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On Optimization of Stochastic Max-Min-Plus-Scaling Systems
– An Approximation Approach

Samira S. Farahani ⋆, Ton van den Boom, Bart De Schutter

Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

A large class of discrete-event and hybrid systems can be described by a max-min-plus-scaling (MMPS) model, i.e., a model in which
the main operations are maximization, minimization, addition, and scalar multiplication. Accordingly, optimization of MMPS systems
appears in different problems defined for discrete-event and hybrid systems. For a stochastic MMPS system, this optimization problem is
computationally highly demanding as often numerical integration has to be used to compute the objective function. The aim of this paper
is to decrease such computational complexity by applying an approximation method that is based on the moments of a random variable
and that can be computed analytically.

Key words: Discrete event systems; optimization; max-min-plus-scaling systems; stochastic disturbance; moments.

1 Introduction
Stochastic max-min-plus-scaling (MMPS) systems construct
a special class of stochastic discrete-event and hybrid sys-
tems, in which processing times and/or transportation times
are stochastic quantities; in practice stochastic fluctuations
of these times can, e.g., be caused by machine failure or de-
preciation [23]. The system dynamics of an MMPS system
are defined by MMPS expressions, i.e., expressions con-
structed using the operations maximization, minimization,
addition, and multiplication by a scalar. In [22] it was shown
that the class of MMPS systems encompasses other classes
of discrete-event systems such as max-plus linear systems.
Furthermore, it has been shown in [15, 17, 24] that MMPS
systems are equivalent to a particular class of hybrid sys-
tems, namely continuous piecewise affine (PWA) systems.

In optimization problems for stochastic MMPS or contin-
uous PWA systems, the objective function is often defined
as the expected value of an MMPS or a continuous PWA
function. Since, in general, there are no analytic expressions
for such an expected value, the computation of the objective
function in principle involves numerical integration, which
is computationally complex and very time consuming. The
aim of this paper is to develop an approximation method
to compute the expected value of a stochastic MMPS or
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continuous PWA function with focus on reducing the com-
putational complexity and the computation time. This ap-
proximation method is an extension of the method presented
in [13], which is inspired by the relation between different
types of vector norms, namely the p-norm and the ∞-norm
and which in [13] has been only applied to max-plus linear
systems with normally distributed disturbances. In [11], the
method proposed in [13] has been applied in the context of
model predictive control for stochastic MMPS systems and
in [12], the approximation method has been extended to a
more general class of distributions and an upper bound for
the error of this method has been introduced.

The main contributions of the current paper are as follows: 1)
proposing a solution for the optimization problem of stochas-
tic MMPS systems using an approximation method that is
based on moment-generating functions and is applicable to
any distribution with finite moments; 2) discussing the error
of the proposed approximation method and presenting finite
upper bounds for the error caused by this approximation
method. In the discussion of the general optimization prob-
lem of stochastic MMPS systems, we introduce two main
applications of such systems, namely, the filtering problem
and the reference tracking problem. To solve the optimiza-
tion problem, we use the approximation method proposed
in [12], which provides an upper bound for the expected
value of a stochastic MMPS function and which can be used
as a replacement of the objective function in the optimiza-
tion problem. In the error discussion, besides presenting an
upper bound, we show how different parameters in the ap-
proximation function may influence the error bounds.

Preprint submitted to Automatica



2 Max-Min-Plus-Scaling Systems
A large class of discrete-event and hybrid systems can be de-
scribed by a max-min-plus-scaling (MMPS) model 1 . These
models are described using MMPS functions.
Definition 1 ( [8]) A function g : Rn → R is a scalar-
valued MMPS function of the variables x1, . . . , xn if there
exist an index i ∈ {1, . . . , n} and scalars α, β ∈ R such
that

g(x) =xi|α|max(gk(x), gl(x))|min(gk(x), gl(x))|
gk(x) + gl(x)|βgk(x),

where | stands for “or” and gk and gl are scalar-valued
MMPS functions .

Accordingly, for a vector-valued MMPS function g, each
component of g is an MMPS function of the above form.

A state space representation of a stochastic MMPS system,
in which noise and modeling errors are present, can be de-
scribed as

x(k) = Mx(x(k − 1), u(k), ω(k)) (1)
y(k) = My(x(k), u(k), ω(k)). (2)

where Mx, My are MMPS functions, x(k) ∈ Rn is the
system state, u(k) ∈ Rm is the system input, and y(k) ∈ Rs

is the system output at time or event step k. We present
both noise and modeling errors in a single framework using
a vector ω(k), which is a vector of independent random
variables with a given probability distribution.

The class of MMPS systems is equivalent to a particular
class of hybrid systems, namely the class of continuous PWA
systems (see [4,7,18,20] for more details on PWA systems).

Proposition 2 ( [15, 24]) Any MMPS function can be writ-
ten as a continuous PWA function and vice versa.

Moreover, any MMPS function can be written in a canonical
form, as expressed in the following proposition.

Proposition 3 ( [9]) Any scalar-valued MMPS function g
can be rewritten into the min-max canonical form g(x) =
mini=1,...,K maxj∈ni(α

T
ijx + βij) or into the max-min

canonical form g(x) = maxi=1,...,L minj∈mi
(γT

ijx + δij)
for some integers K,L, non-empty subsets ni and mi of the
index sets {1, 2, . . . ,K} and {1, 2 . . . , L} respectively, real
numbers βij , δij , and vectors αij , γij .

Furthermore, the following proposition from [11, Corollary
5] shows that an MMPS function can be written as a differ-
ence of two convex functions.

Proposition 4 The function g(x)=maxi=1,...,L minj=1,...,mi

lij(x) where lij(x) = γT
ijx + ξij is an affine function in x,

can be written as g(x) = s(x) − r(x) where s(·) and r(·)
are both convex functions defined as follows

1 Note that generalized Lindley recursion models [6,30] are spe-
cial case of MMPS systems.

r(x)=−
L∑

i=1

min
j=1,...,mi

lij(x)=

L∑
i=1

max
j=1,...,mi

(−lij(x)) (3)

s(x) = r(x) + max
i=1,...,L

min
j=1,...,mi

lij(x)

= max
l=1,...,L

max
(j1,...,ji−1,ji+1,...,jL)∈C(m1,...,mi−1,mi+1,...,mL)

L∑
i′=1
i′ ̸=i

(−li′ji′ (x)). (4)

The last equality is obtained using the distributive prop-
erty of addition w.r.t. maximization in which for some inte-
gers L,m1, . . . ,mL, the set C(m1, . . . ,mL) is defined as
C(m1, . . . ,mL) = {(q1, . . . , qL)|qk ∈ {1, 2, . . . ,mk}, k =
1, . . . , L}.

3 Optimization of stochastic MMPS systems
We consider minimization of a stochastic MMPS or con-
tinuous PWA function with a random vector ω that has a
given probability density function. The class of minimiza-
tion problems under consideration 2 can be formulated as

min
u∈Rn

Eω[F (u, ω)]

s.t. G(u) ≤ 0
(5)

where Eω[·] is the expected value operator with respect to
ω, F is a scalar MMPS function of u and ω, and G is a con-
vex function of u specifying the input constraints. In order
to solve the optimization problem (5), we need to determine
the expected value of an MMPS function. One possible ap-
proach is numerical integration using the available meth-
ods.However, numerical integration is in general both cum-
bersome and time-consuming, and it becomes even more
complicated as the probability density function ofω becomes
more complex. Therefore, it is desired to find an alternative
approach that is more efficient than numerical integration.

First, we apply Proposition 4 to rewrite the objective function
J̃(u)=Eω[F (u, ω)] as a difference of two convex functions:

J̃(u) = Eω[F (u, ω)] = Eω[s(u, ω)− r(u, ω)]

= Eω[s(u, ω)]− Eω[r(u, ω)] (6)

where s(·, ·) and r(·, ·) are defined as given in Proposition 4,
and where the last equality stems from the fact that E[·] is a
linear operator. Note that J̃(u) in (6) results in a non-convex
optimization problem. To solve the optimization problem
(5), it is only left to compute the expected values in (6). Note
that s(u, ω) and r(u, ω) both consist of a maximization of
set of affine terms. Therefore, our aim is to find an efficient
way to compute the following general expression:

E[ max
j=1,...,n

(ξj + γT
j ω)] (7)

2 This class consists of one-stage horizon and receding horizon
(model predictive control) optimization problems and the class of
control problems with static open-loop inputs.
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where ξj ∈ R, γj ∈ Rnω is a scaling factor, and ω ∈ Rnω

is a vector of independent random variables with a given
probability distribution. Note that by assumption ξj = αj +
βju, for αj ∈ R and βj ∈ Rm but that the dependence of
ξj on u is dropped in the rest of the paper for brevity. Next,
we present two popular cases in which the optimization of
stochastic MMPS functions appears.

3.1 Filtering Problem

The first problem is a filtering problem [21,29] for which we
consider a two-player setting. Assume, e.g., that player one
tries to reach his final destination during the discrete time
span {1, . . . , T } and does not want his final location x(T ) to
be detected by player 2. There exists a control action w that
navigates player 1 towards the destination, and a cloaking
action v by him that perturbs the measurements of player 2
and he tends to minimize the costs for taking these actions.
Player 2 wants to determine an estimate x̂T of x(T ) as
accurately as possible using the obtained measurements of
location of player 1 at each time step k for k = 1, . . . , T .

Let x(k) ∈Rn denote the state, w(k) ∈Rn the control in-
put, y(k)∈Rl the measurement, v(k)∈Rl the measurement
noise, and g(·) the measurement model. Filtering begins at
time step k=0 and we assume that player 2 has an esti-
mate x̂0 of the initial state and the measurement time-history
{y(k)}Tk=1 while the initial state x(0) of player 1, the final
state x(T ), and w(·) are unknown. The estimated final state
x̂T is a decision variable for player 2. We define the state
space model of such system as follows

x(k) = f(x(k − 1)) + w(k) (8)
y(k) = g(x(k)) + v(k) (9)

where w and v are control variables and f and g are MMPS
functions. Player 1 tends to minimize the control and cloak-
ing cost and to maximize the difference between the final
state x(T ) and estimation of his final state x̂T by player
2, while player 2 tends to minimize this difference and has
to take the worst-case control and cloaking action of player
1 into account as well as the worst-case uncertainty about
the initial state x(0). Hence, the overall objective function
is defined as J(x̂T , x(T ), w̃, ṽ) = −γ

∑T
k=1

[
∥w(k)∥∞ +

∥v(k)∥∞
]
+ ∥x(T ) − x̂T ∥∞ for some γ > 0, where w̃ =

[wT (1), . . . , wT (T )]T (ṽ is defined similarly) and x(T ) can
be defined as a function of x(0) and w̃ in a recursive man-
ner using (8), while ṽ can be eliminated through (8)-(9). We
assume that w, v, and x(0) are stochastic variables with a
given probability distribution and that player 2 knows typ-
ical probability density functions of these variables based
on previous experience or a priori knowledge. Having this
assumption, the optimization problem can be defined as

min
x̂T ∈Rn

Ex(0),w̃[J(x̂T , x(0), w̃)]. (10)

This is a problem of the form (5) in which J(x̂T , x(0), w̃)
is an MMPS function of its arguments.

3.2 Reference Tracking Problem

The second problem is a reference tracking problem [22,28]
in which the aim is to minimize the difference between the
output of the system and the given reference signal. The
system is defined similarly as in (8)-(9), except that the state
function contains the input variable u(k). Here, w(k) and
v(k) are external noise vectors that perturb the system at
each time or event step k. Assume that the initial state x(0)
is known and that f and g are MMPS functions of their
arguments. The objective function is defined as J(ũ, w̃, ṽ)=∑T

k=1 λk∥y(k)−r(k)∥∞ where r(k) is the reference signal
and λk is a weighting factor at time or event step k, and
ũ = [uT (1), . . . , uT (T )]T . Denote the constraints on ũ by
G(ũ)≤ 0, where G(·) is assumed to be a convex function.
Note that x(k) has the following form:

x(k) = f(x(k−1), u(k)) + w(k)

= f(f(x(k−2), u(k−1)) + w(k−1), u(k)) + w(k)

. . .

= f(f(f(. . . (f(x(0), u(1))+w(1), u(2))+. . . ))

+ w(k−1), u(k)) + w(k)

= hk(u(1), . . . , u(k), w(1), . . . , w(k))

where hk(·) is an MMPS function of its arguments. Hence,

y(k) = g(x(k)) + v(k)

= g(hk(u(1), . . . , u(k), w(1), . . . , w(k))) + v(k)

= Hk(u(1), . . . , u(k), w(1), . . . , w(k), v(k)) (11)

where Hk(·) is also an MMPS function of its arguments.
Accordingly, the objective function can be rewritten as

J(ũ, w̃, ṽ) (12)

=

T∑
k=1

λk∥Hk(u(1),. . .,u(k),w(1),. . .,w(k),v(k)))−r(k)∥∞

which is an MMPS function of its arguments. Assuming that
both w(k) and v(k) are stochastic variables with a given
probability distribution, the optimization problem can be de-
fined as follows:

min
ũ∈Rn

Ew̃,ṽ[J(ũ, w̃, ṽ)]

s.t. G(ũ) ≤ 0
(13)

which is again a problem of the form (5).

4 Approximation Method
In this section, an approximation method based on the
higher-order moments of a random variable is proposed
to compute the expected value of the maximum of several
affine expressions. This approach is based on the method
presented in [13] for max-plus linear systems.

Let x = [x1, . . . , xn]
T be a vector of random variables in

Rn; accordingly, for p ≥ 1, ∥x∥p =
(
|x1|p+ · · ·+ |xn|p

)1/p
3



defines the p-norm and ∥x∥∞ = max(|x1|, . . . , |xn|) de-
fines the ∞-norm of x. These norms are related as fol-
lows [14]: ∥x∥∞ ≤ ∥x∥p ≤ m1/p∥x∥∞, and the proposed
approximation method is based on this relation between the
vector norms. The following proposition [13, Proposition 2]
shows how we can apply p-norms to find an upper bound
for E

[
max(x1, . . . , xn)

]
.

Proposition 5 Consider random variables xj for j =
1, . . . , n and let p > 1. Then

E
[
max(x1, . . . , xn)

] (i)

≤ E
[
max(|x1|, . . . , |xn|)

]
(ii)

≤ E
[
(|x1|p + · · ·+ |xn|p)1/p

]
(iii)

≤
( n∑

j=1

E
[
|xj |p

])1/p

. (14)

Remark 6 For a positive even integer p = 2q, q ∈ N\{0},
we have E[xp] = E[|x|p]. Hence, if p is an even integer, we
can use E[xp] in (14). So from now on, p is assumed to be
an even integer larger than or equal to 2.

Considering the above remark, we can approximate
E[max(x1, . . . , xn)] by the following upper bound:

U
(
E[max(x1, . . . , xn)]

)
=

( n∑
j=1

E
[
(xj)

p
])1/p

. (15)

Recall that our aim is to compute E[maxj=1,...,n(ξj+γT
j ω)]

in (7) efficiently. Let xj = ξj+γT
j ω, j = 1, . . . , n where ξj

is an affine expression in u and the elements of the stochas-
tic vector ω, i.e., ω1, . . . , ωnω , are independent random vari-
ables, as mentioned before. Hence, in (15), we need to obtain
the p-th moment of each random variable xj , j = 1, . . . , n,
which is in fact a shifted, weighted sum of independent ran-
dom variables ω1, . . . , ωnω

. To this end, we use the follow-
ing property of the moment generating function [26],

My(t) = E[ety] = E[ety1 ]× · · · × E[etym ] (16)

where y =
∑m

i=1 yi such that y1, . . . , ym are independent
random variables. Now, by adopting (14) and applying (16)
to calculate the p-th moment of y, which is the p-th derivative
of the moment generating function of y at t = 0, an upper
bound for (7) can be obtained as follows.

Theorem 7 For xj = ξj + γT
j ω, j = 1, . . . , n in which the

elements of the vector ω are independent random variables,
an upper bound for E[max(x1, . . . , xn)] can be obtained as
E[ max

j=1,...,n
(ξj + γT

j ω)] ≤ (17)( n∑
j=1

∑
k0+k1+···+knω=p
k0,k1,...,knω∈N

p!

k0! k1! · · · knω
!
ξk0
j

nω∏
t=1

γkt
j,tE

[
ωkt
t

])1/p

.

Proof: The proof is straightforward by using the multino-
mial theorem [16, Section 2.3], and by considering the fact
that the elements of the stochastic vector ω, i.e., ω1, . . . , ωnω

are independent and for independent random variables
Z1, . . . , Znω , we have E[

∏nω

t=1 Zt] =
∏nω

t=1 E[Zt]. □

Consequently, we can rewrite (15) as follows

U
(
E[ max

j=1,...,n
(ξj + γT

j ω)]
)
= (18)( n∑

j=1

∑
k0+k1+···+knω=p
k0,k1,...,knω∈N

p!

k0! k1! · · · knω !
ξk0
j

nω∏
t=1

γkt
j,tE

[
ωkt
t

])1/p

where E[(ξj)k0 ] = ξk0
j since ξj does not depend on the

stochastic vector ω and hence is not a random variable. In the
approximation function (18), we have to compute the kt-th
moment of each random variable ωt, t = 0, . . . , nω . In gen-
eral, moments of a random variable can be finite or infinite.
Hence, to be able to usefully apply U

(
E[maxj=1,...,n(ξj +

γT
j ω)]

)
as an approximation of E[maxj=1,...,n(ξj + γT

j ω)],
we need to consider random variables with finite moments
for which a closed-form expression exists, such as variables
with a uniform distribution, a normal distribution, a Beta
distribution, etc. [19,25]. Note that if moments do not have a
closed-form expression, one has to obtain them using numer-
ical integration and hence, the approximation method will
not be time-efficient anymore. Next, we present a theorem
for the case that the independent elements of the stochas-
tic vector w are normally distributed. This theorem allows
a faster computation compared to the case using the upper
bound in Theorem 7, since we will have less terms in the
summation (cf. (19) and (17) for comparison).

Theorem 8 Let xj = ξj + γT
j ω, j = 1, . . . , n in which

ω is a stochastic vector and its elements ωt are inde-
pendent and normally distributed random variables with
mean µ̃t and standard deviation σ̃t, t = 1, . . . , nω , i.e.,
ωt ∼ N (µ̃t, σ̃t). For an even integer p, an upper bound for
E[max(x1, . . . , xn)] can be obtained as

E[max(x1, . . . , xn)] ≤
( n∑

j=1

σp
j i

−pHp(iµj/σj)
)1/p

(19)

where µj and σj are the mean and standard deviation of
xj , j = 1, . . . , n, respectively, and

Hp(x) = p!

p/2∑
l=0

(−1)lxp−2l

2ll!(p− 2l)!
(20)

is the p-th Hermite polynomial [1, equations (26.2.51) and
(22.3.11)] with p/2 ∈ N \ {0} since p is an even integer.

Proof: For the case of a normally distributed stochastic vec-
tor ω, the random variable xj = ξj + γT

j ω is also normally
distributed with appropriately defined mean µj and variance

4



σ2
j , using the property of the normal distribution that propa-

gates through linear transformation [10]. Hence, using the p-
th Hermite polynomial, we can immediately compute the p-
th moment in (15), defined as E

[
xp
j

]
= σp

j i
−pHp(iµj/σj),

which is a real number since p is an even integer. □

Remark 9 Theorem 8 is actually valid for all distributions
that are either preserved under the summation, such as the
Poisson and the Gamma distributions, or the distribution
of the sum is known, such as the Irvin-Hall distribution,
which is the sum of n i.i.d. uniformly distributed random
variables [25].
Recall that in the optimization problem (5), we minimize
Eω[F (u, ω)], which actually leads to the minimization of
E[s(u, ω)] and the maximization of E[r(u, ω)] in (6). Hence,
we need to have an upper bound for E[s(u, ω)] and a lower
bound for E[r(u, ω)]. Let us consider again the general func-
tion E[maxj=1,...,n(ξj + γT

j ω)] in (7). An upper bound for
(7) can be obtained easily by using (18) or equivalently (19),
depending on the distribution of ω. To compute a lower
bound for (7), we can apply Jensen’s inequality for convex
functions since max(·) is a convex function. Hence,

max(E[x1], . . . ,E[xn]) ≤ E
[
max(x1, . . . , xn)

]
.

Therefore, a lower bound for E[maxj=1,...,n(ξj+γT
j ω)] can

be defined as follows

L
(
E[ max

j=1,...,n
(ξj + γT

j ω)]
)
= max

j=1,...,n
(E[ξj + γT

j ω]). (21)

Consequently, instead of minimizing the objective function
J̃(u) in (6), we will minimize its upper bound J̃up(u) =

U
(
E[s(u, ω)]

)
− L

(
E[r(u, ω)]

)
.

5 On the Error of the Approximation Method
In this section, we show that J̃up(u) − J̃(u) is bounded
from above. This means that the errors caused by ap-
proximating E[s(u, ω)] =E[max(x1, . . . , xn)] by its upper
bound U

(
E[s(u, ω)]]

)
=

(∑n
j=1 E[(xj)

p]
)1/p

(cf. (15))

and E[r(u, ω)] = E[
∑M

i=1 max(x1, . . . , xmi)] by its lower

bound L
(
E[r(u, ω)]

)
=

∑M
i=1 max(E[x1], . . . , E[xmi

])

(cf. (21)) are bounded from above.

First the error of approximating E[s(u, ω)] by its upper
bound will be discussed. Note that E[max(x1, . . . , xn)] is
generally bounded from below and above by

L
(
E[max(x1, . . . , xn)]

)
≤ E[max(x1, . . . , xn)]

≤ U
(
E[max(x1, . . . , xn)]

)
. (22)

Hence, the error of approximating E[max(x1, . . . , xn)] by
its upper bound is always bounded by

0≤U
(
E[max(x1, . . . , xn)]

)
−E[max(x1, . . . , xn)] (23)

≤U
(
E[max(x1, . . . , xn)]

)
−L

(
E[max(x1, . . . , xn)]

)

and, since by assumption, xj , j = 1, . . . , n have finite mo-
ments, this upper bound (cf. (15) and (21)) is finite.

Now, consider the error of approximating E[r(u, ω)] by its
lower bound. Due to linearity of E[·], we may assume, with-
out loss of generality, that M = 1. By Jensen’s inequality
for convex functions we have
max(E[x1], . . . ,E[xm]) ≤ E[max(x1, . . . , xm)] ⇒
0 ≤ E[max(x1, . . . , xm)]−max(E[x1], . . . ,E[xm]) (24)

and we want to show that the right-hand side of (24) is
bounded from above. Note that max(E[x1], . . . ,E[xm]) is
finite since we assume that the random variables xr =
ξr + γT

r ω, r = 1, . . . ,m have finite moments. To obtain
an upper bound for (24), we show that E[max(x1, . . . , xm)]
is bounded from above. Let x1, . . . , xm be random vari-
ables that are not necessarily independent or identically dis-
tributed and let x(m) = max(x1, . . . , xm). Denote the mean
and variance of each xr by E[xr] = µr and σ2(xr) = σ2

r
for r = 1, . . . ,m. An upper bound for E[x(m)] can be then
defined as follows [2]

E[x(m)]≤
∑m

r=1 µr

m
+

√√√√m− 1

m

m∑
r=1

[
σ2
r+

(
µr−

∑m
k=1 µk

m

)2]
Hence, for a general case with M ≥ 1, we have the following
upper bound for

∑M
i=1 E[x(m)]:

M∑
i=1

(∑mi

r=1 µr

mi
+

√√√√mi − 1

mi

mi∑
r=1

[
σ2
r+

(
µr−

∑mi

k=1 µk

mi

)2])

Moreover, two other upper bounds for E[x(mi)] are given
in [5]. Therefore, we can choose the smallest upper bound
among these three, denote it by U

(∑M
i=1 E[x(mi)]

)
. Hence,

an upper bound for (24) with M ≥ 1, can be written as

E[
M∑
i=1

max(x1, . . . , xmi)]−
M∑
i=1

max(E[x1], . . . ,E[xmi ])

≤ U
(
E[x(m)]

)
−

M∑
i=1

max(E[x1], . . . ,E[xmi
]) (25)

Hence, we have shown that the error of approximating J̃ by
J̃up, i.e., J̃up(u)−J̃(u), is bounded from above by (23)+(25).

5.1 Alternative upper bound for the approximation method

Since the proposed approximation method is also valid for
distributions with a bounded domain, here we discuss this
case separately to propose an alternative upper bound for
the error caused by applying the upper bound approximation
function (15). To this end, we consider the three inequalities
in (14) and their corresponding error. For random variables
xj , j = 1, . . . , n with a bounded domain Xj , Inequality (i)
turns into an equality if all xj are nonnegative. Hence, we
introduce a constant L = minj=1,...,n(minXj , 0) and then
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replace each xj by yj = xj − L, j = 1, . . . , n and add L
to the right-hand side of all inequalities in (14); in this way,
the error due to (i) is zero. The error due to (ii) approaches
zero if p → ∞, since by definition ∥x∥∞ = limp→∞ ∥x∥p.
However, a large p affects the error due to (iii), which is
the error of Jensen’s inequality, differently and we discuss
it here in more detail.

For a differentiable, concave function f defined on an inter-
val [a, b], the absolute error of Jensen’s inequality has the
following upper bound [27]:

0≤f(E[x])− E[f(x)] (26)
≤ max

θ∈[0,1]
[f(θa+(1−θ)b)−θf(a)−(1−θ)f(b)]=: ēabs(a,b)

and it has been shown in [27] that there exists a unique
θ0 ∈ (0, 1) for which ēabs(a, b) is maximal. In our case,
the concave function f is given by f(x) = x1/p and we
have f ′(x) = 1

px
1
p−1. Since we assume that p is a positive

even integer larger than or equal to 2, the argument x has
to be larger than or equal to zero, which is the case since
x =

∑n
j=1 x

p
j . Let us first consider the case where x is

strictly positive and hence, a, b > 0. The case where x = 0
will be considered later on (see Propositions 10 and 11). By
substituting f in (26) and by determining the optimal value
of θ, the following expression for ēabs(a, b) is obtained:

ēabs(a, b) =
( a− b

p(a
1
p − b

1
p )

) 1
p−1

(27)

−
(

1

a− b

[
(a

1
p − b

1
p )

(
a− b

p(a
1
p − b

1
p )

) p
p−1

− a
1
p b+ ab

1
p

])
Hence, we derive the following proposition based on the
above formula. Since the proof of this proposition is straight-
forward, we skip it here.

Proposition 10 Considering our assumptions that a, b > 0
and p ≥ 2 is an even integer, we obtain the following result:

lim
a→0+

ēabs(a, b) = b
1
p

((1
p

) 1
p−1 −

(1
p

) p
p−1

)
.

As we have assumed that yj = xj −L = ξj + γT
j ω−L has

a probability distribution with a finite domain, a and b can
be easily obtained. Indeed, assume that each independent
element of the stochastic vector ω, i.e., ωt, t = 1, . . . , nω ,
belongs to the interval [ct, c̄t] where ct, c̄t ∈ R and without
loss of generality, we assume that ct < c̄t for all t. Since
γjt can be positive or negative, we have min(γjtct, γjtc̄t) ≤
γjtωt ≤ max(γjtct, γjtc̄t). Hence, we can show that each
yj , j = 1, . . . , n, also belongs to the interval [aj , bj ] where
0 ≤ aj < bj are defined as follows: since xj = ξj +γT

j ω =

ξj +
∑nω

t=1 γjtωt, we have

ξj+

nω∑
t=1

min(γjtct, γjtc̄t)︸ ︷︷ ︸
āj

≤xj≤ξj+

nω∑
t=1

max(γjtct, γjtc̄t)︸ ︷︷ ︸
b̄j

Let L = minj āj and define aj = āj − L and bj = b̄j − L.
Therefore, aj ≤ yj ≤ bj . Note that by this choice of L,
0 ≤ yj ,∀j = 1, . . . , n, so 0 ≤ aj < bj and apj < bpj . Hence,

apj ≤ ypj ≤ bpj ⇒
n∑

j=1

apj︸ ︷︷ ︸
a

≤
n∑

j=1

ypj︸ ︷︷ ︸
x

≤
n∑

j=1

bpj︸ ︷︷ ︸
b

(28)

with a < b. Recall that the error caused by inequality (ii) in
(14) approaches 0 as p → ∞, which suggests that p should
be selected very large. However, we need to investigate the
effect of having a large p on ēabs(a, b), since both a and b
depend on p in (28). To this end, let α = maxj=1,...,n aj
and β = maxj=1,...,n bj . Denote the number of aj values
that are equal to α by A and the number of bj values that
are equal to β by B. Hence, β > α since b > a. Now, for
a large p, we rewrite a and b as a ≈ Aαp and b ≈ Bβp.
Using this notation, we have the following proposition.
Proposition 11 Assuming that a ≈ Aαp, b ≈ Bβp for a
large positive even integer p with A,B positive integers and
0 ≤ α < β, we have limp→∞ ēabs(α, β) = β.

The proof has been skipped as it is straightforward. This
proposition shows that if p → ∞, the absolute error con-
verges to β, which indicates that for a large p, the error
may become too large depending on the value of β. Conse-
quently, there is a trade-off between having a small error in
inequality (iii) by choosing a relatively small p and having
a small error in inequality (ii) by choosing a very large p.
So, the value of p has to be tuned accordingly.

6 Worked Example
In this example, we will illustrate that our approximation
method works efficiently when it is applied to a reference
tracking problem. As a specific case, we study control of
the temperature of a room (see [22]) and we consider the
model predictive control (MPC) optimization problem of an
MMPS system. For more details on MPC for (stochastic)
MMPS systems, the interested reader is referred to [11] and
the references therein. The following continuous discrete-
time PWA system is considered in [22]:

x(k + 1) =

{
1/2x(k) + u(k) + ω1(k) + 1 if x(k) < 0

u(k) + ω1(k) + 1 if x(k) ≥ 0

y(k) = x(k) + ω2(k).

where x, y, and u denote the state (room temperature), mea-
surement, and heat input, respectively, and ω1 and ω2 denote
the disturbance. We also have the following input constraints
for all k: u(k) ≥ 0 and −4 ≤ ∆u(k) = u(k+1)−u(k) ≤ 4.
In [22], it is assumed that ω1 and ω2 belong to a bounded
polyhedral set. However, to illustrate our approach, here we
assume that the error components have a standard normal
distribution, i.e., ω1(k), ω2(k) ∼ N (0, 1). The equivalent
MMPS representation of the above PWA system is

x(k+1)=min(
1

2
x(k)+u(k)+ω1(k)+1, u(k)+ω1(k)+1)

y(k) = x(k) + ω2(k).
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For the MPC setting (cf. [22]), the prediction horizon is
Np = 2 and the control horizon is Nc = 2 accordingly,
ỹ(k) = [y(k+1), y(k+2)]T , r̃(k) = [r(k+1), r(k+2)]T ,
and ũ(k) = [u(k), u(k + 1)]T . Let the uncertainty vec-
tor be ω(k) = [ω1(k), ω2(k + 1)]T . Therefore, ω̃(k) =
[ωT (k), ωT (k+1)]T . The objective function is defined as
J̃(k)=E

[
∥ỹ(k)−r̃(k)∥∞+λ∥ũ(k)∥1

]
, which is the expected

value of an MMPS function. Here, we have the expected
value due to the stochastic setting while in [22] the worst-
case optimization problem was solved due to considering
a bounded disturbance. We compute the closed-loop MPC
control signal by minimizing the upper bound of J̃(k)
over the simulation period [1, 20], with λ = 0.01, x(0) =
−6, u(−1) = 0, and p = 26 in the approximation method
(cf. (19)). The reference signal is given as {r(k)}20k=1 =
{−5,−5,−5,−5,−3,−3, 1, 3, 3, 8, 8, 8, 8, 10, 10, 7, 7, 7, 4,
3}. Figure 1 shows the results of the simulation in which
we compare our proposed approach (cf. Section 4) with
the “Exact solution” obtained by using numerical integra-
tion and with robust MPC (RMPC) in which the random
variables have a truncated normal distribution using 3σ, 5σ,
and 7σ bounds, respectively. The simulations are done in
MATLAB R2016b on a 2.6 GHz Intel Core i5 processor and
the optimizations are solved using fmincon with the SQP
solver.

Fig. 1. Results of the stochastic and robust MPC-MMPS opti-
mization problem. ‘o’-line: exact solution; ‘+’-line: approximation
approach; solid line without marker (first plot): reference signal;
dotted line: robust MPC with 3σ bounded error; dash-dotted line:
robust MPC with5σ bounded error; dashed line: robust MPC with
7σ bounded error.

Since we have a stochastic system, we have repeated the
simulations for each approach 100 times with different noise
realizations and then report the mean and variance of the
obtained trajectories. The top plot in Figure 1 shows the
reference signal and the mean of the output trajectories of
the system using the “Exact solution”, using the approxi-
mation approach, and using the robust MPC approach with

different error bounds; the second plot presents the mean of
the tracking error using the mentioned approaches; the third
plot shows the mean of the optimal input trajectories using
the different mentioned approaches; the last plot illustrates
the mean of ∆u(k) for each approach and the fact that the
input constraint is satisfied, i.e., −4≤∆u(k)≤4. The maxi-
mum values for the variance of the output trajectories are as
follows: “Exact solution”: 2.5283, approximation approach:
2.4992, RMPC with 3σ: 5.2118, RMPC with 5σ: 4.9976,
and RMPC with 7σ: 5.9361. The maximum values for the
variance of the optimal input trajectories are: “Exact solu-
tion”: 0.0742, approximation approach: 0.0687, RMPC with
3σ: 5.8396, RMPC with 5σ: 7.0336, and RMPC with 7σ:
6.7088. These values show that the variances in robust MPC
are much larger compared to stochastic MPC, which results
in more deviation in the obtained trajectories.

Fig. 2. The error J̃up(u)−J̃(u) and its upper bound, i.e., sum of
(23) and (25), for different values of p, applying (19).

As shown in Figure 1, the results of the approximation ap-
proach are very close to the ones from the “Exact solution”.
Moreover, the overall performance of robust MPC is worse
than that of stochastic MPC; although the mean of the output
trajectories in robust MPC in the first 4 time steps is closer
to the reference signal, this changes in the next steps in fa-
vor of the stochastic approach using both the approximation
method and the exact method. Furthermore, the third plot
confirms the conservativeness of the robust MPC method
as that approach results in much larger inputs, which re-
sults in more energy used (in terms of heat) compared to the
stochastic approaches.

Furthermore, in the error analysis in Section 5, we have
shown that the error of approximating J̃ by J̃up, i.e., J̃up(u)−
J̃(u), is bounded from above. Figure 2 shows this error
and the obtained upper bound, which is the sum of the two
upper bounds in (23) and (25), having different values for p
in the approximation method (cf. (19)). As can be seen in
this figure, p = 26 gives mostly a smaller error compared
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to p = 16 and p = 36. This is due to Jensen’s inequality
used in obtaining the approximation function (cf. (14)), and
hence, a trade-off has to be made in the choice of the p, as
explained in Section 5.1. For more detail on the effect of p
on the performance of the controller, the reader is referred
to [13].

7 Conclusions
This paper has discussed an optimization problem of
stochastic max-min-plus-scaling (MMPS) systems in which
the objective function is defined as an expected value of
stochastic MMPS functions. As the available numerical
approaches for computing this expected value are both com-
plex and time consuming, we have proposed an approxima-
tion method in which the objective function is replaced by
its upper bound. We have shown that for distributions with
closed-form moments, this upper bound has a closed-form
expression and hence, can be computed analytically. This
way, we have avoided the cumbersome numerical or ana-
lytic integrations needed for the calculation of the expected
value. We have also shown that the error resulting from
approximating the original objective function by its upper
bound is bounded from above. In our ongoing and future re-
search, we will investigate approaches to decrease the error
of this approximation method by, e.g. considering truncated
distributions or finding an appropriate L for distributions
with an unbounded domain. Moreover, it is interesting to
compare the proposed approximation method with more
conservative approaches such as the one presented in [3].
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