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A Big Data Analysis Approach for Rail Failure
Risk Assessment

Ali Jamshidi,1 Shahrzad Faghih-Roohi,2 Siamak Hajizadeh,1 Alfredo Núñez,1
⋆

Robert Babuska,2 Rolf Dollevoet,1 Zili Li,1 Bart De Schutter2

Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A
rail failure could result in not only a considerable impact on train delays and maintenance
costs, but also on safety of passengers. In this paper, the aim is to assess the risk of
a rail failure by analyzing a type of rail surface defects called squats that are detected
automatically among the huge amount of records from video cameras. We propose an
image processing approach for automatic detection of squats, especially severe types that
are prone to rail breaks. We measure the visual length of the squats and use them to model
the failure risk. For the assessment of the rail failure risk, we estimate the probability of
rail failure based on the growth of squats. Moreover, we perform severity and crack growth
analyses to consider the impact of rail traffic loads on defects in three different growth
scenarios. The failure risk estimations are provided for several samples of squats with
different crack growth lengths on a busy rail track of the Dutch railway network. The
results illustrate the practicality and efficiency of the proposed approach.

KEY WORDS: Big data analysis, Rail surface defects, Rail failure risk

1. INTRODUCTION

Among all transportation infrastructure, the
railway network is one of the most successful
transport systems for reducing transportation cost,
traffic congestion, and air pollution emission levels.
On the one hand, the increase in usage of the
railway network requires a systematic monitoring
plan to keep the trains running in a safe way as
well as with the least possible disruptions. (1) On the
other hand, a large amount of data is collected by
frequent measurements from the monitoring systems
of the infrastructure and the assets involved in the
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railway operations. This data should be controlled,
stored, and processed, such that it can be employed
to take all necessary actions to guarantee the rail
asset quality level desired by the infrastructure
manager. (2) The large amount of data should be
processed into actionable knowledge within a certain
time period. (3)

Risk is intuitively connected to decision making
under uncertainty. (4) Recent developments in big
data analytic for uncertainty management and
risk assessment of industrial systems have been
studied by Wu and Birge, (5) and Choi et al. (6)

Risk assessment of large-scale systems is of current
interest across many application domains such
as healthcare, (7) environmental safety, (8,9) trans-
portation, (10–13) business, (14) and product devel-
opment. (15) In particular for railway applications,
risk assessment is critical for the prediction of
infrastructure health condition within a given time
period. Continuous monitoring of railway systems
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can guarantee the availability of data that can be
used to assess the risk of infrastructure failures.
Also, the database constructed from continuous
monitoring of data will become larger and larger over
time. Thus, applying a big data analysis approach
is necessary in order to adequately monitor the
infrastructure condition. (16)

Among all the railway infrastructure systems
involved in the train operation, the rail track plays
an important role in the railway networks. In an
intensively used network, a considerable amount of
the maintenance has to be allocated for the track,
e.g., in the Dutch railway network, this amounts for
almost half of the annual maintenance budget. (17)

As a high percentage of failures occurring in the
railway infrastructure is directly related to the
rail, it is important to assess the failure risk of
rails. The rail risk assessment involves detecting
the rail defects that can potentially result in rail
break and derailment in extreme cases. (18–20) Rail
surface defects are caused by different factors such
as fatigue due to large number of trains passing
over rail components at especially welds, joints, and
switches. (21) Early detection of surface defects is
important to mitigate disastrous consequences of
rail breaks. There are different methods to diagnose
the condition of rail defects, including ultrasonic
measurements, (22) eddy current testing, (23) and
guided-wave based monitoring. (24) In general, these
methods are not able to detect defects in an early
stage of growth, i.e. not until the defects are severe.
In particular, detection of defects at the late stage
of growth imposes extra operation and maintenance
costs due to the fact that the only solution is to
replace the rail.

To address the limitations of the current mea-
surement methods, the use of video cameras installed
on trains has become popular. (25–27) The use of
video cameras avoids the error-prone, costly, and
time-consuming process of manual rail monitoring.
Moreover, the videos taken from side cameras
enable the infrastructure manager to capture the
real condition of other track components such
as fasteners, switches, and sleepers. Using video
cameras, one can simply monitor whether the visible
defects are at the early or late stage of growth.
This means that the infrastructure manager has the
opportunity to observe how the defect evolves over
time in order to take actions at the right moment and
to focus on the most urgent places for maintenance
operations. This can lead to a significant reduction in
the operation costs induced by the defects and it can

prevent potential risks of rail breaks, reducing the
risk of derailment. Due to the large amount and the
high resolution of the videos taken over the rail, an
automatic detection algorithm is required to process
the huge amount of images from those videos.

The main contribution of the paper is to assess
rail failure risk based on an integrated framework
that merges the information of two defect-related
variables: visual length and crack growth. There is no
similar approach in the literature for risk assessment
of rail failure that considers both variables. This
is due to the fact that in this case a big data
analysis problem has to be faced, as a result of
which usually railway maintenance managers look
at only one type of data and ignore the other
influencing factors. We propose a risk function
(equation 1) as a composition of three functions:
the probability function, the crack growth function,
and the partially inversed severity function. To
evaluate these functions, we apply several techniques,
including a deep convolutional neural network for
image processing and defect detection, an N-step
ahead prediction model for defect severity and crack
growth analysis, and a Bayesian inference model for
failure probability estimation.

To implement our proposed framework, a partic-
ular type of surface defect in railway networks called
squat is considered in the case study. Furthermore,
we give a proposed classification of the squats in
terms of the visual length. Thus, squats are classified
according to different severities. These classes can be
used later for condition-based maintenance where we
have different maintenance operations for different
stages of the growth (rail grinding for light squats
and replacement for severe squats). However, our
approach can be generalized and applied for similar
cases when there is a need to analyze a huge amount
of image data for assessment of failure probability
and risk function. For example, in a recent work by
Skakun, (28) satellite images have been employed to
assess flood hazard risk. Moreover, in the field of
health science, abnormality detection using image
processing has become very popular. (29) There are
many cases in the literature where image data is
used to deal with risk assessment problem. (28–32)

In all these cases, as long as the focus is to detect
abnormalities and failures among a big database of
images, the risk assessment approach proposed in
the current paper is applicable for merging attained
information from images.

This paper is organized as follows. In Section
2, the proposed failure risk assessment model is
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presented including the model framework. Section
3 addresses a real-life case study of the Dutch
railway network. Section 4 presents the results and
discussions. Finally, in Section 5, conclusions are
presented.

2. FAILURE RISK ASSESSMENT MODEL

2.1 The Proposed Framework

In this section, we propose a failure risk
framework for analyzing the rail surface defects. The
proposed framework is depicted in Fig. 1. Video
images, ultrasonic detection, (22) and eddy current
testing (23) can all be used to detect the defects that
can lead to rail break. In this paper, we rely on
both ultrasonic detection method and video images.
On the one hand, with ultrasonic measurement, we
derive a general characteristic of crack growth. One
the other hand, with video image, we analyze the
growth of the visual length of defects which are
detected among huge number of rail images. Then,
a sample of the visual length of the detected defects
is chosen for the assessment of failure risk model.
The approach can be employed for any type of rail
defects.

In this framework, a large amount of image data
is automatically processed by a deep convolutional
neural network to detect squats in Step 1 (see details
in §2.4). The visual lengths of defects are measured
from the defect detected from the video images, and
then used for defect severity analysis in Step 2 (see
details in §2.2).

 

Failure Risk 

Step 1 

Step 2 

Video 
camera 

Image processing  
(DCNN) 

Detection of rail defects 

Image data 

Step 3 

Crack data 

Crack growth analysis 

Crack growth 
function, FC 

Failure probability 
function, FProb 

Ultrasonic 
measurements 

Visual length 
measurement 

Severity analysis, 
FS  

Fig. 1. Flowchart of the proposed methodology

In Step 3, a crack growth analysis is performed
to estimate the crack growth as a function of Million
Gross Tons (MGT) by using the data from ultrasonic
measurements (see details in §2.3). In addition, the
probability of rail failure as a function of crack
growth is estimated using the crack growth data.

Finally, we propose to assess the risk of rail
failure with the composition of the probability
function, the crack growth function and the partially
inversed of severity function:

Risk ∝ FProb (FC (FS,inv. (V1, V2))) (1)

where V1 and V2 are two consecutive measurements
of visual length for a defect, detected by analysis of
image data, and FS,inv. relates V1 and V2 to MGT.
Function FC relates the estimate of MGT to crack
growth, and function FProb estimates the probability
of failure based on the estimate of crack growth.
Thus, the risk is approximated relying on the failure
probability achieved in equation (1). It means that
the failure probability represents the risk of failure
within a given MGT.

2.2 Severity Analysis

This section aims to model the visual length of
defects based on the Million Gross Tons (MGT).
MGT is a measurement unit to show the total weight
of freight and passenger trains that pass over a given
track in a given time horizon. Thus, the MGT can
directly influence the growth of defects in the sense
that an increase in the MGT accelerates the defect
evolution process and the tracks with a lower train
occupation are expected to have a lower degradation
rate than the busy tracks.

The defects are automatically detected using
the image processing method described in §2.4. We
measure the visual lengths of the detected defects to
use in severity analysis. We consider visual length
as an indicator of a defect severity. Analysis of rail
image data shows that the visual length of defects
can grow with different rates as the MGT increases.

To capture the dynamics of the growth, we keep
track of the growth for each individual squat to
determine the increase of the visual length in each
MGT step. A generic function is used to model
the growth. The function can be applied relying
on different methods where two consecutive data
measurements are available. We present the benefits
of using an N-step ahead prediction model for the
prediction of squat’s growth in our recent studies.
For details, see Jamshidi et al. (33,34)
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Thus, considering index as an MGT increment
counter, we use a N-step ahead prediction model
to describe the growth of visual length at different
growth scenarios h = h1, h2, . . . , hH :

V̂ h
i (m+ 1) = Fh

S

(
V̂ h
i (m),Mh(m)

)
V̂ h
i (0) = V h

i (0)
m = 0, 1, ..., N − 1

(2)

where V̂ h
i (m) is the estimate of the visual length for

each individual squat i at step m assuming scenario
h, Mh(m) is the total amount of MGT in step
m, Fh

S (.) is the one-step ahead prediction function,
and V h

i (0) is the visual length measurement at the
current step.

By partially inversion of Fh
S (.), we get F

h
S,inv. as a

function of the visual length in two consecutive MGT
steps. In case of scarce data for the total amount of
MGT in each step, an approximation can be made
for the prediction model (2):

V̂ h
i (m+ 1) = Fh

S,approx.

(
V̂ h
i (m)

)
(3)

A fixed increment of the MGT is selected to keep
track the growth of the visual length. Then, we apply
function Fh

S,approx. in an N-step ahead fashion to

reconstruct Fh
S . This yields to formulate the relation

between visual length and MGT at step m. Once Fh
S

is formulated, we can partially inverse it to get Fh
S,inv.

as follows:

MGTh(m) = Fh
S,inv.

(
V̂ h
i (m+ 1), V̂ h

i (m)
)

(4)

2.3 Crack Growth Analysis

2.3.1 Crack Growth With MGT

The crack growth of defects is an important
factor in rail breaks. Independent of the defect
severity, the growth of the crack length depends on
the traffic load (MGT). The idea in this paper is to
analyze the data measured by ultrasonic detection
technique and to present a function for estimation of
the crack growth over the MGT: (33,34)

∆L̂h
i (m) = Fh

C

(
M̂h(m)

)
,m = 0, 1, ..., N − 1 (5)

where ∆L̂h
i (m) is the estimate of the crack growth

length for defect i at MGT step m assuming scenario
h and Fh

C(.) is the crack growth function. We will use
a similar approach as described in §2.2 to assess the
crack growth function.

2.3.2 Failure Probability

Regarding the crack growth data, assume the
crack growth length is ∆L, containing total I
measurements (∆L1,∆L2, ...,∆LI).Then the fail-
ure event can be defined as:

I⋃
i=1

{∆Li > di} (6)

where di is the critical level for the ith measurement.
This formula implies that a failure occurs if the crack
growth length exceeds the critical level. Logistic
function is appropriate for these data since the
variable is binomial meaning that the system fails
if the measurement value satisfies (6), otherwise
no failure. (35) Therefore, a logistic function is
considered for the likelihood of rail failure probability
f (∆L|(a, b)) with parameters a (intercept) and b
(slope).

Recently, the Bayesian inference model has been
employed extensively to assess model uncertainty
and robustness for stochastic data behaviors. (36–38)

Using a Bayesian inference model, variations of the
model parameters can be considered as a step-wise
degradation process. According to Bayes theorem,
if prior knowledge about the parameter θ = (a, b)
is represented by its probability density distribution
π0 (θ), and if the statistical observations of crack
growth length have likelihood f (∆L|θ), then rail
failure probability can be expressed as posterior
distribution π:

π (θ|∆L) =
f (∆L|θ)π0 (θ)

f (θ)
∝ f (∆L|θ)π0 (θ) (7)

Typically, Monte Carlo methods are used in
Bayesian data analysis to derive the posterior
distribution. (39,40) The aim of using a Monte Carlo
method is to generate random samples from the
posterior distribution in order to use them when it
is impossible to analytically compute the posterior
distribution. Among all the Monte Carlo methods,
slice sampling is easier to implement as only the
posterior needs to be specified. (41,42) The slice
sampling algorithm selects samples uniformly from
the region under the density function. Therefore, in
this paper, a slice sampling algorithm is selected to
capture the failure probability function.

2.4 Analysis of Rail Image Data

We consider a railway health monitoring situa-
tion where a huge amount of video data is regularly
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collected. Subsequently, the video data needs to be
analyzed in order to detect defects with a potential
risk of rail break. The data is collected by a set
of high frame rate cameras that are mounted on
a measurement train. The video recordings cover
the entire length of the measured distance on the
rail track. The mounted cameras capture the rails
from several angles to look at different components.
The top view camera is aimed at the rail surface
defects, with each frame covering a length of 15 cm
of the track along the longitudinal direction. The
recordings are preprocessed into video compilations
where consecutive frames have a few millimeters of
overlap and the effects of variations in the train speed
are removed. Recordings made from (bi)monthly
measurements of roughly 6500 kilometers of rail
amount to producing thousands of Gigabytes. Every
4 Gigabytes of data covers 16 kilometers of rail track.
As a result, for recording videos of the whole Dutch
rail network, almost 10 terabytes of data is required
per year.

To be able to automatically extract defect
information from the data, we train and apply a
deep convolutional neural network (DCNN) (43) to
detect and classify the defects. Recently, application
of DCNN has become very popular in the domain
of big data due to the increases in the size of
available training sets and algorithmic advances such
as the use of piece-wise linear units and dropout
training. (44–46) By passing through a number of
convolutional layers, the images are fed to the DCNN
to train a set of shared neuron weights, referred to
as filters. Convolution filters detect distinguishing
features and form what is called a feature map.
We use Rectified Linear Unit (ReLU) (47) activation
functions after the convolution steps, and max-
pooling layers to efficiently down-sample the outcome
of each layer. Moreover, to prevent overfitting to
the training data, we use dropout layers before
each convolutional layer. Overfitting occurs when
a classifier is fitted too closely to the sample data
set that is unable to accurately describe the entire
population, resulting into a high error over the test
data. The dropout layer is known to prevent this
by randomly disabling some activation from the
previous layer. (48) The convolutional and pooling
layer are finally attached to a sequence of three fully-
connected layers to get class predictions.

The DCNN is trained by iterative feed forward
of the training examples through the network and
by calculating the error with respect to the desired
outcome. The error and its gradient are then

evaluated at the last layer of the network and back-
propagated through all the layers to adjust all the
weights. Repeating this process until decreasing the
error to a certain limit is called the gradient descent
algorithm. (47) We use a widely applied variation of
the algorithm where on each iteration, the error and
gradients are calculated using a randomly selected
set of training examples usually called a mini-
batch. (47)

3. CASE STUDY

In this section, a track from the Dutch railway
network is considered to illustrate the capabilities of
the proposed methodology. Track availability can be
affected by rail surface defects. Among all types of
rail surface defects, like rail corrugation, head checks,
shatter cracking, vertical splits, head horizontal splits
and wheel burns, squats play an important role in
having a significant impact on the health condition
of the track. Therefore, our main focus is on detecting
the squats in this case study.

We select a sample from these data that contains
recordings over a track in the North of The
Netherlands from Zwolle to Groningen corresponding
to approximately 300,000 captured frames. Two
successive measurements of the same location along
the track are matched together using the available
time and geographic data. In total 4220 samples are
labeled and used for training and testing of the neural
network model. Out of the total set of samples, 3170
are normal rail samples and roughly 1000 are squats.

The proposed DCNN architecture for analyz-
ing this amount of image frames is presented in
Fig. 2. Initially the input images are down-scaled to
375×275 pixels and converted into gray-scale. The
sequence of three fully-connected layers translates
the extracted high-level features from the previous
layers, into 3 classes representing the normal rail,
trivial defects (seed squats), and squats.

Trivial defects appear in the form of spots or
small damages to the rail head, while squats are
usually defects that are fully grown indentations and
deformations of the rail surface. The normal class
includes all other components such as plain rails,
switches, welds, possible non-defect contaminations,
etc.

To train the network, a set of manually labeled
examples is collected from several locations along the
measured track and is compiled into a training set for
each one of the 3 classes. The network is trained once
and then is used for multiple time predictions. The
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Fig. 2. Architecture of the proposed DCNN model

training time is 40 hours per 1500 examples. Once
the network is trained, it is used to find squats in the
large pool of previously unseen samples (prediction).
These samples are collected from other monitoring
sessions. Unlike the training time, the prediction time
is insignificant (30 seconds per 15000 examples). The
prediction result then has an average binary accuracy
of 96.9% (squat vs. normal) when training on 80%
of the labeled dataset and testing on the remaining
20%. By putting a high acceptance threshold on the
network output response, we opt to detect the correct
cases of squats, trivial defects and the normal cases.

Hence, after training and testing, we use the
model to predict the severity of squats from the large
amounts of available unlabeled data, from which we
choose 109 detected squats for manual measurement
of visual lengths in the track Zwolle-Groningen.
Then, the samples are used in the next step where the
growth of visual lengths is considered as described in
§2.2. Here, squats with a visual length below 15 mm
are considered as light squats, in which cracks have
not appeared yet (surface initiation is assumed, and
we cannot see beneath the surface from the image).
Squats with visual length ranging from 15 to 30
mm are considered to be at the medium stage of
growth. The medium squats evolve to severe squats
when the network of cracks spreads further. Fig. 3
shows reference photos of squats ranging from light
to severe together with crack evolution. 

 

 

 

 
  

 
 
 
 

Light Squat 

 
 
 
 

Medium Squat 

 
 
 
 

Severe Squat 

Fig. 3. A sample of squats in different classes of severity,

the red arrows show the evolution of the crack when it gets
severe.

Light squats will evolve into medium or severe
squats after repeated train passes. Once the squat is
severe, the squat will evolve into a defect with surface
initiated cracks growing along the depth beneath the
rail surface. (49)

Following the detection of squats by image
processing, we apply the approach as described in
§2.2 for this particular case to construct severity
function. From real data of visual length, we estimate
Fh
S,approx. from equation (3).

Fig. 4 shows the relation between two consecu-
tive measurements of visual length for a fixed value of
MGT-step (m = 1). Relying on the physical under-
standing of how a squat grows, we fit a polynomial
regression model of degree 3, using the least-absolute
residual method, (50) to represent the stochasticity
of the growth. The residual plot together with the
R-square value of 0.9778 determines how well the
polynomial model fits the data. We consider the fit
model as an average growth scenario, and the 3-sigma
control limits as slow and fast scenarios.

We use the estimated function of Fig. 4 for 8-
step ahead prediction, and consider a fixed MGT

 

Fig. 4. Estimation of the visual length of the squats for m =
1, and based on real data
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(a) 

 
                                                             (b)                                                                     (c)      

 Fig. 5. Growth of squat visual length over MGT for the following model-based growth scenarios: (a) average, (b) fast, (c) slow,

the dotted line depicts an upper bound of squat visual length.

increment of 3.01 in each step. As a result, a model-
based prediction function for the visual lengths
versus MGT is depicted in Fig. 5, considering the
three scenarios of average (a), fast (b), and slow (c).

The dotted line shows the upper bound of the
estimation for visual length, i.e. it is very rare to
observe a squat with a length over the upper bound
in reality.

Assuming V h
i (m) = 0, the visual length at MGT

step m + 1 at the fast scenario, reaches the upper
bound with a MGT (MGTh1

= 15.06) lower than at
the average scenario (MGTh3

= 21.83) and at the
slow scenario (MGTh2= 51.32). It means that the
degradation process in the fast scenario is more
accelerated than in the average and slow scenarios
as the traffic load on rail increases.

As described in §2.3.1, we estimate the crack
growth function, Fh

C (·) by relying on ultrasonic mea-
surement data. The model-based relation between
the crack growth length and MGT is shown in Fig. 6.
In addition, three different scenarios are considered
to capture the crack growth dynamics, including the
average scenario, the slow scenario, and the fast
scenario. As seen in the figure, at the fast scenario,
crack propagation of the squat at a given MGT

is significantly faster than squats that are at the
average and slow scenario. For example, at MGT
= 10.36, it is estimated that the crack length of a
squat grows 1 mm at the slow scenario, 2 mm at the
average scenario, and 8 mm at the fast scenario. We
can assess the risk of rail failure considering any of
the different scenarios of crack growth length.

In the failure probability model, we consider that
a rail is prone to fail when a squat reaches a crack
length of 9 mm. The crack length of each squat is

 

Fig. 6. A model-based relation between crack growth length
and MGT
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Fig. 8. Posterior distributions of regression parameter b

measured to see how it has grown over MGT, and
how many cracks have reached a length of 9 mm or
even more.

We use normal priors for the regression pa-
rameters (a, b). Relying on the data for the crack
growth length, the parameters are estimated by a
slice sampling algorithm considering 1000 samples.
Respectively, Fig. 7 and Fig. 8 shows how the mean
of the parameter a and b varies over the samples
and converges to a constant value. As seen in the
figures, the posterior means of parameters converge
to a stationary status after the first 50 samples.

4. RESULTS AND DISCUSSION

For a detected squat with measured visual
lengths in one MGT step, we estimate the risk of
rail failure as follows: From the model in Fig. 5,
we estimate the MGT for the visual lengths in two
consecutive measurements. Then, from the model
in Fig. 6, we find the crack growth length for the
estimated MGT. Finally, we estimate the failure
probability from the crack growth length in Fig. 9.

The failure probability plot represents how
probable a squat fails in the next MGT step when
the crack growth length is given. As an example, if
the crack length of a squat increases 6 mm for MGT
=7.04, the probability that the squat could lead to a
rail break is roughly 0.82.

In Fig. 10, a sample of 5 squats is visualized, and
the estimates of failure probability from the given
visual lengths are presented.

For instance, the squat with V1 = 42 mm and
V2 = 57 mm will cause a rail break with a probability

 

Fig. 9. Probability of rail failure based on the growth of

crack length

of 28.9% in next MGT step, if no maintenance action
is operated. However, no serious failure threatens the
squat at the early stage and the failure probability
is then almost 10% (see the squat with 16 mm in
visual length). In Table I , more samples of squats
are presented.

The table includes 64 samples of squats with

 

 

 

 

 

 

Groningen 

Zwolle 

8 mm 14 mm 

16 mm 28 mm 

42 mm 57 mm 

37 mm 51 mm 

54 mm 

 = 0.064 

= 0.102 

= 0.289 

= 0.282 

= 0.242 
41 mm 

Fig. 10. A sample of failure risk estimates for 5 squats over
the track
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Table I . Failure risk estimation for a sample of squats, detected on the track Zwelle-Groningen

Squat V1 V2 ∆L FProb Squat V1 V2 ∆L FProb

1 3.65 4.56 0.02 0.055 33 16.41 21.87 0.48 0.079

2 8.20 9.11 0.03 0.056 34 10.03 14.58 0.42 0.076

3 3.65 5.47 0.05 0.057 35 6.38 19.14 0.46 0.078
4 7.29 9.11 0.05 0.057 36 8.20 21.87 0.48 0.079

5 3.65 6.38 0.08 0.058 37 17.32 23.70 0.55 0.083

6 5.47 8.20 0.09 0.059 38 7.29 20.96 0.49 0.080
7 6.38 9.11 0.09 0.059 39 6.38 20.96 0.53 0.082

8 4.56 8.20 0.10 0.060 40 9.11 27.34 0.63 0.087
9 5.47 9.11 0.11 0.060 41 11.85 18.23 0.60 0.085

10 2.73 7.29 0.13 0.061 42 8.20 30.08 0.78 0.095

11 3.65 8.20 0.13 0.061 43 14.58 23.70 0.77 0.094
12 4.56 9.11 0.14 0.061 44 28.25 31.90 0.95 0.104

13 2.73 8.20 0.15 0.062 45 11.85 21.87 0.90 0.101

14 5.47 10.03 0.15 0.062 46 10.03 20.96 0.94 0.103
15 6.38 11.85 0.17 0.063 47 14.58 30.08 1.17 0.122

16 7.29 12.76 0.19 0.064 48 30.99 37.37 1.55 0.156

17 3.65 10.03 0.19 0.064 49 13.67 30.99 1.31 0.134
18 4.56 10.94 0.19 0.064 50 12.76 29.16 1.29 0.133

19 5.47 11.85 0.21 0.065 51 10.03 24.61 1.20 0.125

20 8.20 14.58 0.21 0.065 52 20.05 24.61 1.48 0.151
21 10.03 12.76 0.25 0.067 53 13.67 34.63 1.48 0.151

22 2.73 10.94 0.24 0.067 54 24.61 31.90 1.91 0.190
23 6.38 13.67 0.24 0.067 55 31.90 41.92 2.23 0.231

24 7.29 14.58 0.24 0.067 56 10.94 40.10 1.95 0.194

25 6.38 14.58 0.27 0.068 57 22.78 30.99 2.35 0.248
26 3.65 12.76 0.27 0.068 58 24.61 34.63 2.56 0.277

27 9.11 18.23 0.29 0.069 59 27.34 38.28 2.62 0.286

28 2.73 13.67 0.34 0.072 60 39.19 55.59 3.05 0.348
29 6.38 16.41 0.34 0.072 61 23.70 35.54 3.09 0.355

30 8.20 19.14 0.38 0.074 62 33.72 52.86 3.69 0.461

31 17.32 22.78 0.46 0.078 63 28.25 46.48 3.87 0.493
32 8.20 20.96 0.44 0.077 64 30.99 51.04 4.10 0.532

their measurements of visual length for two MGT
steps. As expected, the squat at the severe stage will
be prone to a rail break if no operation is carried out
on the rail within a given MGT step. For example,
there is a 53% chance of failure for the 64th squat
in which the crack growth length is 4.10 mm within
the given MGT step. The estimated risk values for
the squats at the late stage indicate the need for
immediate rail replacements. For the squats at early
stage, a grinding operation is suggested to postpone
rail failure by treating the squats.

5. CONCLUSIONS

In this paper, we present a methodology for the
risk assessment of rail failure for a type of rail surface
defects called squats. A big data analysis approach
is used to automatically detect squats from rail
images. The visual lengths of squats are measured
in order to use them in the severity analysis model,
which captures the growth of visual length over MGT

increments. In addition, due to the influence of crack
growth on estimation of the failure risk, a crack
growth analysis based on MGT has been performed.
At the end, a Bayesian model is employed to estimate
the failure probability. By relying on the estimated
failure risk, the infrastructure manager is able to take
actions at the right time and the right place in order
to prevent unexpected consequences induced by rail
breaks. While this paper is focused on the analysis
of squats, the results can also be applicable for the
analysis of other type of rail defects.
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