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AbstractIn this paper we introduce an iterative distributed Jacobi algorithm for solving convex opti-
mization problems, which is motivated by distributed model predictive control (MPC) for linear time-
invariant systems. Starting from a given feasible initial guess, the algorithm iteratively improves the
value of the cost function with guaranteed feasible solutions at every iteration step, and is thus suitable
for MPC applications in which hard constraints are important. The proposed iterative approach involves
solving local optimization problems consisting of only few subsystems, depending on the flexible choice
of decomposition and the sparsity structure of the couplings. This makes our approach more applicable
to situations where the number of subsystems is large, the coupling is sparse, and local communication
is available. We also provide a method for checking a posteriori centralized optimality of the converging
solution, using comparison between Lagrange multipliers of the local problems. Furthermore, a theoret-
ical result on convergence to optimality for a particular distributed setting is also provided.

Keywords: distributed optimization, Jacobi algorithm, distributed model predictive control, cooperative
optimization algorithm

1. INTRODUCTION

Distributed model predictive control (DMPC) is an approach to
bring MPC into applications with large-scale systems, for ex-
ample in multi-agent infrastructure networks or process control.
Since its first major introduction in Jia and Krogh (2001); Cam-
ponogara et al. (2002) there has been active research in this field
that has lead to a variety of branches that differ in the structure
of communications, cooperative or non-cooperative approach,
level of coordination, amount of information exchange, iterative
or non-iterative approach, etc. (Scattolini, 2009).

We focus on a direction of DMPC that is based on the use
of convex optimization and primal decomposition of the cen-
tralized problem, which has a nice property to always yield a
feasible solution, even when the iteration does not have enough
time to converge. Since the capability to guarantee feasibility is
critical to MPC, this property is very important. Initial work in
this direction were carried out by Venkat in Venkat et al. (2005,
2008), when he proposed a DMPC scheme for dynamically
coupled systems called feasible-cooperation MPC (FC-MPC),
based on a parallel synchronous approach for cooperative op-
timization. This scheme works only for input-coupled linear
time-invariant subsystem dynamics without state constraints,
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and is not applicable to problems with constraints between sub-
systems. Later, Stewart’s work (Stewart et al., 2010, 2011) ex-
tended Venkat’s scheme for the case of state constraints. How-
ever this scheme can only achieve suboptimality when coupled
constraints are present. These results were also documented in
the book Rawlings and Mayne (2009). Further developments
on determining optimal weights of convex combinations in the
Venkat and Stewart scheme for faster convergence were pro-
posed in Gross and Stursberg (2013). Still, this DMPC scheme
is based on the parallel Jacobi iteration given in (Bertsekas and
Tsitsiklis, 1989, chapter 3) and cannot converge to centralized
optimality when there are coupled constraints. This is a known
barrier in distributed convex optimization for years.

Note that we do not cover the extensive literature on DMPC
methods using the dual decomposition approach, as it is usually
difficult for such methods to guarantee that any intermediate
result is feasible for the DMPC problem, which is a key feature
in this primal decomposition approach.

In this paper, we revisit this DMPC problem from the dis-
tributed convex optimization point of view and we propose
a new way of organizing the distributed Jacobi iteration that
guarantees feasibility; the optimality property can be certified
a posteriori, and in specific cases theoretical proof for conver-
gence to optimality is available. Our main contributions in this
paper are:



• We provide a general framework to allow arbitrary decom-
position of the centralized variables into local variables,
including the case of sharing variables between local prob-
lems.

• We provide an a posteriori checking method to know
whether the fixed point is a centralized optimum.

• For a particular setting of chained link systems, we pro-
posed a priori conditions for guaranteeing convergence to
centralized optimum.

• The numerical examples show that increasing the number
of shared variables (among agents) leads to better perfor-
mance, and can ultimately achieve centralized optimality.

The paper is organized as follows: the MPC problem is de-
scribed in Section 2. It is then considered as a convex optimiza-
tion problem with linear constraints, which will be treated by
a distributed iterative Jacobi algorithm proposed in Section 3.
Then in Section 4 we provide a theoretical proof for optimality
for a special setting. The application of the proposed Jacobi al-
gorithm to distributed MPC is described in Section 5. Section 6
illustrates the algorithm in a numerical example and discusses
our observations. Section 7 concludes the paper and outlines
our future research.

2. PROBLEM DESCRIPTION

2.1 Coupled dynamical model

Consider a plant consisting of M subsystems. Each subsys-
tem’s dynamics is assumed to be influenced directly by only
a small number of other subsystems. Let each subsystem be
represented by a discrete-time, linear time-invariant model of
the form:

xi
t+1 =

M
∑

j=1

(Aijx
j
t +Biju

j
t ), (1)

where xi
t ∈ R

ni

and ui
t ∈ R

mi

are the states and control inputs
of the i-th subsystem at time t, respectively.

Let xt =
[

x1
t

T
· · ·xM

t

T
]T

and ut =
[

u1
t

T
· · ·uM

t

T
]T

denote

the aggregated states and inputs of the full plant at time step t,

with dimensions
∑M

i=1 n
i and

∑M

i=1 m
i respectively.

The matrices A and B will denote the dynamics matrices of
the aggregated system and this linear system is assumed to be
stabilizable:

A =







A11 . . . A1M

...
...

AM1 . . . AMM






, B =







B11 . . . B1M

...
...

BM1 . . . BMM






.

The full (centralized) plant model is thus represented as:

xt+1 = Axt +But. (2)

2.2 Coupled linear constraints

Each subsystem i is assumed to have linear coupled constraints
involving only a small number of the other subsystems. We
denote the overall coupled constraints at a time t as follows:

Cxt +Dut ≤ d (3)

in which C and D are sparse matrices with appropriate sizes.

In addition, the states and control inputs of each subsystem need
to satisfy local constraints. We denote the constraints at time
step t on the centralized variables as:

xt ∈ X , ut ∈ U (4)

where X and U are closed polytopic sets, containing the origin.

2.3 Centralized MPC problem

The centralized MPC problem is formulated with a finite-
horizon and nonnegative convex cost function. Denoting N for
the prediction horizon, the centralized MPC problem is then
defined as:

V ∗
t (xt) = min

xt,ut

N−1
∑

k=0

ℓ(xt+k, ut+k) (5)

s.t. xk+1 = Axk +Buk, k = t, · · · , t+N − 1,

Cxk +Duk ≤ d, k = t, · · · , t+N − 1,

xk ∈ X , k = t+ 1, · · · , t+N

uk ∈ U , k = t, · · · , t+N − 1

xt+N = 0

xt = x̄t,

in which x̄t is the measured state available at time step t,

xt , [xT
t , · · · , x

T
t+N ]T and ut , [uT

t , · · · , u
T
t+N−1]

T are the
stacked states and control inputs over the horizon, respectively.
Note that the function ℓ(·) needs to be nonnegative, convex, and
have zero value at the origin (e.g. 1-norm or 2-norm cost). The
cost function can have couplings between the subsystems.

Remark 2.1

Since the main contribution of this paper is in the distributed
optimization algorithm, we use the MPC formulation with a
terminal point constraint which is rather conservative but leads
to a trivially guaranteed stability when feasibility is maintained.
The algorithm presented in this paper will also work with other
MPC formulations as far as the stability condition is embedded
in the choice of constraints that have a sparse structure. Note
that this algorithm does not always guarantee to achieve an
optimal solution of the MPC problem. Hence, we need to use
MPC settings such that the stability property only relies on
feasibility, not on optimality.

One popular way to facilitate the stability property is to extend
the prediction horizon N in the MPC formulation. In Keerthi
and Gilbert (1988) it was shown that with a prediction horizon
N that is long enough to allow a feasible solution to the opti-
mization problem, the closed-loop system is stable. However,
increasing N will also lead to more couplings between subsys-
tems in the optimization problem.

2.4 Centralized optimization problem

For the sake of algorithm presentation, we represent the cen-
tralized MPC problem (5) in the following optimization form:

V ∗ = min
z

f(z) (6)

s.t. Az = B (7)

Cz ≤ D (8)

with z = [xT
u
T ]T ; the cost function f and matrices A,B, C,

and D are formed appropriately. Note that vectors B and D
depend on the initial state xt; however, we drop the argument
xt in order to focus on solving the optimization problem at one



time step. Also note that this is a convex problem, as it is merely
a recasting of (5).

The next section deals with the optimization problem (6)–
(8) and can be applied to general optimization problems in
this form, not only in the field of model predictive control.
To simplify notation for applying the distributed optimization
method to be presented, we denote n for the size of z, i.e.
z ∈ R

n.

3. DISTRIBUTED JACOBI ITERATIVE SCHEME

3.1 Decomposition method

In this section, we define the notation for decomposing the
centralized variable vector z into M distributed variable vectors
z
i, so that problem (6)–(8) will be solved using a distributed

approach with M agents.

We define a decomposition of n scalars in z into the variables of
M subsystems such that each element of a subsystem variable
z
i ∈ R

ni is a mapping from an element in z, and every
element in z must belong to at least one subsystem variable.
The mathematical expression of the decomposition is given as:

z
i =

[

zi(1) · · · zi(ni)

]T
: (9)



















i(j) ∈ {1, · · · , n}, ∀j ∈ {1, · · · , ni}
Vi , {i(1), · · · , i(ni)}

Vi ⊂ {1, · · · , n} ,

M
⋃

i=1

Vi = {1, · · · , n}
(10)

Remark 3.1 This notion encapsulates all possibilities for de-
composing n scalars into M groups of variables. This also
allows overlappings between different groups, i.e. some com-
ponents can appear in multiple groups. The simplest decom-
position is to have no overlapping between any two groups,
named decoupled decomposition. The other extreme is when
each group contains all the variables, i.e. zi = z.

For facilitating distributed communications in our approach,
we suggest to choose the simplest decomposition that satisfies
the following condition: firstly each z

i includes the variables
of the ith physical subsystem, then z

i also includes all the
other variables that have direct coupling with any variable of
the ith subsystem. A direct coupling exists between a pair of
variables means that there is at least one row in the constraints
(7)–(8) such that the coefficients of those two variables are
both nonzero, or there is a nonlinear term coupling those two
variables in the cost function (6).

Let G denote the undirected graph of interactions, which is a set
of tuples (i, j) such that either Vi ∩ Vj 6= ∅, or there are cou-
plings between variables in z

i and z
j in the cost function f(·) or

constraints (7)–(8). This graph later shows the communication
structure of our scheme.

We define the neighborhood set N i for each agent i as follows:

N i = {j|(i, j) ∈ G} (11)

3.2 Overlapping Jacobi iteration

Based on decomposition (9)–(10), we formulate for each i =
1, · · · ,M a local problem as follows:

(Pi) : V i = min
z
i

f(zi, z̃−i) (12)

s.t. Ai
z
i +A−i

z̃
−i = Bi (13)

Ci
z
i + C−i

z̃
−i ≤ Di (14)

in which z̃
−i ∈ R

n−ni denotes given values of variables in z

but outside of zi, the matrices Ai, A−i, and Bi are submatrices
from A and B such that (13) represents all rows of (7) that have
a nonzero entry for any component of zi. In other words, (13) is
a compact version of (7) that is relevant for agent i. Similarly,
Ci, C−i, and Di are submatrices of C and D so that (14) is a
compact version of (8).

Let z0 be a feasible point of problem (6)–(8). We solve this
problem by an iterative distributed scheme.

At each iteration p ≥ 0, given the prior, feasible iterate z(p),

each agent i solves problem (Pi) using z̃
−i
(p) extracted from

z(p). We denote the solution of (12)–(14) as zi∗(z̃
−i
(p)). Next, we

construct zi(p+1) from z
i
∗(z̃

−i
(p)) and z̃

−i
(p). Note that zi(p+1) ∈ R

n,

since it contains all elements of z.

Then, we merge local solutions according to the following
convex combination, with a predefined set of ωi, i = 1, · · · ,M :

z(p+1) =

M
∑

i=1

ωi
z
i
(p+1), ωi ≥ 0,

M
∑

i=1

ωi = 1 (15)

The iteration continues until it reaches either a predefined
maximum iteration limit pmax, or the result z(p) converges to
a fixed point (to be proved in the next section).

Remark 3.2 While we use z̃
−i in problem (12)–(14), agent i

only needs to communicate with its neighboring agents in N i to
get meaningful parameters for its problem (Pi). Due to sparse
coupling structure of the constraints, there are many zeros in
the matrices A−i and C−i, which correspond to information in
z̃
−i that is not relevant to problem (Pi) and do not need to be

exchanged with the agent i in communications.

Remark 3.3 This algorithm is a generalization of the coop-
erative algorithm in (Stewart et al., 2010, Section 3.1.7). It
employs only local communications, with better flexibility to
choose arbitrary decompositions (as explained in Remark 3.1).
We will show in the illustration example that using an overlap-
ping decomposition will lead to more optimality than using a
decoupled decomposition.

Remark 3.4 In (Stewart et al., 2010, Section 5), a hierarchical
scheme is also described to deal with coupled constraints.
However, if we analyze that scheme thoroughly for the case
of many subsystems (i.e. M ≫ 2), when there are chain-linked
coupled constraints such as inequality constraints coupling each
two adjacent agents (i, i + 1), then such algorithm leads to the
formulation that every agent needs to solve a full-size problem
since the common variable is indeed the centralized variable.
Hence, the algorithm in (Stewart et al., 2010, section 5) is not
suitable for distributed optimization.

Remark 3.5 When the optimization solver used for solving
local problems (12)–(14) can also provide Lagrange multipliers
(which are indeed obtainable for free with e.g. primal-dual
interior point methods, for example), then we can use the
Lagrange multipliers from local problems to check whether
the final result is globally optimal. Thus, while the global
optimality is not always guaranteed, we can do an a posteriori



check to verify the optimality of the fixed point (to be presented
in the next section).

3.3 Properties of the Jacobi algorithm

The following two lemmas establish the feasibility and conver-
gence of the distributed MPC scheme, which is similar to the
approaches in Venkat et al. (2008); Stewart et al. (2010):

Lemma 3.6. (Feasibility). Starting from a feasible z0, every
subsequent z(p) for p ≥ 1 is also feasible for the centralized
optimization problem (12)–(14).

Proof:

Each z
i
(p) obtained from z

i
∗(z̃

−i
p ) and z̃

−i
p satisfies (13)–(14),

and thus it also satisfies (7)–(8). Since these constraints repre-
sent a convex constraint set, the convex combination (15) yields
a new feasible point for this convex set. ✷

Lemma 3.7. (Convergence). Denote V(p) = f(z(p)). Then the

sequence {V(p)}
∞
p=1 in nonincreasing and converges as p → ∞.

Proof: Using the convexity of f(·) and the fact that z(p) is

a feasible solution for every (Pi) which has z
i
(p+1) as an

optimizer, we show that V(p) is a nonincreasing sequence:

V(p+1) = f

(

M
∑

i=1

ωi
z
i
(p+1)

)

≤
M
∑

i=1

ωif
(

z
i
(p+1)

)

≤
M
∑

i=1

ωif
(

z(p)

)

= f
(

z(p)

)

= V(p) (16)

Since V(p) has finite value and bounded below, using the mono-
tonicity property, the sequence V(p) converges as p → ∞. ✷

Note that while this algorithm converges, the fixed point can
be suboptimal. However, depending on the decomposition,
the performance varies, and the fixed point of the distributed
scheme may also be the global optimum. Next, we provide a
method to check whether this situation happens.

Lemma 3.8. (A posteriori check of global optimality). Let z
∞

denote the fixed point of the distributed Jacobi-type algorithm.
Then z

∞ is the global optimizer to problem (6)–(8) if every
shared constraint among local problems (Pi), i ∈ {1, · · · ,M}
yields the same Lagrange multiplier across all local problems
having that constraint.

Proof:

For z
∗ to be the optimizer of the centralized optimization

problem, there must exist λ and µ such that the tuple (z∗, λ, µ)
satisfies the following Karush-Kuhn-Tucker (KKT) conditions,
where λ and µ respectively denote the Lagrange multiplier
vectors associated with inequality constraints (8) and equality
constraints (7):

∇f(z∗) + CTλ+ATµ = 0 (17)

Az
∗ = B (18)

Cz∗ ≤ D (19)

λ ≥ 0 · 1 (20)

λ1(Cz
∗ −D)1 = 0 (21)

... (22)

λm(Cz∗ −D)m = 0 (23)

in which m denotes the number of rows in matrix C, and (Cz∗−
D)k is the k-th element of the vector inside the matrix.

The fixed point z∞ is the optimizer to all local problems where
the value z̃

−i is taken from z
∞.

In case every shared constraint has the same multiplier across
local problems, we collect all shared multipliers and the distinct
multipliers associated with only one local problem, to form the
aggregated vectors λ∞ and µ∞. Using the KKT condition on
the problem (12)–(14), the tuple (z∞, λ∞, µ∞) must satisfy the
following KKT system:

∇if(z
∞) + (CTλ∞)i + (ATµ∞)i = 0 (24)

(Az
∞)i = Bi (25)

(Cz∞)i ≤ Di (26)

(λ∞)i ≥ 0 · 1mi
(27)

(λ∞)i1(Cz
∞ −D)i1 = 0 (28)

... (29)

(λ∞)ini
(Cz∞ −D)ini

= 0 (30)

in which the superscript i refers to the selection of the given
matrix or column vector to the rows that only related to the
variable z

i.

When we concatenate the systems (24)–(30) for i = 1, · · · ,M
per each equation and removing the duplicated rows, we get a
linear system that is the same as the KKT system (17)–(23) (we
only get duplicated rows instead of conflicting rows between
different subsystems, thank to the same shared multipliers and
the same z

∞ across all subsystems). Hence, the merging of
solutions of local problem to (z∞, λ∞, µ∞) satisfies the KKT
condition of the centralized optimization problem. ✷

To summarize this section, we have proposed a Jacobi-type
algorithm that is applicable to a flexible decomposition method,
maintaining feasibility at every iterate. This algorithm con-
verges to a fixed point, and we can do an a posteriori check
for centralized optimality based on comparing the multipliers
between local problems.

4. CONVERGENCE FOR THE SPECIFIC CASE OF
CHAIN LINKED SYSTEMS

In this section, we provide the proof for convergence to global
optimality of the proposed Jacobi algorithm in one specific case.
Let us consider the MPC problem which can be recast in the
following form:

min
z1,··· ,zn

f(z1, · · · , zn) (31)

s.t. zi ≤ zi ≤ zi, i = 1, · · · , n (32)

aizi + bi+1zi+1 ≤ ci, i = 1, · · · , n− 1 (33)

in which the bounds zi−1, zi−1, i = 1, · · · , n and {ai, bi}j=1···n

are constants. For the sake of brevity, we consider in this section
each zi as a scalar.

The Jacobi algorithm is applied, with the following decompo-
sition:

V1 = {1, 2}

Vi = {i− 1, i, i+ 1}, i = 2, · · · , n− 1

Vn = {n− 1, n}

and consequently local problems (Pi) are constructed as de-
scribed in Section 3.2.



We provide the following condition that can be verify a priori,
so that if it holds, the algorithm is guaranteed to converge to
optimality:

Theorem 4.1. If for any value of z̃−1, the solution of (P1) does
not activate the constraint involving z1 and z2, and the solution
of (Pn) does not activate the constraint involving zn−1 and
zn for any value of z̃−n, then the fixed point of the Jacobi
algorithm is globally optimal.

Proof:

Let z∞ , [z∞1 , · · · , z∞n ]T be a fixed point of the algorithm. It
is obvious that for z∞ to be the fixed point of the algorithm, it
must also be the optimal solution of every problem (Pi

∞) where
z̃
−i contains values taken from z

∞.

Suppose that z∞ is only suboptimal, i.e. there exists an optimal
solution of the centralized problem z

∗ 6= z
∞ and f(z∗) <

f(z∞). Then we will show that there exists at least one sub-
problem (Pi

∞) that does not attain optimality at z∞. This will
violate the definition that z∞ is a fixed point of the algorithm.
Hence, the reverse clause must be true, i.e. z∞ is a centralized
optimal solution. Our strategy for the proof is to start from
z∞1 and subsequently use the coupled constraints to show that
z∞2 , z∞3 , · · · must belong to an optimal solution.

Firstly, due to the condition stated in Theorem 4.1, we see
that the component z∞1 of the fixed point must belong to one
centralized optimal solution. We can write z∞1 = z∗1 .

Next, let we consider problem (P1
∞) which involves z1, z2 as

variables:

(P1
∞) : min

z1,z2
f(z1, z2, z

∞
3 , · · · , z∞n ) (34)

s.t. zi ≤ zi ≤ zi, i = 1, 2 (35)

a1z1 + b1z2 ≤ c1 (36)

a2z2 + b2z
∞
3 ≤ c3 (37)

If the solution of this problem is also optimal for the centralized
problem, i.e. (z∞1 , z∞2 ) = (z∗1 , z

∗
2), then we move on to prove

optimality for z∞3 .

Suppose the contrary, i.e. z∞2 6= z∗2 and f(z∗1 , z
∗
2 , ·) <

f(z∗1 , z
∞
2 , ·). Then we must have z∞3 6= z∗3 , and constraint (37)

must be active, i.e. a2z
∞
2 + b2z

∞
3 = c2. Otherwise, there exists

a value z̄2 = αz∗2+(1−α)z∞2 with α ∈ (0, 1] such that (z∗1 , z̄2)
is feasible for (P1

∞), and due to convexity of the function f :

f(z∗1 , z̄2, ·) ≤ αf(z∗1 , z
∗
2 , ·) + (1− α)f(z∗1 , z

∞
2 , ·)

< f(z∗1 , z
∞
2 , ·).

Thus, (z∗1 , z
∞
2 ) is not an optimal solution of (P1

∞).

Now we consider the case (37) is active. From problem (P2
∞),

the algorithm will branch out two cases: a3z
∞
3 + b3z

∞
4 = c3

or a3z
∞
3 + b3z

∞
4 < c3. In the case where this constraint is

inactive, we also use convexity to find a better point (z∗1 , z̄2, z̄3)
lying between (z∗1 , z

∗
2 , z

∗
3) and (z∗1 , z

∞
2 , z∞3 ) such that:

a3z̄3 + b3z
∞
4 ≤ c3

a2z̄2 + b2z̄3 ≤ c2
f(z∗1 , z̄2, z̄3, ·) < f(z∗1 , z

∞
2 , z∞3 , ·)

which shows that (z∗1 , z
∞
2 , z∞3 ) is not an optimal solution of

(P2
∞).

Similarly, we can show that there must be a sequence of active
constraints in order to allow z∞2 6= z∗2 :

a4z
∞
4 + b4z

∞
5 = c4

...

ai−1z
∞
i−1 + bi−1z

∞
i = ci−1

For any index j such that ajz
∞
j +bjz

∞
j+1 < cj , we can then find

a feasible point (z∗1 , z̄2, · · · , z̄j) that lowers the cost function,

hence, (z∞j−2, z
∞
j−1, z

∞
j ) is not an optimal solution of (Pj−1

∞ ).

Therefore, in order to the optimality of problems (Pi
∞) up to

i = n − 1 at the point z∞, the sequence of active constraints
must be extended until i = n − 1, i.e we have an−1z

∞
n−1 +

bn−1z
∞
n = cn. However, this equality violate the condition in

Theorem 4.1 that such constraint in (Pn
∞) must be is inactive.

This shows that there is no z
∗ 6= z

∞ such that f(z∗) < f(z∞).
This concludes the proof. ✷

5. APPLICATION TO DISTRIBUTED MPC

In this section, we focus on applying the iterative algorithm in
the previous section to implement a closed-loop state-feedback
distributed MPC system, following the formulation (5) of the
centralized MPC problem.

5.1 Defining the decomposition

Firstly, based on the nature of couplings in the MPC problem,
we define a decomposition so that there are M agents for
carrying out the distributed scheme during online operation.

Recall that in Section 2.1, the states xi and inputs ui are defined.
If we choose the decomposition such that z

i only contains
the predicted variables of xi and ui, then we have a non-
overlapping decomposition (cf. Remark 3.1).

Following the description in Section 3.1, a graph of interactions
G is constructed. In this graph, we define the neighborhood of
i, denoted by N i, as the set of nodes that have a direct link with
node i in the graph. So N i encompasses subsystems that have
direct couplings with subsystem i (either in the cost function,
dynamical constraints, or other constraints).

We can define other overlapping decompositions intuitively,
so that the group of variables for a subsystem forms an r-
step extended neighborhood. The notion of the r-step extended
neighborhood for a subsystem i, denoted by N i

r , is the set that
contains all nodes that can be reached from node i in not more
than r links. Specifically, N i

r is defined recursively as the union
of subsystems in the neighborhoods of all subsystems in N i

r−1:

N i
r =

⋃

j∈N i

r−1

N j , (38)

where N i
1 := N i.

5.2 Using online algorithms to generate feasible points

We assume that at the first sampling time (t = 0), with a given
initial state x0, a feasible solution (x̃0, ũ0) to problem (5) is
available. Hereby we describe the scheme for online distributed
MPC, starting from t = 0.

At sampling time t, the state xt is available, and then an
optimization problem (5) needs to be solved. With a prior
feasible candidate (x̃t, ũt), we apply the Jacobi-type algorithm
for solving the centralized problem in a distributed fashion.



The algorithm can stop after p ≤ pmax steps, result in the
solution denoted as z(p|t). The subsystems then take the result

z
i
(p|t), i = 1, · · · ,M and parse them to their own sequences

xi
t+1|t, · · · , x

i
t+N |t and ui

t, · · · , u
i
t+N−1|t. Then each control

action ui
t, i = 1, · · · ,M is applied to the plant at sampling

instant t.

By the end of sampling step t, the state of the plant is xt+1 =
[

x1
t+1

T
, · · · , xM

t+1
T
]T

(in this theoretical work we assume

state feedback without uncertainties and disturbances). The
next feasible sequence for the MPC problem at time step t + 1
is constructed as follows: the zero input ui

t+N = 0 and state

xi
t+N+1 = 0 are respectively appended to each local prediction

control sequence and prediction state sequence; then these two
sequences are shifted one step to the right, they are used as the
starting feasible candidate for time step t+ 1. It is obvious that
the centralized sequences (x̃t+1, ũt+1), combined of all local
sequences, are feasible for problem (5) at time step t+ 1.

Note that the centralized vectors mentioned above are only
used for the sake of expressing the recursive feasibility. Indeed,
during the whole process of implementation, we do not need
to construct the centralized vectors. Each agent only needs to
communicate with its neighbors and deals with its local vectors.

6. NUMERICAL EXAMPLE

In this section, we illustrate the application of the proposed
algorithm to a problem involving a chain of coupled oscillators.
The problem setup consists of M oscillators that can move
only along the vertical axis, and that are coupled by springs
that connect each oscillator with its two closest neighbors. An
exogenous vertical force will be used as the control input for
each oscillator. The setup is shown in Figure 1.

Each oscillator is considered as one subsystem. Let the su-
perscript i denote the index of the oscillators. The dynamics
equation of oscillator i is then defined as

mai = k1p
i−fsv

i+k2(p
i−1−pi)+k2(p

i+1−pi)+F i (39)

where pi, vi, and ai denote the position, velocity, and accel-
eration of oscillator i, respectively, the control force exerted at
oscillator i is F i, and the following parameters are identical for
all oscillators:

k1: stiffness of vertical spring at each oscillator

k2: stiffness of springs that connect the oscillators

m: mass of each oscillator

fs: friction coefficient of movements

From some nonzero initial state, the system needs to be stabi-
lized subject to the constraints:

∣

∣pi − pi−1
∣

∣ ≤ 2, i = 2, ...,M − 1 (40)
∣

∣pi
∣

∣ ≤ 2, ∀i (41)

We use quadratic cost functions for the MPC problem:

ℓ(xk, uk) =

M
∑

i=1

‖xi
k‖Qi

+ ‖ui
k‖Ri

(42)

with Qi, Ri positive definite matrices. This formulation leads
to a convex, decoupled cost function.

Based on dynamical couplings and constraint couplings, the
neighborhood of each subsystem inside the chain is defined to
contain itself and its two closest neighbors N i = {i− 1, i, i +
1}, i = 2, ...,M − 1, while for the two ends N 1 = {1, 2}
and NM = {M,M − 1}. We define the state vector as
xi = [pi, vi]T , and the input as ui = F i. The discretized
dynamics with sampling time Ts, obtained using the forward
Euler discretization method, is represented by the following
matrices:

Aij =

[

0 0
0 0

]

, ∀j 6∈ N i

Ai,i−1 =

[

0 0
Tsk2 0

]

, for i = 2, ...,M

Aii =

[

1 Ts

Ts(k1 − 2k2) 1− Tsfs

]

, for i = 1, ...,M

Ai,i+1 =

[

0 0
Tsk2 0

]

, for i = 1, ...,M − 1

Bij =

[

0
0

]

∀j 6= i, Bii =

[

0
Ts

]

, for i = 1, ...,M

The following parameters were used in the simulation example:

k1 = 0.4, k2 = 0.3

fs = 0.4, Ts = 0.05, m = 1

M = 40, N = 20

Qi =

[

100 0
0 0

]

, Ri = 10

Firstly, we use the overlapping decomposition in which the
local variable vector z

i includes all variables of subsystems
inside the one-step neighborhood N i

1 . Starting from the same
feasible initial state, we apply the distributed MPC algorithm
with pmax = 2, 20, and 100. The results are compared to the
exact solution obtained from the centralized MPC approach
(obtained using any solver that gives numerical solution that
can be considered exact). The results indicate that all states of
the 40 subsystems are stabilized. Figure 2 shows the evolution
of the overall cost achieved by distributed MPC compared to the
cost of the centralized approach. We can see that the difference
is reduced by choosing a larger pmax value. Thank to the use of
overlapping decomposition, the distributed solution converges
to the centralized optimum. When we compare the Lagrange
multipliers of local problems for the results with pmax = 100,
taking into account the slight errors due to computer precision,
we can also verify that Lemma 3.8 holds for every MPC time
step. Indeed, we can use the theoretical condition to verify
optimality, similar to Section 4 and taking into account the
difference of coupled constraint forms between (40) and (33).

Another test is to compare the effect of different ways of de-
composing the problem. We let each local problem in the dis-
tributed MPC algorithm optimize over the inputs of subsystems
in a larger neighborhood, meaning there are more overlappings
in the decomposition. Figure 3 illustrates the effect of optimiz-
ing in each subproblem over an r-step extended neighborhood,
with r ∈ {1, 5, 10}. Note that due to the coupled constraints
(40) between any pair of subsystems, using non-overlapping
decomposition will not guarantee feasibility, hence we must
use overlapping decomposition with the minimum radius of
neighborhood r = 1. Fixing the number of maximum iterations
in the distributed Jacobi iteration to pmax = 2, we observe a
steady improvement in performance until the increased neigh-



Figure 1. Setup of coupled oscillators
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Figure 2. Time evolution of the cost value of the centralized
MPC algorithm in comparison with the distributed MPC
algorithm using pmax = 2, pmax = 20 and pmax = 100.
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Figure 3. Time evolution of the global cost value of distributed
MPC algorithms with different radii of neighborhood to be
optimized by one local controller.

borhood of each subsystem covers essentially all other subsys-
tems and we end up with considering the centralized problem.
It is worth noting that a more overlapping decomposition leads
to increased requirements on information exchanges as well as
bigger problem sizes for local problems; hence this involves
a trade-off between performance versus communications and
computations.

7. CONCLUSIONS

We have presented a Jacobi algorithm for solving distributed
convex optimization problems that is applicable to distributed
model predictive control. The optimization problem to be
solved should have sparse couplings, either in the cost or the
constraint functions. Consequently, the DMPC scheme is able
to deal with linear time-invariant systems with general linear
coupled dynamics and convex coupled constraints. Recursive
feasibility and stability are guaranteed, and we are flexible
to choose a decomposition method that is favorable to the
communication structure and computational capabilities of the
local controllers. It is shown that enlarging the overlappings
in decomposition could improve the performance, and that the
DMPC solution can converge to the centralized one in practice,
although in theory only suboptimality could be proved. We
provide an a posteriori checking method to verify whether
the converging result is centralized optimal. Furthermore, we
also propose a condition for a particular chain linked system
structure so that the convergence of distributed Jacobi algorithm
to the centralized optimality could be checked a priori.
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