;
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Figure 6. Sampling windows corresponding to the same road section during successive sampling cycles

Case 2. If s
end,G1,i,j

c1 < Lj , then the vehicle leaves wi,j through its right-hand edge, and
enters wi+1,j through its left-hand edge; indices of those vehicles that satisfy this

condition are stored in subgroup G
(2)
1,i,j of G1,i,j ;

Similarly, for any vehicle c2 ∈ {1, 2, . . . , N2,i,j} in wi,j we obtain:

Case 3. If s
end,G2,i,j

c2 ≥ Lj , then the vehicle leaves wi,j through its upper edge and will
not enter wi+1,j ; indices of those vehicles in G2,i,j that satisfy this condition are

stored in subgroup G
(1)
2,i,j of G2,i,j ;

Case 4. If s
end,G2,i,j

c2 < Lj , then the vehicle leaves wi,j through its right-hand edge, and
enters wi+1,j through its left-hand edge; indices of those vehicles that satisfy this

condition are stored in subgroup G
(2)
2,i,j of G2,i,j ;

Therefore, G
(1)
1,i,j and G

(1)
2,i,j will form G1,i,j+1, and will not play any role in the sampling

window wi+1,j , while G
(2)
1,i,j and G

(2)
2,i,j will form G2,i+1,j .

From Figure 6(b), the total travel time of a vehicle c1 ∈ {1, . . . , N1,i,j} from G1,i,j
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within one cycle time is obtained as:

∆tG1,i,j

c1 = Tj + ti−1,j − θc1,i,j (12)

The total traveled distance by any vehicle c1 during one sampling cycle equals:

dG1,i,j

c1 = vG1,i,j

c1 ·∆tG1,i,j

c1 , (13)

and for the relative position of c1 at t = ti−1,j and at t = ti,j w.r.t. x = xj ,

sstart,G1,i,j

c1 = 0, (14)

send,G1,i,j

c1 = dG1,i,j

c1 (15)

The total travel time of a vehicle c2 ∈ {1, 2, . . . , N2,i,j} from G2,i,j during one sampling
cycle is:

∆tG2,i,j

c2 = Tj (16)

The total distance traveled by any vehicle c2 during one sampling cycle is computed by:

dG2,i,j

c2 = vG2,i,j

c2 ∆tG2,i,j

c2 (17)

in which

vG2,i,j

c2 = v
Gg,i−1,j

c′g
(18)

where c′g denotes the index of the given vehicle in wi−1,j , supposing that it belonged to

group Gg,i−1,j , g ∈ {1, 2} while in wi−1,j ; Hence the start and the end positions are1:

sstart,G2,i,j

c2 = s
end,Gg,i−1,j

c′g
, (19)

send,G2,i,j

c2 = dG2,i,j

c2 + sstart,G2,i,j

c2 (20)

The new procedure sequentially uses (12)-(20), and computes the generalized average
speed, the generalized flow, and the generalized density using the following equations:

ρi,j =
1

Ai,j

2
∑

g=1

∑

cg∈Gg,i,j

min

{

∆tGg,i,j

cg ,
Lj − sstart,Gg,i,j

cg

vGg,i,j

cg

}

, (21)

qi,j =
1

Ai,j

2
∑

g=1

∑

cg∈Gg,i,j

min
{

dGg,i,j

cg , Lj − sstart,Gg,i,j

cg

}

, (22)

v̄i,j =
ρi,j

qi,j
(23)

Algorithm 1 represents the sequential algorithm proposed for a single-lane road. The
total number of operations that the sequential algorithm involves can be determined as

1Note that for i = 1, the s
start,G2,i,j
c2 values are supposed to be known at the beginning as the initial conditions.
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follows; suppose that for a specific loop detector, within one sampling cycle, n vehicles
are observed in total. Then, from Algorithm 1, the total number of multiplications is
3(n+ 1) and the total number of summations is less than 3.5n, where the total number
of summations depends on the number of vehicles that are in either of groups 1 and 2
introduced in Section 3 of the paper. Note that 3.5n is the maximum possible number of
the summations and is reached for the case where there are the same number of vehicles
in groups 1 and 2.

4.2. Multi-lane roads

In the previous section, we considered a single-lane road (see Assumption 2 of Sec-
tion 4.1). Here we will relax this assumption by considering a multi-lane road and by
extending the sequential procedure to a multi-lane road case (in order to avoid mak-
ing the derived equations too complicated by involving a lane-changing model, here we
assume that there are no lane changes).
Suppose that the road has N lane lanes; we consider the sampling road section j that

is extended between two consecutive loop detectors Dj and Dj+1. Suppose that during
[ti−1,j , ti,j ],N1,i,j vehicles have entered the sampling road section (through allN lane lanes)
at time instants θ1,i,j , θ2,i,j , . . . , θN1,i,j ,i,j , where the values of θc1,i,j for c1 ∈ {1, . . . , N1,i,j}
are not necessarily distinct, i.e., it is possible to have two vehicles entering the sampling

road section j at the same time instant via different lanes. Define v
G1,i,j

c1,ℓ
as the speed of the

vehicle that enters the sampling road section j at time instant θc1,i,j , c1 ∈ {1, . . . , N1,i,j}
through lane ℓ, ℓ ∈ {1, . . . , N lane}.
Now we can represent each lane of the sampling road section in the time-space plane

by a sampling window wℓ
i,j , which indicates the sampling window corresponding to the

ℓth lane of the sampling road section j. Figure 7 illustrates such sampling windows. Note
that we consider the set Di,j as the set of distinct time instants in the time-space plane
for all sampling windows wℓ

i,j . Suppose that Di,j has Nd
1,i,j members (Nd

1,i,j ≤ N1,i,j).

Then v
G1,i,j

c1,ℓ
for c1 ∈ {1, . . . , N

d
1,i,j} will be substituted by either the observed speed on

lane ℓ at time instant θc1,i,j , or by zero if no vehicles have been observed (i.e., we consider
a virtual vehicle with zero speed in this case). This way we can summarize all the data
corresponding to the sampling road section in a matrix of dimension N lane ×Nd

1,i,j (see
also Figure 7):

VG1,i,j =



















v
G1,i,j

1,1 v
G1,i,j

2,1 v
G1,i,j

3,1 0 . . . 0 v
G1,i,j

Nd
1,i,j ,1

0 0 v
G1,i,j

3,2 v
G1,i,j

4,2 . . . 0 0
...

...
...

... . . .
...

...
...

...
...

... . . .
...

...

0 0 0 v
G1,i,j

4,N lane . . . v
G1,i,j

Nd
1,i,j−1,N lane 0



















(24)

The parameters θ1,i,j , θ2,i,j , . . . θNd
1,i,j ,i,j

are the time instants, at which each of the
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Figure 7. Time-space plots for a multi-lane road
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vehicles (real or virtual) is positioned at xj . We use an Nd
1,i,j ×Nd

1,i,j matrix defined as:

ΘG1,i,j =

















θ1,i,j 0 0 · · · 0
0 θ2,i,j 0 · · · 0
...

...
... · · ·

...
...

...
... · · ·

...
0 0 0 · · · θNd

1,i,j ,i,j

















(25)

We have:

∆t
G1,i,j

c1,ℓ
= (Tj + ti−1,j − θc1,i,j) · sign

(

v
G1,i,j

c1,ℓ

)

, (26)

d
G1,i,j

c1,ℓ
= v

G1,i,j

c1,ℓ
·∆t

G1,i,j

c1,ℓ
, (27)

s
start,G1,i,j

c1,ℓ
= 0, (28)

s
end,G1,i,j

c1,ℓ
= d

G1,i,j

c1,ℓ
(29)

where i ∈ {1, . . . , ncyc
j }, j ∈ {1, . . . , n

loop}, c1 ∈ {1, . . . , N
d
1,i,j}, and ℓ ∈ {1, . . . , N lane}.

Finally, we obtain the following equation for all vehicles in G1,i,j :

∆TG1,i,j = sign
(

VG1,i,j
)

·
(

(Tj + ti−1,j) · INd
1,i,j×Nd

1,i,j
−ΘG1,i,j

)

, (30)

DG1,i,j = VG1,i,j ·
(

(Tj + ti−1,j) · INd
1,i,j×Nd

1,i,j
−ΘG1,i,j

)

, (31)

Sstart,G1,i,j = 0, (32)

Send,G1,i,j = DG1,i,j (33)

where sign(·) operates element-wise on a matrix, and produces a matrix with the same
dimension as the input matrix, i.e.,

sign
(

[akl]N×N

)

= [sign (akl)]N×N

and ∆TG1,i,j , DG1,i,j , Sstart,G1,i,j , and Send,G1,i,j are matrices of dimension N lane ×Nd
1,i,j .

For the second group of vehicles (G2,i,j) that have entered the sampling road section
within previous cycles, and that are therefore located at the left-hand side of the sampling
windows, VG2,i,j will again be a matrix of the following form:

VG2,i,j =















v
G2,i,j

1,1 v
G2,i,j

2,1 v
G2,i,j

3,1 . . . v
G2,i,j

Nd
2,i,j ,1

v
G2,i,j

1,2 v
G2,i,j

2,2 v
G2,i,j

3,2 . . . v
G2,i,j

Nd
2,i,j ,2

...
...

...
... . . .

...
...

v
G2,i,j

1,N lane v
G2,i,j

2,N lane v
G2,i,j

3,N lane . . . v
G2,i,j

Nd
2,i,j ,N

lane















(34)

which is of dimension N lane × Nd
2,i,j , with Nd

2,i,j = max
{

N ℓ
2,i,j

}

where N ℓ
2,i,j shows the

number of vehicles in G2,i,j that are traveling on lane ℓ. For lanes with N ℓ
2,i,j < Nd

2,i,j ,
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the corresponding elements of VG2,i,j on columns N ℓ
2,i,j + 1 are set to zero. We obtain:

∆t
G2,i,j

c2,ℓ
= Tj · sign

(

v
G2,i,j

c2,ℓ

)

, (35)

d
G2,i,j

c2,ℓ
= v

G2,i,j

c2,ℓ
∆t

G2,i,j

c2,ℓ
, (36)

s
start,G2,i,j

c2,ℓ
= s

end,Gg,i−1,j

c′g,ℓ
, (37)

s
end,G2,i,j

c2,ℓ
= d

G2,i,j

c2,ℓ
+ s

start,G2,i,j

c2,ℓ
(38)

where g is the group to which vehicle c2 belonged in wi−1,j and c′g is the index of this
vehicle in Gg,i−1,j . Hence,

∆TG2,i,j = sign
(

VG2,i,j
)

Tj , (39)

DG2,i,j = TjV
G2,i,j , (40)

Sstart,G2,i,j = Send,Gg,i−1,j , (41)

Send,G2,i,j = DG2,i,j + Sstart,G2,i,j (42)

with ∆TG2,i,j , DG2,i,j , Sstart,G2,i,j , and Send,G2,i,j matrices of dimension N lane×Nd
2,i,j , and

Send,Gg,i−1,j a matrix, which has as its (c, ℓ)th element, s
end,Gg,i−1,j

c,ℓ corresponding to the

vehicle with speed v
G2,i,j

c,ℓ (where g is again the group to which this vehicle belonged in

wi−1,j).
In order to find the generalized density, flow, and average speed for each lane separately,

we can write:

ρℓi,j =
1

Ai,j

2
∑

g=1

Nd
g,i,j
∑

c=1

min

{

∆T
Gg,i,j

ℓ,c ,
Lj − S

start,Gg,i,j

ℓ,c

V
Gg,i,j

ℓ,c

}

, (43)

qℓi,j =
1

Ai,j

2
∑

g=1

Nd
g,i,j
∑

c=1

min
{

D
Gg,i,j

ℓ,c , Lj − S
start,Gg,i,j

ℓ,c

}

, (44)

v̄ℓi,j =
ρℓi,j

qℓi,j
(45)

and to find the generalized traffic variables for the lane altogether, we have:

ρi,j =
1

N laneAi,j

N lane

∑

ℓ=1

ρℓi,j , (46)

qi,j =
1

N laneAi,j

N lane

∑

ℓ=1

qℓi,j , (47)

v̄i,j =
ρi,j

qi,j
(48)

Algorithm 1 can easily be extended for the multi-lane road using the introduced matrices.
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Figure 8. Trajectory of a following vehicle with respect to the leading vehicle applying Newell’s car following
model

5. Approximate trajectories of vehicles based on Newell’s car following

model

In the previous sections, we have considered that each vehicle will move with a constant
speed in wi,j (see Assumption 3 of Section 4.1), i.e., for c1 ∈ {1, . . . , N1,i,j} and for
c2 ∈ {1, . . . , N2,i,j},

∀t ∈ [ti−1,j , ti,j ] ,
v
G1,i,j

c1 (t) = v
G1,i,j

c1 (θc1,i,j) ,

v
G2,i,j

c2 (t) = v
G2,i,j

c2 (ti−1,j)

However, this assumption could result in some issues, e.g., intersecting trajectories, which
is not realistic especially for a single-lane road. Moreover, with the assumption of constant
speeds between Dj and Dj+1, there might be a great difference between the estimated
time-mean speed of the vehicles at xj+1 and the reported value of the time-mean speed
at xj+1 by loop detector Dj+1 in the upcoming cycle.
Therefore, in this section we will relax the assumption of having a constant speed

for each vehicle that travels between two consecutive loop detectors using Newell’s car
following model (Newell 2002). In this model, the mathematical relationship between
trajectories of vehicle c (leader) and vehicle c+1 (follower) are given. Applying Newell’s
model, we can find trajectories with partly piecewise linear behaviors. It is assumed that
vehicle c+1 adapts its speed to the speed of the leading vehicle c in the time-space plane
after a delay (see Figure 8).
Newell proposes that trajectories of the leading and the following vehicles are sepa-

rated by a temporal distance of τc and a spatial distance of σc in the time-space plane;
mathematically speaking, for a leading and a following vehicle within window wi,j :

xc−1,i,j(t) = xc,i,j(t+ τc) + δc, t ∈ [ti−1,j , ti,j ] (49)

The parameters σc and τc might vary from driver to driver, considering different driving
behaviors2. Each driver chooses the spatial distance σc based on their feeling of the
safe distance from the front vehicle on the road; τc shows the delay time of a driver in
responding to any external stimuli. For the sake of simplicity, we consider the average

2Note that we have considered σc and τc to be constant for each driver w.r.t time and space; therefore, we use σc

and τc instead of σc,i,j and τc,i,j .
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values of σc and τc shown by σ̄ and τ̄ for all vehicles, i.e.,

∀c1 ∈ {1, . . . , N1,i,j} & ∀c2 ∈ {1, . . . , N2,i,j},
τ̄ =

∑2
g=1

(

1
Ng,i,j

∑Ng,i,j

c=1 τc

)

,

σ̄ =
∑2

g=1

(

1
Ng,i,j

∑Ng,i,j

c=1 σc

) (50)

Alternatively, we propose an estimation method for trajectories of the vehicles, apply-
ing Newell’s car following model to the sampling windows wi,j , for i ∈ {1, . . . , n

cyc
j } and

j ∈ {1, . . . , nloop} in the time-space plane. First, we should find the leading vehicle in

window wi,j ; the vehicle in G2,i,j that has the largest s
start,G2,i,j

c2 is the leader; note that
if G2,i,j = ∅, then the vehicle in G1,i,j that arrives first in wi,j , i.e., c1 = 1, will be the

leading vehicle in this window. We denote the leading vehicle by cleader. Then we consider
cfollower as the index for the following vehicle, which for G2,i,j 6= ∅ should satisfy

s
start,G2,i,j

cfollower = max
c2∈N2,i,j/{cleader}

{

sstart,G2,i,j

c2

}

, N2,i,j = {1, . . . , N2,i,j},

or should be the second arriving vehicle in wi,j if G2,i,j = ∅ (i.e., c1 = 2).
First, we define:

t
ent,G1,i,j

follower = θcfollower,i,j ,

t
ent,G2,i,j

follower = ti−1,j ,

t
ent,G1,i,j

leader = θcleader,i,j ,

t
ent,G2,i,j

leader = ti−1,j

(51)

and vinitleader as the initial speed of the leading vehicle that might be either v
G1,i,j

cleader

(

t
ent,G1,i,j

leader

)

or v
G2,i,j

cleader

(

t
ent,G2,i,j

leader

)

, and vinitfollower as the initial speed of the following vehicle that might

be either v
G1,i,j

cfollower

(

t
ent,G1,i,j

follower

)

or v
G2,i,j

cfollower

(

t
ent,G2,i,j

follower

)

. Now for a leading vehicle that belongs

to either G1,i,j or to G2,i,j in wi,j we obtain:

• if vinitleader = vfreei,j , where by vfreei,j we mean the free-flow speed of the vehicles3 on the
sampling road section j during [ti−1,j , ti,j ], then the leading vehicle keeps moving
forward with vfreei,j till it leaves wi,j ;

• if vinitleader 6= vfreei,j , then the vehicle accelerates with amax
cleader , i.e., the maximum possible

acceleration rate for this vehicle, to obtain vfreei,j ; then it keeps moving with vfreei,j till
it leaves wi,j .

For the following vehicle, three situations might be observed, i.e.,

situation 1. the leading and the following vehicles both belong to G1,i,j ,
situation 2. the leading and the following vehicles both belong to G2,i,j ,
situation 3. the leading vehicle belongs to G2,i,j , while the following vehicle belongs to

G1,i,j .

Consequently, we obtain:

• if vinitfollower = vfreei,j and vinitleader = vfreei,j , for situation 1, situation 2, and situa-

3We consider a constant value for vfreei,j throughout the sampling road section wi,j .
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tion 3 we assume that the following vehicle keeps moving forward with vfreei,j till it
leaves the window. However, if for situation 1 we observe:

θcfollower,i,j − θcleader,i,j < τ̄,

or if for situation 3 either of the following relationships hold:

θcfollower,i,j − ti−1,j < τ̄ or s
start,G2,G2,i,j

cleader < σ̄,

then the following vehicle will first decelerate and then accelerates such that it
adjusts the temporal and/or the spatial distances of its trajectory from the one of
the leader, to the values τ̄ and σ̄, respectively (see Figures 9(a) and 9(b)).
• if vinitfollower < vfreei,j and vinitleader = vfreei,j , then for situation 1, 2 and 3 the follower

will accelerate with the maximum acceleration rate, and after reaching vfreei,j it keeps

moving forward with vfreei,j till it leaves wi,j (see Figure 9(c). If the initial temporal
and spatial distances of the trajectory of the following vehicle in wi,j from the
initial point of the trajectory of the leading vehicle in wi,j are less than τ̄ and σ̄,
we assume that the following vehicle adjusts its acceleration such that it reaches
vfreei,j at a point where its trajectory is located at a temporal and spatial distance
of τ̄ and σ̄ from the trajectory of the leading vehicle.
• If vinitfollower < vfreei,j and vinitleader < vfreei,j , then the following vehicle will accelerate

with the maximum acceleration rate, and after reaching vfreei,j it keeps moving for-

ward with vfreei,j till it leaves wi,j . The following vehicle should make sure that it

reaches vfreei,j at a point which is located in a temporal and spatial distance of τ̄ and
σ̄ or more, from the point on the trajectory of the leading vehicle, at which the
leading vehicle reaches vfreei,j (see Figures 10(a) and 10(b)).

• If vinitfollower = vfreei,j and vinitleader < vfreei,j , then depending on the initial relative tem-
poral and spatial distances of the trajectories of the leading and following vehi-
cles, different behaviors might be observed for the following vehicle; Figures 11(a),
11(b), and 11(c) illustrate three possible situations, in which cleader ∈ G1,i,j and
cfollower ∈ G1,i,j , cleader ∈ G2,i,j and cfollower ∈ G1,i,j , and cleader ∈ G2,i,j and
cfollower ∈ G2,i,j . For either of these three possibilities, if the following vehicle is
located on the left-hand side of the dash-dotted curve shown in Figures 11(a)-
11(c), then the vehicle first decelerates and then accelerates such that its speed
reaches vfreei,j again at the instant its trajectory intersects the dash-dotted curve.

Otherwise, the following vehicle can freely keep moving forward with vfreei,j from
the beginning of the cycle. Mathematically speaking, these three conditions can be
formulated as follows:
(1) If cleader ∈ G1,i,j and cfollower ∈ G1,i,j (see Figure 11(a)),

θcfollower,i,j ≥ θcleader,i,j+θacc+τ̄ ⇒ the following vehicle keeps moving with vfreei,j ;

otherwise, the following vehicle will first decelerate.
(2) If cleader ∈ G2,i,j and cfollower ∈ G1,i,j (see Figure 11(b)),

θcfollower,i,j ≥ ti−1,j + θacc + τ̄ ⇒ the following vehicle keeps moving with vfreei,j ;

otherwise, the following vehicle will first decelerate.
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(3) If cleader ∈ G2,i,j and cfollower ∈ G2,i,j (see Figure 11(c)),

s
start,G2,i,j

cfollower ≥ vfreei,j (ti−1,j − θacc − τ̄) + s
start,G2,i,j

cleader + dacc − δ̄ ⇒

the following vehicle keeps moving with vfreei,j ; otherwise, the following vehicle
will first decelerate.

6. Results

In this section, we present the results of a case study that uses the real-life datasets of
NGSIM. These datasets are available on either of the following three websites:

(1) http://www.ngsim-community.org/,
(2) http://gateway.path.berkeley.edu/ngsimdocs/US-101/,
(3) http://gateway.path.berkeley.edu/ngsimdocs/I-80/,

and provide detailed information including the positions and the speeds of individual
vehicles. For our experiment in this paper, we have used the datasets that are available
on the third website. These datasets have been generated as part of the Next Generation
SIMulation (NGSIM) project by the Federal Highway Administration, from a segment of
the interstate freeway I-80 in San Francisco, California, US, on April 13, 2005. The data
has been collected via seven video cameras from 2.00 PM till 7.00 PM, and is available in
3 sets for the time periods between 4.00 PM and 4.15 PM, between 5.00 PM and 5.15 PM,
and between 5.15 PM and 5.30 PM. We indicate these three datasets by “dataset 1”,
“dataset 2”, and “dataset 3”, respectively.
From these datasets, we can extract the trajectories of the vehicles and compute

the real value of the generalized average speed. To assess the efficiency of the pro-
posed sequential algorithm, we use it to determine the generalized average speed of
the vehicles. Moreover, we implement the formulas given by Wardrop (1952) and by
Han et al. (2010), by Rakha and Zhang (2005), by Soriguera and Robusté (2011), and
by Jamshidnejad and De Schutter (2015) as a comparison, since these papers represent
the state-of-the-art for estimation of the classical and the generalized average speed of
the vehicles. The formulas proposed by Wardrop (1952) and by Rakha and Zhang (2005)
are the most well-known formulas in the literature for estimating the space-mean speed
of the vehicles a road. Han et al. (2010) and Soriguera and Robusté (2011) give formulas
for estimating the, respectively, spatial and temporal standard deviation of the speeds
of the observed vehicles. The spatial standard deviation can be used in the formula by
Wardrop (1952) to estimate the space-mean speed of the vehicles, while the temporal
standard deviation in combination with the formula by Rakha and Zhang (2005) gives
the estimated space-mean speed of the vehicles. Since all these formulas estimate the
space-mean speed, we can observe how in some cases the estimated value of the space-
mean speed is close to the real value of the generalized average speed, while in other
cases the estimated space-mean speed can deviate significantly from the real generalized
average speed. Additionally, we use the formula given by Jamshidnejad and De Schutter
(2015) as the only available formula that takes into account estimation of the generalized
average speed from point measurements. This formula has proven to be very accurate
compared with other formulas (see (Jamshidnejad and De Schutter 2015)), and hence, it
can provide a good comparison case for the proposed approach in this paper.
For this case study, we extracted those sections of the trajectory plots from the NGSIM

datasets, for which enough information was available, as the dataset gives the trajecto-
ries for some time intervals, and then there are gaps between these intervals where no

19



time

space

τ̄

σ̄

wi,j

vfreei,j
vfreei,j

Leader

Follower

A
c
c
e
le
r
a
ti
n
g

D
e
c
e
le
r
a
ti
n
g

F
r
e
e
-fl

o
w

A

(a) Trajectories of the leader and the follower both from G1,i,j

B

time

space

τ̄

σ̄

wi,j

vfreei,j

Leader

Follower

A
c
c
e
le
r
a
ti
n
g

D
e
c
e
le
r
a
ti
n
g

F
r
e
e
-fl

o
w

(b) Trajectories of the leader from G2,i,j and the follower from G1,i,j

B

time

space

τ̄

τ̄

σ̄

σ̄ wi,j

vfreei,j

Leader

Follower

A
c
c
e
le
r
a
ti
n
g

D
e
c
e
le
r
a
ti
n
g

F
r
e
e
-fl

o
w

(c) Trajectories of the leader and the follower with vinit
follower

< vfreei,j

Figure 9. Behavior of the leading and following vehicles in wi,j for vinit
leader

= vfreei,j

20



time

space

τ̄

σ̄
wi,j

vfreei,jLeader

Follower

A
c
c
e
le
r
a
ti
n
g

F
r
e
e
-fl

o
w

A

(a) Trajectories of the leader and the follower both from G1,i,j

time

space

τ̄

τ̄

σ̄

σ̄ wi,j

vfreei,j

Leader

Follower

A
c
c
e
le
r
a
ti
n
g

D
e
c
e
le
r
a
ti
n
g

F
r
e
e
-fl

o
w

A

(b) Trajectories of the leader and the follower both from G2,i,j

Figure 10. Behavior of the leading and following vehicles in wi,j for vinit
leader

< vfreei,j

trajectories are available. For each of the three datasets, we could extract four cases, i.e.,
4 different sampling road sections. Since the length of the time intervals, for which tra-
jectories were available are short, we decided to choose sampling windows of dimensions
Lj = 150 m and 200 m by Tj = 5 s. This way we could obtain five successive sampling
windows for each of the four selected cases that are illustrated in Figures 12(a)-15(a) for
dataset 1, Figures 16(a)-19(a) for dataset 2, and Figures 20(a)-23(a) for dataset 3.
As it was indicated before, we have considered 4 different sampling road sections for

each dataset. For dataset 1, the starting and end points of the first sampling road section
are located at xu1,1 = 50 m and xd1,1 = 250 m (see Figure 12(a)), with the upstream and

downstream loop detectors located at xu1,1 and xd1,1, respectively. The second sampling
road section (see Figure 13(a)) corresponds to the starting and end points xu1,2 = 400 m

and xd1,2 = 600 m, with the upstream and downstream loop detectors at xu1,2 and xd1,2. The

third sampling road section (see Figure 14(a)) starts at xu1,3 = 800 m and ends at xd1,3 =
1000 m, where the upstream loop detector is located at xu1,3 and the downstream loop

detector is located at xd1,3. Finally, the fourth sampling road section (see Figure 15(a)).

has the starting and end points at xu1,4 = 1000 m and xd1,4 = 1200 m, with the upstream

and downstream loop detectors located at xu1,4 and xd1,4 The time intervals considered for
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the first sampling road section is between t = 920 s and t = 945 s (see Figure 12(a)), for
the second sampling road section is between t = 955 s and t = 980 s (see Figure 13(a)), for
the third sampling road section is between t = 925 s and t = 950 s (see Figure 14(a)), and
for the fourth sampling road section is between t = 955 s and t = 980 s (see Figure 15(a)).
For dataset 3, the first sampling road section (see Figure 20(a)) corresponds to xu3,1 =

950 m and xd3,1 = 1150 m, and the time interval t = 1875 s and t = 1900 s. The
second sampling road section (see Figure 21(a)) corresponds to xu3,2 = 1300 m and

xd3,2 = 1450 m, and the time interval t = 2400 s and t = 2425 s. The third sampling road

section (see Figure 22(a)) corresponds to xu3,3 = 150 m and xd3,3 = 300 m, and the time
interval t = 1905 s and t = 1930 s. The fourth sampling road section (see Figure 23(a))
corresponds to xu3,4 = 1000 m and xd3,4 = 1150 m, and the time interval t = 2060 s and
t = 2085 s.
Figures 12(b)-15(b), 16(b)-19(b), and 20-23(b) illustrate the relative errors w.r.t. the

real value of the generalized average speed, which is computed by (2), i.e., the ratio of
the absolute difference between the generalized average speed and the computed average
speed via each of the formulas (by Rakha and Zhang (2005), by Wardrop (1952) and
Han et al. (2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté
(2011), and by the new sequential algorithm), and the generalized average speed for
datasets 1, 2, and 3, respectively. For the 12 cases shown in Figures 12-23, the errors
corresponding to the first windows are not shown; because the main aim of the assessment
is to investigate the efficiency of the new sequential algorithm, including its capability for
computing the initial conditions for the next sampling window and in using the computed
initial conditions for the current sampling window. However, for the first windows in
Figures 12(a)-23(a), the initial conditions are just given to the algorithm as an input
of the problem, and therefore are not estimated by the algorithm itself. Hence, the
first sampling windows in the four cases should not be considered for assessment of the
algorithm.
From Figure 12(b), we see that the proposed sequential algorithm shows the best

performance for the 2nd, 3rd, and 4th windows, while for the 5th window, the for-
mula proposed by Jamshidnejad and De Schutter (2015) performs better. This can be
explained by taking into account the main focus of each of these two approaches.
Jamshidnejad and De Schutter (2015) mainly focus on each sampling window from a
microscopic point-of-view, and make accurate computations for each sampling window
via partitioning it into smaller windows. The new sequential algorithm proposed in this
paper, however, focuses on the common edges of the sampling windows within the time
space plane, and those trajectories that intersect these edges. Therefore, it does not go
into a lot of details for each sampling window, but instead it considers the details re-
garding transition of vehicle trajectories from one sampling window to the neighboring
window. Consequently, if there are more trajectories that intersect the common edge of
two neighboring sampling windows, we expect the proposed algorithm to produce more
accurate results compared with other approaches. In Figure 12(b), by considering the
number of trajectories that intersect the left edges of the sampling windows w.r.t. the to-
tal number of trajectories observed in each of these windows, we see that for the 2nd, 3rd,
and 4th windows, this ratio is much larger (between 27%−50%) than for the 5th window
(6%). Therefore, we expect the effect of ignoring these trajectories in the computations to
be more significant for the 2nd, 3rd, and 4th windows, and that the sequential algorithm
shows a better performance. This expectation is well supported by the results illustrated
in Figure 12(b). Moreover, from Figure 12, we see that when the formula proposed by
Soriguera and Robusté (2011) is combined with the formula by Rakha and Zhang (2005),
it produces more accurate results for 3 out of 4 experiments (see the results corresponding
to the 3rd, 4th, and 5th windows.
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In Figure 13(b), the performance of the new sequential algorithm and the formula by
Jamshidnejad and De Schutter (2015) are very close, i.e., for some windows the new se-
quential algorithm shows the best performance, and for some other windows the formula
by Jamshidnejad and De Schutter (2015) works better. For this case we see that, on the
one hand, there are relatively large number of vehicles, for which the trajectory intersects
the right-hand edge of the sampling windows. On the other hand, there are some vehicles
that change their speed while traveling within the sampling windows (i.e., their trajec-
tories do not have a straight linear shape). Since the sequential algorithm covers the
first issue (intersecting trajectories) and the formula by Jamshidnejad and De Schutter
(2015) uses a convex combination of the lower and upper bounds of the generalized av-
erage speed (see Section 2.2), we can expect to see such a close performance for these
two approaches.
In Figure 14(b), for three out of the four sampling windows the best results correspond

to the new sequential algorithm. As we see from the curves of trajectories, the ratio of the
trajectories intersecting the left edge of each window and the total number of trajectories
in that window is relatively large (between 23% and 40%). Therefore, we could expect
the new sequential algorithm, which keeps track of the trajectories that intersect the left
edge of the sampling windows, to produce the best results. For Figure 15(b), in 3 out of
4 windows, the sequential algorithm shows a significantly better performance, while for
one window the formula by Jamshidnejad and De Schutter (2015) more accurate (note
that the performance of the sequential algorithm proposed in this paper is still very close
to the performance of the formula by Jamshidnejad and De Schutter (2015)).
Figures 16-19, which correspond to dataset 2, show that in 12 cases out of 16 cases (i.e.,

in 75% of the cases), the proposed sequential algorithm exhibits the best performance,
and for 3 out of 16 cases the formula by Jamshidnejad and De Schutter (2015) performs
better. From Figures 20-23, which correspond to dataset 3, in 13 cases out of 16 cases
(i.e., in 81.25% of the cases), the proposed sequential algorithm performs the best. Note
that compared with the results obtained for dataset 1, where the relative error of the
different formulas is always less than 6%, for datasets 2 and 3 this error may become
close to or even exceed 50% for some formulas (but it never happens for the proposed
sequential algorithm). In particular, in a few cases, for example for dataset 2, the 3rd

window of case 1 (see Figure 16(b)) and the 5th window of case 4 (see Figure 19(b)), and
for dataset 3, the 5th window of case 3 (see Figure 22(b) and the 3rd window of case 4
(see Figure 23(b)), for the formula proposed by Soriguera and Robusté (2011) combined
with the formula by Rakha and Zhang (2005) this error exceeds 50%. However, for the
illustration purposes we have shown it at the highest percentage used for the illustrations
(i.e., 50%). In all these cases, however, the relative error of the proposed sequential
algorithm almost never exceeds 10% (except for the 5th window of case 2 of dataset 3
(see Figure 21(b)), where the relative error of the proposed sequential algorithm reaches
almost 18%; note, however, that this is still the lowest percentage among all the formulas.
In general, considering Figures 12-23, we see that the new sequential algorithm shows

excellent performance in most cases compared to the other formulas. In most experiments,
either the new sequential procedure or the formula by Jamshidnejad and De Schutter
(2015) produce the most accurate results, while the other formulas are less accurate.
For situations in which the formula by Jamshidnejad and De Schutter (2015) is more
accurate, the difference between its result and the result of the sequential algorithm is
rather small (less than 5%). However, for the cases where the sequential algorithm is the
most accurate approach, the difference between the results produced by the algorithm
and by the formula by Jamshidnejad and De Schutter (2015) is larger, i.e., the error
difference could be more than 10% based on the results of the case study (e.g., see the
5th window of Figure 22(b)). The combination of the formulas given by Rakha and Zhang
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(2005) and by Soriguera and Robusté (2011) shows the best performance in 2 out of the
48 experiments (the proposed sequential algorithm in these cases ranks second, with the
difference of the errors of the combined formula by Rakha and Zhang (2005) and by
Soriguera and Robusté (2011), and the sequential algorithm less than 0.3%), and in 1
case out of 48 cases, both the proposed sequential algorithm and the combined formula
by Rakha and Zhang (2005) and Soriguera and Robusté (2011) perform best.

7. Conclusions and future work

In this paper, a new sequential algorithm has been proposed for finding an accurate
estimate of the generalized traffic fundamental variables (i.e., the generalized density,
flow, and average speed), taking into account the effect of those vehicles that remain
on the same sampling road section for more than one sampling cycle. The algorithm
has been developed for both single-lane and multi-lane roads. In addition, we have also
presented an approach that produces approximate trajectories of the vehicles in each
sampling window using Newell’s car-following model.
The results of the case study, which has used the real-life dataset NGSIM, show

the excellent performance of the new sequential algorithm compared with other
available formulas in the literature. In some situations, the microscopic formula by
Jamshidnejad and De Schutter (2015) performs better than the new sequential algo-
rithm. Consequently, we propose as a topic for future work to consider the possibility of
combining the microscopic formula given by Jamshidnejad and De Schutter (2015) with
the new sequential algorithm proposed in this paper. As a second topic for future work,
we suggest to combine the approach for finding approximate trajectories of vehicles based
on Newell’s car-following model proposed in this paper with a lane-changing model to
also take into account effects of lane change. Finally, we can consider situations where
measurements of the loop detectors are noisy and see how efficient the proposed method
is or what are the modifications we might need to make to improve the method for noisy
measurements.
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Algorithm 1 Computation of fundamental traffic variables on a single-lane road for the
jth loop detector, j ∈ {1, 2, . . . , nloop}

1: Input:















Lroad, T road, Lj , Tj

v
G1,i,j

c1 , θc1,i,j , ti−1,j ∀c1 ∈ {1, . . . , N1,i,j}, ∀i ∈ {1 . . . , n
cyc
j }, n

cyc
j =

⌊

T road

Tj

⌋

v
G2,0,j

c2 ∀c2 ∈ {1, . . . , N2,0,j}

2: Output: ρi,j , qi,j , v̄i,j

3: for i = 1 to n
cyc
j do

4: for c1 = 1 to N1,i,j do

5: compute ∆t
G1,i,j

c1 from (12),

6: compute d
G1,i,j

c1 from (13),

7: compute s
end,G1,i,j

c1 from (15),

8: use Case 1 and Case 2 to construct G
(1)
1,i,j and G

(2)
1,i,j ,

9: v
G2,i+1,j

c
′′

2

← v
G1,i,j

c1 where {c
′′

2 is the index of vehicle c1 in G2,i+1,j}

10: end for

11: for c2 = 1 to N2,i,j do

12: compute ∆t
G2,i,j

c2 from (16),

13: compute d
G2,i,j

c2 from (17),

14: compute s
end,G2,i,j

c2 from (20),

15: use Case 3 and C4 to construct G
(1)
2,i,j and G

(2)
2,i,j ,

16: v
G2,i+1,j

c
′′

2

← v
G2,i,j

c2 , where {c
′′

2 is the index of vehicle c2 in G2,i+1,j}

17: s
start,G2,i+1,j

c
′′

2

← s
end,G2,i,j

c2

18: end for

19: G2,i+1,j ← G
(2)
1,i,j

⋃

G
(2)
2,i,j

20: compute ρi,j from (21),
21: compute qi,j from (22),
22: compute v̄i,j from (23)

23: end for
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Figure 12. Dataset 1, first sampling road section: trajectories and relative errors w.r.t. the real value of the
generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and Han et al.

(2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new sequential
algorithm
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Figure 13. Dataset 1, second sampling road section: trajectories and relative errors w.r.t. the real value
of the generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and

Han et al. (2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new
sequential algorithm
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Figure 14. Dataset 1, third sampling road section: trajectories and relative errors w.r.t. the real value of the
generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and Han et al.
(2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new sequential

algorithm
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Figure 15. Dataset 1, fourth sampling road section: trajectories and relative errors w.r.t. the real value
of the generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and
Han et al. (2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new

sequential algorithm
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Figure 16. Dataset 2, first sampling road section: trajectories and relative errors w.r.t. the real value of the

generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and Han et al.
(2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new sequential
algorithm (note that for the 3rd window, the error of the formula by Soriguera and Robusté (2011) exceeds 50%,
but for the illustration purposes we have shown it at 50%)
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Figure 17. Dataset 2, second sampling road section: trajectories and relative errors w.r.t. the real value

of the generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and
Han et al. (2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new
sequential algorithm
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Figure 18. Dataset 2, third sampling road section: trajectories and relative errors w.r.t. the real value of the

generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and Han et al.
(2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new sequential
algorithm

34



930 935 940 945 950 955

Time (s)

100

150

200

250

300

350

400

450

500

S
p

a
c
e

 (
m

)

(a) Trajectories of the vehicles and the sampling windows

1 2 3 4 5

 Cycle index

0

10

20

30

40

50

 E
rr

o
r 

(%
)

Rakha and Zhang

Wardrop + Han

Jamshidnejad and De Schutter

Soriguera and Robuste

New sequential algorithm

(b) Relative errors in percentage

Figure 19. Dataset 2, fourth sampling road section: trajectories and relative errors w.r.t. the real value

of the generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and
Han et al. (2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new
sequential algorithm (note that for the 5th window, the error of the formula by Soriguera and Robusté (2011)
exceeds 50%, but for the illustration purposes we have shown it at 50%)
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Figure 20. Dataset 3, first sampling road section: trajectories and relative errors w.r.t. the real value of the

generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and Han et al.
(2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new sequential
algorithm
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Figure 21. Dataset 3, second sampling road section: trajectories and relative errors w.r.t. the real value

of the generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and
Han et al. (2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new
sequential algorithm
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Figure 22. Dataset 3, third sampling road section: trajectories and relative errors w.r.t. the real value of the
generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and Han et al.
(2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new sequential
algorithm
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Figure 23. Dataset 3, fourth sampling road section: trajectories and relative errors w.r.t. the real value

of the generalized average speed for the formulas given by Rakha and Zhang (2005), by Wardrop (1952) and
Han et al. (2010), by Jamshidnejad and De Schutter (2015), by Soriguera and Robusté (2011), and by the new
sequential algorithm
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