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On robust adaptive control of switched linear systems

Shuai Yuan1 and Bart De Schutter1 and Simone Baldi1

Abstract— This paper investigates robust adaptive control
of uncertain switched linear systems considering disturbances.
Two modifications of the adaptive law of switched linear systems
[1] based on parameter projection and a leakage approach are
developed to guarantee the stability of the closed-loop switched
linear system: a projection law that requires knowledge of
the bounds of the parameter estimates; and a leakage law
based on initial conditions of the parameter estimates that
does not require knowledge of the bounds of the parameter
estimates. The closed-loop switched linear system is shown to be
globally uniformly ultimately bounded. In addition, the ultimate
bounds of both adaptive control schemes are also given. A
numerical example is provided to illustrate the effectiveness
of the proposed methods.

Index Terms— Robust adaptive control, switched linear sys-
tems

I. INTRODUCTION

Many complex physical systems, such as automobile
power trains [2], traffic light systems [3], power converters
[4], and smart buildings [5], exhibit hybrid dynamics. These
practical systems can be modeled as a switched system that
consists of continuous-time or discrete-time subsystems and
switching actions controlled by a constant piecewise signal,
called switching signal.

When controlling such complex physical systems, a ubiq-
uitous problem is how to cope with parametric uncertainties
and disturbances. It is well established that robust control can
be used to deal with non-switched systems subject to uncer-
tainties and disturbances [6], [7]. To date, robust control of
switched systems has been extensively investigated: a single
robust controller [8], [9], and a family of robust controllers
for polytopic uncertainties [10], [11]. However, a single
robust controller may lead to conservative performance when
considering large uncertainties [12]. As a complement to
robust control, adaptive control techniques have been shown
to be able to deal with large non-polytopic uncertainties and
disturbances [13], [14]. Recent years have witnessed some
research on adaptive control of switched systems without
considering disturbances [1], [15], [16], [17]. However, to
the best of the authors’ knowledge, the research on robust
adaptive control of switched systems considering both para-
metric uncertainties and disturbances is a quite open field. In
[18], Qing et al. proposed a robust adaptive control scheme
for switched linear systems that requires the existence of a
common Lyapunov function. Hidetoshi and Kojiro developed
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a so-called adaptive robust controller without considering
disturbances [19]. In light of this, the motivation for the
current work stems from developing a robust adaptive control
scheme to deal with switched linear systems considering non-
polytopic parametric uncertainties and disturbances without
requiring a common Lyapunov function.

In this paper, our recent result about adaptive control
of switched linear systems without considering disturbances
[1] is exploited to develop two robust adaptive control
schemes for switched linear systems. With an assumption
on the knowledge of the bounds of nominal parameters, a
robust adaptive control scheme using parameter projection
is proposed, which is an immediate extension of the result
in Section 8.5.5 of [13]. Next, a robust adaptive control
scheme is developed via a leakage approach involving ini-
tial conditions of the parameter estimates: this approach is
different from the results established in Section 8.5.2 of
[13]: the leakage terms involve the difference between the
parameter estimates and the initial conditions. In addition, the
closed-loop switched linear system is shown to be globally
uniformly ultimately bounded based on the proposed two
robust adaptive schemes, and an ultimate bounds for both
cases are also given.

The paper is organized as follows: Section II presents the
control problem and some preliminaries for later analysis.
Section III introduces robust adaptive control schemes based
on projection laws and leakage approaches, respectively. In
addition, the results about global uniform ultimate bound-
edness of the closed-loop switched linear systems are also
given. Section IV adopts a numerical example to illustrate
the proposed results. The paper is concluded in Section V.

Notation: The notation used in this paper is as follows: R
and N+ represent the set of real numbers and positive natural
numbers, respectively. The notation P > 0 indicates a sym-
metric positive definite matrix P, and we define He{P} =
PT +P, where the superscript T represents the transpose of
matrix. The notation ∥·∥ represents the Euclidean norm. The
function sgn[∗] takes the sign of ∗. The identity matrix of
dimension n is denoted by In×n. The operators λmax (P) and
λmin (P) return the maximum and minimum eigenvalues of
the square matrix P, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

This paper focuses on the uncertain single-input switched
linear system with a bounded disturbance defined as follows:

ẋ(t) = Aσ(t)x(t)+bσ(t)u(t)+d(t), t ≥ t0 (1)

where x ∈ Rn is the state vector, u ∈ R represents some
piecewise continuous input, and d(·) is a bounded distur-



bance with an upper bound d. The switching law σ(·) is
a piecewise function taking values in M := {1, . . . ,M}, and
the capital letter M denotes the number of subsystems. The
matrices Ap ∈Rn×n and vectors bp ∈Rn are unknown for all
p ∈ M .

A reference switched system representing the desired
behavior of (1) is given as follows:

ẋm(t) = Amσ(t)xm(t)+bmσ(t)r(t), t ≥ t0 (2)

where xm ∈ Rn is the desired state vector, and r ∈ R is
a bounded reference input. The matrices Amp ∈ Rn×n and
vectors bmp ∈ Rn are known, and Amp are Hurwitz ma-
trices for all p ∈ M . Suppose that the pair (Amp, bmp)
is controllable and each subsystem in (1) has its own
corresponding reference sub-model. We assume that the
measurements of the states x(t) and xm(t) are available.
Hence, the nominal state-feedback controller that makes the
switched system behave like the reference model is given
as u∗(t) = k∗T

σ(t)x(t)+ l∗
σ(t)r(t) for t ≥ t0, where the nominal

parameters k∗p ∈ Rn and l∗p ∈ R exist under the assumption
that the following matching condition holds [13], [16]:

Ap +bpk∗T
p = Amp, bpl∗p = bmp (3)

However, since Ap and bp are unknown, we cannot cal-
culate k∗p and l∗p from (3). In light of this, the state-feedback
controller is developed as:

u(t) = kT
σ(t)(t)x(t)+ lσ(t)(t)r(t), t ≥ t0 (4)

where kp and lp are the estimates of k∗p and l∗p respectively. In
addition, we define the tracking error as e(t) = x(t)− xm(t).
Substituting (4) into (1), and subtracting (2), the dynamics
of the tracking error are given as follows:

ė(t) = Amσ(t)e(t)+bσ(t)

(
k̃T

σ(t)(t)x(t)+ l̃σ(t)(t)r(t)
)
+d(t)

(5)
where k̃p = kp−k∗p, l̃p = lp− l∗p are the parameter estimation
errors.

The following definitions will be used in this work:
Definition 1: (Dwell-time switching) Switching laws

with the switching sequence S := {t1, t2, . . .} are said to be
dwell-time admissible if there exists a number τd > 0 such
that ti+1 − ti ≥ τd holds for all i ∈ N+. Any positive number
τd, for which these constraints hold for all i ∈ N+, is called
dwell time, and the set of dwell-time admissible switched
laws is denoted by D(τd).

Definition 2: (Global uniform ultimate boundedness)
The uncertain switched system (1) under switching law σ(·)
is globally uniformly ultimately bounded (GUUB) if there
exists a convex and compact set S such that for any initial
condition x(0) = x0, there exists a finite T (x0) such that x(t)
is attracted into S and x(t) ∈ S for all t ≥ T (x0).

Definition 3: (Ultimate bound) A signal φ(·) is said to be
globally uniformly ultimately bounded with ultimate bound
b if there exists a positive constant b, and for any a ≥ 0,
there exists T = T (a,b), where b and T are independent of
t0, such that ∥φ(t0)∥ ≤ a ⇒∥φ(t)∥ ≤ b, ∀t ≥ t0 +T .

Thus, the problem addressed in this paper is presented as
follows:

Problem 1: Develop a switching law σ(·) based on dwell
time and an adaptive law for kp and lp such that the switched
system (1) with the state-feedback controller (4) is stable, and
the tracking error is globally uniformly ultimately bounded.

III. MAIN RESULTS

The following lemma is given to derive the main results
in this section.

Lemma 1: [20] Let y∈Rp, z∈Rq, and Φ,Ψ be appropri-
ately dimensioned matrices, then for any positive constant ε

and for any appropriately dimensioned matrix X(t) satisfying
XT (t)X(t)≤ I, it holds that

2yT
ΦXΨz ≤ εyT

ΦΦ
T y+ ε

−1zT
Ψ

T
Ψz.

Let K be a given integer. Let us define a time sequence
{ti,0, . . . , ti,K} with ti,k+1−ti,k = h, k = 0, . . . , K−1. We define
that ti,0 = ti and ti,K − ti,0 = τd, as shown in Fig. 1. Suppose

Fig. 1. The time sequence between two consecutive switching instants

that there exists a family of matrices Pp,k > 0, p ∈ M , k =
0, . . . ,K, a family of positive constants κp, p ∈ M , and a
positive constant h such that the following conditions hold:

∆Pp
k+1,k/h+He

{
Pp,K Amp

}
+(1+κp)Pp,K < 0 (6a)

for K = k,k+1;k = 0, . . . ,K −1

He
{

Pp,KAmp
}
+(1+κp)Pp,K < 0 (6b)

Pp,K −Pq,0 ≥ 0 (6c)

where ∆Pp
k+1,k = Pp,k+1 − Pp,k, for q ̸= p ∈ M . Then, the

adaptive laws based on parameter projections and leakage
approach will be developed based on the family of the
matrices Pp,k > 0, p ∈ M , k = 0, . . . ,K, and a switching law
is proposed based on the following dwell time:

τd = K ·h. (7)

Remark 1: The selection of K is dependent on rule pro-
posed in [21]: as K grows, smaller (less conservative) h can
be found by solving the LMIs (6). In addition, there exists an
integer K∗ such that no less conservative h can be obtained
by choosing a sufficiently large K ≥ K∗.



A. Adaptive control via projection laws

Before introducing the adaptive law, the following assump-
tions are made:

Assumption 1: The sign of l∗p, ∀p ∈ M , is known;
Assumption 2: Upper and lower bounds of k∗p and l∗p are

known, i.e., k∗p ∈ [kp, kp] and l∗p ∈ [lp, lp], ∀p ∈ M .
Remark 2: Assumption 1 and 2 are widely used in adap-

tive control problem based on parameter projections [16],
[17] to ensure the boundedness of signals in closed-loop
systems [13].
The adaptive law with the following projection laws is
proposed

k̇p(t) =− sgn[l∗p]Γpx(t)eT (t)Pp(t)bmp + fk,p(t)

l̇p(t) =− sgn[l∗p]γpr(t)eT (t)Pp(t)bmp + fl,p(t)
(8)

where Γp ∈Rn×n and γp ∈R are given positive adaptive gains
for all p ∈ M and the time-varying matrix Pp(t) is defined
as:

Pp(t) =

{
Pp,k +∆Pp

k+1,k ·ρ(t), for ti,k ≤ t < ti,k+1

Pp,K , for ti,K ≤ t < ti+1
(9)

where ρ(t) = (t − ti,k+1)/h. The functions fk,p(·) and fl,p(·)
are the projection laws, which are used to prevent parameter
drift of the parameter estimates [22]. Next, the definitions
of fk,p and fl,p are given [23]: Let kp = [kp1, . . . ,kpn];
fk,p = [ fk1,p, . . . , fkn,p]; φk,p = −sgn[l∗p]ΓpxeT Ppbm =
[φk1,p, . . . ,φkn,p], φl,p =−sgn[l∗p]γpreT Ppbmp. Then, we have
the projection terms as follows, for s ∈ {1, · · · ,n}, t ≥ t0

fks,p(t) =


−φks,p(t) if kps(t)≤ kps & φks,p(t)≤ 0,

or if kps(t)≥ kps & φks,p(t)≥ 0
0 otherwise

fl,p(t) =


−φl,p(t) if lp(t)≤ lp & φl,p(t)≤ 0,

or if lp(t)≥ kp & φl,p(t)≥ 0
0 otherwise

(10)
The sequence of switch-in instants of subsystem p is repre-

sented by
{

tp1 , tp2 , tp3 , . . .
}

, and the sequence of its switch-
out instants is represented by

{
tp1+1, tp2+1, tp3+1, . . .

}
. Note

that the proposed adaptive law (8) is to be implemented as
follows: at a switch-in instant of subsystem p the initial
conditions of (8) are taken from the estimates available
at the previous switch-out instant of the same subsystem,
i.e., kp(tpl ) = kp(tp(l−1)+1), and lp(tpl ) = lp(tp(l−1)+1) for any
l ∈ N+. Therefore, kp(t) and lp(t) update continuously. The
adaptive control scheme for switched systems is illustrated in
Fig. 2. Now, we are ready to introduce the following stability
results.

Theorem 1: With any switching law σ(·)∈ D(τd) and the
adaptive law (8)–(10), the uncertain switched system (1)
with state-feedback controller (4) is GUUB. In addition, the
ultimate bound of the tracking error is given as

Bproj =

√
maxp∈M

{
λmax (Pp(t))

}
min |p∈M

{
κp

}
minp∈M

{
λmin (Pp(t))

}∥d∥. (11)

Fig. 2. The adaptive control scheme for switched linear systems

Proof: Consider the following Lyapunov function:

V (t) = eT (t)Pσ(t)(t)e(t)+
M

∑
p=1

1
|l∗p|

(
k̃T

p (t)Γ
−1
p k̃p(t)

)
+

M

∑
p=1

1
|l∗p|

(
l̃2
p(t)γ

−1
p

)
.

(12)

Without loss of generality, we assume that subsystem p is
active for t ∈ [ti, ti+), i ∈ N+. Therefore, using (8) and (9),
the derivative of V (t) with respect to time is, for t ∈ [ti, ti+1)

V̇ (t) = eT (t)Qp(t)e(t)+dT (t)Pp(t)e(t)+ eT Pp(t)d(t)

+
1
|l∗p|

k̃T
p Γ

−1
p fk,p(t)+

1
|l∗p|

l̃T
p γ

−1
p fl,p(t)

(13)

with Qp(t) = AT
mpPp(t) + Ṗp(t) + Pp(t)Amp. According to

(10), we have k̃T
p Γ−1

p fk,p ≤ 0, and l̃pγ
−1
1p fl,p ≤ 0. Since Pp(·)

is a positive definite matrix, there exists a non-singular
matrix Hp(·) such that Pp(·)=Hp(·)HT

p (·). Then, substituting
Pp(·) = Hp(·)HT

p (·) into (13), according to Lemma 1, it
follows that

V̇ (t)≤ eT (t)Qp(t)e(t)+ eT (t)Pp(t)e(t)+dT (t)Pp(t)d(t)

≤ eT (t)Ξp(t)e(t)+dT (t)Pp(t)d(t)
(14)

where Ξp(t) = Qp(t)+Pp(t). To analyze the properties of
V (t) for t ∈ [ti, ti+1), first we consider a sub-interval, i.e.,
t ∈ [ti,k, ti,k+1), k = 0, . . . ,K −1. Note that

Ξp(t) = He
{

Pp(t)Amp
}
+∆Pp

k+1,k/h

+
(
η1Pp,k +η2Pp,k+1

)
= η1

[
∆Pp

k+1,k/h+He
{

Pp,kAmp
}
+Pp,k

]
+η2

[
∆Pp

k+1,k/h+He
{

Pp,k+1Amp
}
+Pp,k+1

] (15)

where η1 = 1−
(
t − ti,k

)
/h, and η2 = 1−η1. According to

(6a)–(6b), it follows that

Ξp(t)+κpPp(t)< 0, t ∈ [ti,k, ti,k+1). (16)



Then, let us consider t ∈ [ti,K , ti+1) for the case that ti+1−ti >
τd. We have Pp(t) = Pp,K according to (9), which indicates
by (6c) that

Ξp(t)+κpPp,K < 0, t ∈ [ti,K , ti+1). (17)

Therefore, it follows from (16)–(17) that Ξp(t) < −κpPp(t)
for t ∈ [ti, ti+1). In light of this, according to (14), we have

V̇ (t)≤−κpeT Pp(t)e(t)+dT (t)Pp(t)d(t), t ∈ [ti, ti+1) (18)

Since the signals e(·), k̃σ(·)(·), and l̃σ(·)(·) are continuous
according to (5) and (8), we have, at switching instant ti+1,

Vσ(ti+1)(ti+1)−V
σ(t−i+1)

(t−i+1)

= eT (ti+1)Pσ(ti+1)(ti+1)e(ti+1)− eT (t−i+1)Pσ(t−i+1)
(t−i+1)e(t

−
i+1)

= eT (ti+1)(Pσ(ti+1)−P
σ(t−i+1)

)e(ti+1)

= eT (ti+1)
(
Pq,0 −Pp,K

)
e(ti+1)

(19)
which indicates that V (·) is non-increasing at switching in-
stant ti+1 considering Pp,0−Pq,K ≤ 0 for p,q∈ M . Therefore,
according to (18)-(19), it can be shown that there exists a ball
centered at the origin with the following radius:

Bproj =

√
maxp∈M

{
λmax (Pp(t))

}
min p ∈ M

{
κp

}
minp∈M

{
λmin (Pp(t))

}∥d∥

such that when ∥e(t)∥ ≥ Bproj, we have V̇ (t) < 0. Further-
more, since the parameter estimates are bounded due to the
projection laws (10), V (·) is GUUB, and the tracking error
e(·) is attracted into the ball centered in the origin with radius
Bproj. This completes the proof.

B. Adaptive control via leakage approach

Now, the leakage approach in [22] is extended to switched
linear systems to prevent parameter drift, which does not
require Assumption 2. The resulting adaptive law is given in
the following:

k̇p(t) =− sgn[l∗p]Γpx(t)eT (t)Pp(t)bmp −δ
k
pΓpk̂p(t) (20a)

l̇p(t) =− sgn[l∗p]γpr(t)eT (t)Pp(t)bmp −δ
l
pγp l̂p(t) (20b)

k̇q(t) =−δ
k
q Γqk̂p(t) (20c)

l̇q(t) =−δ
l
qγq l̂p(t) (20d)

for q= 1, . . . , p−1, p+1, . . . ,M, where k̂p(t)= kp(t)−kp(t0),
l̂p(t) = lp(t)− lp(t0), Pp(t) is defined in (9), Γp, γp are
positive adaptive gains, and δ k

p , δ l
p are positive leakage rates

satisfying

δ
k
p ≥ max

p∈M

{
κp

}
λmax

(
Γ
−1
p
)
, δ

l
p ≥ max

p∈M

{
κp

}
γ
−1
p . (21)

Remark 3: Different from the adaptive law (8), the pa-
rameter estimates of all subsystems are updated during the
whole time horizon. To be more precise, the updating rules
(20a)—(20b) of the parameter estimates are adopted when
the subsystem is active. The updating rules switch to (20c)—
(20d) when the subsystem is inactive. In addition, different
from the leakage approach in [13] for adaptive control of
non-switched systems, when a subsystem is inactive, the

adaptive rule will bring the parameter estimates to initial
conditions of (20) to guarantee the stability of the switched
systems.

The following stability result is given based on the adap-
tive law (20)–(21), and the switching signals with dwell time
τd defined in (7).

Theorem 2: With any switching law σ(·)∈ D(τd) and the
adaptive law (20)–(21), the uncertain switched system (1)
with state-feedback controller (4) is GUUB. In addition, the
ultimate bound of the tracking error is given as

BLeak =

√
Σ+maxp∈M

{
λmax (Pp(t))

}
∥d∥2

minp∈M
{

κp
}

minp∈M
{

λmin (Pp(t))
} (22)

with Σ = ∑
M
p=1

1
|l∗p|

(
δ k

p∥k∗p − kp(t0)∥2 +δ l
p
(
l∗p − lp(t0)

)2
)

.
Proof: Consider the same Lyapunov function as in (12).

Using (5), (6), and (20), the derivative of V (t) w.r.t. time is,
for t ∈ [ti, ti+1),

V̇ (t) = eT (t)Qσ(ti)(t)e(t)+dT (t)Pσ(ti)(t)e(t)

+ eT (t)Pσ(ti)(t)d(t)−2
M

∑
p=1

1
|l∗p|

δ
k
p k̃T

p (t)k̂p(t)

−2
M

∑
p=1

1
|l∗p|

δ
l
p l̃p(t)l̂p(t)

≤ eT (t)Ξσ(ti)(t)e(t)+dT (t)Pσ(ti)(t)d(t)

−2
M

∑
p=1

1
|l∗p|

δ
k
p k̃T

p (t)(k̃p(t)+ k∗p − kp(t0))

−2
M

∑
p=1

1
|l∗p|

δ
l
p l̃p(t)(l̃p(t)+ l∗p − lp(t0))

≤ −κσ(ti)e
T (t)Pσ(ti)(t)e(t)+dT (t)Pσ(ti)(t)d(t)

−
M

∑
p=1

1
|l∗p|

δ
k
p
(
∥k̃p(t)∥2 −∥k∗p − kp(t0)∥2)

−
M

∑
p=1

1
|l∗p|

δ
l
p

(
l̃2
p(t)−

(
l∗p − lp(t0)

)2
)
.

(23)

The first inequality in (23) holds by following the same
steps as for (15)–(17), and the second inequality holds due
to −2k̃T

p k̃p − 2k̃T
p
(
k∗p − kp(t0)

)
≤ −∥k̃p∥2 + ∥k∗p − kp(t0)∥2,

and −2l̃2 −2l̃p
(
l∗p − lp(t0)

)
≤ −l̃2

p +
(
l∗p − lp(t0)

)2, ∀p ∈ M .
Hence, according to (12), the following holds:

V̇ (t)≤ −κσ(ti)V (t)+dT (t)Pσ(ti)(t)d(t)

+κσ(ti)

M

∑
p=1

1
|l∗p|

(
k̃T

p (t)Γ
−1
p k̃p(t)+ l̃2

p(t)γ
−1
p

)
−

M

∑
p=1

1
|l∗p|

(
δ

k
p∥k̃p(t)∥2 −δ

k
p∥k∗p − kp(t0)∥2

)
−

M

∑
p=1

1
|l∗p|

(
δ

l
p l̃2

p(t)−δ
l
p
(
l∗p − lp(t0)

)2
)

(24)

≤ −κσ(ti)V (t)+dT (t)Pσ(ti)(t)d(t)

+
M

∑
p=1

1
|l∗p|

[
κσ(ti)λmax

(
Γ
−1
p
)
−δ

k
p

]
∥k̃p(t)∥2



+
M

∑
p=1

1
|l∗p|

[
κσ(ti)γ

−1
p −δ

l
p

]
l̃2
p(t)+Σ

where Σ = ∑
M
p=1

1
|l∗p|

(
δ k

p∥k∗p − kp(t0)∥2 +δ l
p
(
l∗p − lp(t0)

)2
)

.
According to (21), (24) is recast into

V̇ (t)≤ −κσ(ti)V (t)+dT (t)Pσ(ti)(t)d(t)+Σ. (25)

Due to the same reason as for (19), V (·) is non-increasing at
the switching instants. In light of this, the Lyapunov function
is attracted inside a ball centered at the origin with radius

BV =
1

minp∈M
{

κp
} (

Σ+max
p∈M

{
λmax (Pp(t))

}
∥d∥2

)
.

This implies that the switched system (1) with state-
feedback controller (4) is GUUB. Considering that ∥e(t)∥2 ≤
V (t)/minp∈M

{
λmin (Pp(t))

}
, it can be shown that the track-

ing error is attracted inside a ball centered at the origin with
the following radius:

BLeak =

√
Σ+maxp∈M

{
λmax (Pp(t))

}
∥d∥2

minp∈M
{

κp
}

minp∈M
{

λmin (Pp(t))
} .

This completes the proof.
Remark 4: Note that the ultimate bound of the tracking

error depends on the initial parameter estimate errors: when
the initial estimates are far away from the nominal param-
eters, a large tracking error is expected, and vice versa. In
light of this, comparing with (11) and (22), Assumption 2 is
removed for the adaptive law with leakage method (20) at the
expense of possibly impairing the steady-state performance
of the tracking error. This will be illustrated in the simulation
of adaptive control of leakage approach in Section IV.

IV. NUMERICAL EXAMPLE

In this section, a numerical example is used to demonstrate
the effectiveness of the proposed robust adaptive tracking
control scheme. Consider the following uncertain switched
linear system:

A1 =

−0.6 3.0 3.3
1.0 −0.1 2.1
−0.2 2.3 1.5

 , B1 =

−2.3
1.8
0.4


A2 =

2.6 3.6 1.2
1.8 −0.5 3.6
1.2 1.8 2.0

 , B2 =

 0.0
−0.4
−1.5


A3 =

3.5 2.4 1.3
2.4 2.2 2.3
3.9 2.6 −0.9

 , B3 =

 0.2
−1.3
−0.8


and the following reference switched model:

Am1 =

 7.9 26.1 32.8
−5.7 −18.1 −21.0
−1.7 −1.7 −3.6

 , Bm1 =

−2.3
1.8
0.4


Am2 =

 25.9 23.1 22.7
−7.5 −8.3 −5.0
−33.8 −27.4 −30.3

 , Bm2 =

 0.0
−0.4
−1.5


Am3 =

 7.3 4.7 2.5
−22.5 −12.7 −5.5
−11.4 −6.5 −5.7

 , Bm3 =

 0.2
−1.3
−0.8



Let κ1 = 0.1, κ2 = 0.15, and κ3 = 0.12, K = 1, and h = 2.
Solving the LMIs (6) gives

P10 =

0.02 0.03 0.03
0.03 0.04 0.04
0.03 0.04 0.05

 ,P11 =

0.15 0.17 0.19
0.17 0.30 0.34
0.19 0.34 0.44


P20 =

0.11 0.08 0.07
0.08 0.07 0.05
0.07 0.05 0.05

 ,P21 =

0.70 0.55 0.46
0.55 0.49 0.36
0.46 0.36 0.34


P30 =

 0.07 0.03 0.01
0.03 0.012 0.003

0.009 0.003 0.006

 ,P31 =

0.60 0.31 0.17
0.31 0.17 0.11
0.17 0.11 0.10


We select the switching interval ti+1 − ti = τd for i = 1,2,3.
Therefore, the time-varying positive matrices Pp(t) for p ∈
{1,2,3} are Pp(t) = (t − τd ·floor(t/τd)) · (Pp,1 −Pp,0)/τd +
Pp,0, where floor(t/τd) rounds t/τd to the nearest integer
less than or equal to t/τd. Before performing the adap-
tation process, we select a bounded disturbance d(t) =
[0.2sin(10t) e−0.1t 0.1cos(5t)]T , the initial conditions x0 =
[0 0 0]T , xm0 = [3 1 0]T , and the adaptive gains Γp = 10I3×3,
γp = 10, ∀p ∈ M . The switching signal is designed with a
dwell time τd = 2 as shown in Fig. 3.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Switching intants (s)

1

2

3

Fig. 3. The switching signal

A. Adaptive control with projection laws

We select the initial parameter estimates kp(0) = 0.2k∗p,
lp(0) = 0.2l∗p, ∀p ∈ M . Assume the parameter estimates
reside in the following known bounds: k1(t) ∈ [1.2k∗1 0.2k∗1],
ks(t)∈ [0.2k∗s 1.2k∗s ] with s∈ {2,3}, and lp(t)∈

[
0.2l∗p 1.2l∗p

]
with p ∈ {1,2,3}. The resulting tracking error is given in
Fig. 4, which shows that the tracking error is attracted inside
a ball.

B. Adaptive control with leakage approach

The leakage rates δ k
p = δ l

p = 0.015 are chosen to satisfy the
conditions (21). To study the effect of the initial conditions
of the parameter estimates on the steady-state performance
of the tracking error, we select the two initial conditions
of the parameter estimates kp(0) = 0.8k∗p, lp(0) = 0.8l∗p, and
kp(0) = 0.2k∗p, lp(0) = 0.2l∗p, ∀p ∈ M . The resulting tracking
errors based on the two initial conditions of parameter
estimates are given in Fig. 5–6, which show that the tracking
errors are attracted inside a ball. By comparing Fig. 5
and Fig. 6, it can be observed that larger initial parameter



estimation errors give rise to larger tracking errors. Moreover,
it can be noticed from Fig. 4 and Fig. 6 that the ultimate
bound of tracking error in Fig. 6 is bigger than that in
Fig. 4, which indicates that the adaptive law with leakage
may negatively impact the steady-state performance of the
tracking error when improper initial conditions in (8)–(20)
are selected.
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Fig. 4. The tracking error e(t) via projection laws
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Fig. 5. The tracking error e(t) with kp(0) = 0.8k∗p and lp(0) = 0.8l∗p
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Fig. 6. The tracking error e(t) with kp(0) = 0.2k∗p and lp(0) = 0.2l∗p

V. CONCLUSIONS

Robust adaptive control problem of uncertain switched lin-
ear systems has been studied. As an extension of the results
in [1], two control schemes have been introduced based on
parameter projection and a leakage approach, respectively.
With the robust adaptive control schemes, the closed-loop
switched linear systems have been shown to be globally
uniformly ultimately bounded. In addition, ultimate bounds
of the tracking error of both cases have been given, which has
indicated that the leakage approach might negatively impact

the steady-state performance of the tracking error compared
with parameter projection. Future work will focus on the
improvement of the adaptive law with leakage approach that
will not depend on the initial conditions.
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