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Optimal power scheduling of fuel-cell-car-based microgrids

Ioannis Sarantis, Farid Alavi, and Bart De Schutter

Abstract— A parking lot for fuel cell cars is considered
inside a microgrid where the fuel cell cars are exploited to
generate power inside the microgrid. A central control unit is
considered in the microgrid in order to guarantee the power
balance of the microgrid by means of scheduling the power
generation of fuel cell cars. To compensate the uncertainty in
the prediction of the load, three robust model predictive control
methods are designed. Simulation of a case study compares the
developed control methods and the performance of each method
is evaluated.

I. INTRODUCTION

The consequences of the uncontrolled and irresponsible
use of fossil fuels, as well as the constantly rising CO2 emis-
sions around the globe require a turn towards more renewable
ways of generating energy. An important step towards this
direction is made by integrating renewable energy sources
into power systems with the help of microgrids [1], [2].
Microgrids are structures that consist of loads and energy
sources that provide energy and heat to their local area and
they are treated as single controllable systems [3].

Fuel cell cars that are parked in a parking lot can be
considered as the distributed generation units of a microgrid.
The concept of fuel cell cars providing power to satisfy a
load demand while being parked is called “Car as Power
Plant” and is described analytically in [4]. Electricity, heat,
and clean water are the products of the fuel cell cars and
they can be used for commercial or industrial applications
[5].

There are various examples in the literature where model
predictive control (MPC) is used in order to optimally oper-
ate a microgrid. MPC is employed in [6] in order to control
distributed renewable generation units that are integrated in
an electrical grid. In [7], a supervisory model predictive
controller is designed for optimal power management and
control of a hydrogen-based microgrid. The authors of [8]
use modeling techniques for hybrid systems in order to
model the different components of the examined microgrid
and to develop a model predictive controller that minimizes
the microgrid’s operational costs. The common disadvantage
of all these MPC applications is that the inaccuracy in the
prediction of the power demand that needs to be satisfied or
the inaccuracy in the weather forecasts, when photovoltaic
panels or wind turbines are used, is not taken into account
when designing the controllers. The inherent uncertainty
in the power demand prediction and in the power profile
provided by the renewable generation units of a microgrid
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requires the use of robust MPC methods to guarantee the
power balance condition.

The work in [9] uses robust MPC in order to control a
microgrid that contains photovoltaic systems, wind turbines,
and fuel cell electric vehicles. A min-max robust MPC
approach is used to deal with the uncertainty of the power
demand and of the renewable power generation. However,
the control decisions are conservative as they are obtained
by using the min-max method. Moreover, in [10], min-max
robust MPC is employed to deal with the uncertainty in an
islanded microgrid; however, in that paper, no exchange of
power between the microgrid and the main power network
is considered.

Chance-constrained robust MPC is employed in [11],
where chance constraints are formed for the power exchange
between the microgrid and the main power network in order
to compensate for any power prediction uncertainty. In [11],
the uncertainty is assumed to be normally distributed. In case
of a constraint violation, the main power network provides
the extra required power in order to ensure that the power
balance is preserved inside the microgrid. However, the
model of the microgrid does not include binary variables to
represent the different modes of the power generation units
and therefore, unaccepted scenarios like the simultaneous
charging and discharging of the batteries could happen.

In [12], a scenario-based robust MPC technique is used for
the optimal operation of a microgrid. In the formulation of
the control method, the uncertainty due to fluctuating power
demand and generation from renewable energy sources is
taken into account and modeled by a finite number of
scenarios. However, the problem setting in [12] minimizes
the constraint violations in the cost function by using soft
constraints without bounding the number of violations that
occur.

In this paper, we consider the scenario of [13] and develop
robust MPC methods for power scheduling of fuel cell cars.
The main development of this paper compared to [13] is
the development of three alternative robust MPC methods
for the problem formulation. In addition, a simulation case
study compares the developed methods to a standard min-
max MPC algorithm.

The rest of this paper is organized as follows. Section II
describes the modeling and the operational cost of the con-
sidered microgrid. In section III, we describe the developed
robust MPC methods for power scheduling of the microgrid.
A numerical case study shows the operation of the microgrid
for all the developed methods in Section IV. Finally, Section
V draws the main conclusions of this paper.
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Fig. 1: Representation of the considered microgrid. The
dashed lines indicate the electrical connections.

II. MODELING OF THE MICROGRID

A. Overview

The considered structure of the microgrid is the same as in
[13] and is depicted in Figure 1. The microgrid can exchange
power with the main power network. At the same time, the
parking lot is able to generate electricity in order to cover the
power demand of the load. If the aggregated load in addition
to the power generation of the parking lot is positive, the
excess power would be injected into the main power network.
Conversely, the need for extra electricity inside the microgrid
is compensated by draining power from the main power
network. Considering the physical limitation of the power
lines, there is a constraint on the maximum power exchange
between the microgrid and the power network. We assume
that the future load inside the microgrid is predictable with
a reasonable accuracy. The difference between the predicted
and the actual power demand is considered as an uncertainty
in the system.

A central control unit is assumed inside the parking lot
that can operate the fuel cells and the batteries of all parked
cars. The objective of the controller is to operate the cars in
such a way that, firstly, the physical constraints related to the
operation of the cars and the maximum power exchange are
satisfied and, secondly, the operational cost of the microgrid
is minimized. Dealing with uncertainty in the prediction of
the load requires a robust control algorithm for the central
control unit; therefore, the objective of this paper is to
develop chance-constrained and scenario-based robust MPC
methods. The system is modeled in the simplest way because
a simpler model results in the reduction of the computational
burden of the robust MPC methods.

B. Fuel cell model

The fuel cell’s behavior, while it is turned off and while it
is turned on, is described in discrete time by the following

piece-wise affine system [13], [14]:

xf,i(k+1) ={
xf,i(k) if sf,i(k) = 0
xf,i(k)− (αf,iuf,i(k)+βf,i)Ts if sf,i(k) = 1,

(1)

where Ts is the sampling interval of the discrete-time system
and xf,i(k) is the amount of hydrogen in the storage tank.
Here, βf,i [

g/s] is the rate with which the fuel cell consumes
hydrogen in the stand-by operation mode, i.e. when the fuel
cell is turned on but the net power generation is zero, and
αf,i [

g/J] is the rate of hydrogen consumption due to the net
power generation.

The continuous input uf,i(k) denotes the net power gener-
ation of the fuel cell i while the binary input sf,i(k) indicates
the on (sf,i(k) = 1) or off (sf,i(k) = 0) operation mode of the
fuel cell i. The definition of the input variables implies that:

uf,i(k)> 0 ⇔ sf,i(k) = 1. (2)

If the minimum and the maximum power generation of the
fuel cell are assumed to be zero and P̄f,i respectively, then
the continuous input uf,i(k) is bounded as:

0 ≤ uf,i(k)≤ P̄f,i. (3)

C. Battery model

The battery of the fuel cell vehicle i can be charged at
one time instant and discharged at another time instant.
Therefore, two operation modes of the battery are needed
in order to model it [8]. A continuous input ub,i(k) denotes
the power that is exchanged between the battery and the
microgrid. If the operation is in the charging mode, then
ub,i(k) is positive; conversely, if the operation is in the
discharging mode, then ub,i(k) is negative.

The energy stored in the battery is considered as the state
of the battery, xb,i(k). As a result, the model of the battery
is described by:

xb,i(k+1) =

{
xb,i(k)+ Ts

ηd,i
ub,i(k) if sb,i(k) = 0

xb,i(k)+Tsηc,iub,i(k) if sb,i(k) = 1,
(4)

where sb,i(k) is a binary variable indicating the charging
(sb,i(k) = 1) or discharging (sb,i(k) = 0) operating mode.
The charging and discharging efficiencies are ηc,i and ηd,i,
respectively. The definition of the input ub,i(k) and of the
binary variable sb,i(k) implies that:

ub,i(k)≥ 0 ⇔ sb,i(k) = 1. (5)

The physical limits on the maximum charging and discharg-
ing power of the battery imply that:

Pb,i ≤ ub,i(k)≤ P̄b,i, (6)

where Pb,i is the maximum power that can discharge the
battery i and P̄b,i is the maximum power that can charge the
battery i.



D. Aggregated model of the microgrid

Taking into account the above models of the fuel cell and
the battery, the state of vehicle i is defined as:

xi(k+1) = xi(k)+ (7)

Ts

[
−sf,i(k)(αf,iuf,i(k)+βf,i)

sb,i(k)(ηc,i − 1
ηd,i

)ub,i(k)+ 1
ηd,i

ub,i(k)

]
,

where xi(k) = [xf,i(k),xb,i(k)]
T.

By defining ui(k) = [uf,i(k),ub,i(k),sf,i(k)]
T and zi(k) =

[zf,i(k),zb,i(k)]
T, the state space model (7) can be transformed

into the following mixed-logical dynamical form following
the procedure of [15]:

xi(k+1) = xi(k)+b1,iui(k)+b2,izi(k) (8)

where

b1,i =

[
0 0 −Tsβf,i
0 Ts

ηd,i
0

]
(9a)

b2,i =

[
−Tsαf,i 0

0 Ts(ηc,i − 1
ηd,i

)

]
. (9b)

Considering the number of cars Nveh that are parked in the
parking lot, the augmented state space model is defined as:

x(k+1) = x(k)+B1u(k)+B2z(k), (10)

where x(k) =
[
xT

1 (k), ...,x
T
Nveh

(k)
]T

, u(k) =[
uT

1 (k), ...,u
T
Nveh

(k)
]T

, and z(k) =
[
zT

1 (k), ...,z
T
Nveh

(k)
]T

.
The matrices B1 and B2 are defined as

B1 = diag{b1,1, ...,b1,Nveh} (11a)
B2 = diag{b2,1, ...,b2,Nveh}. (11b)

The diag operator in (11a) and (11b), indicates that the
matrices B1 and B2 are diagonal matrices, where the main
diagonal is formed by the elements in the brackets.

E. Operational cost of the microgrid

The operational cost of the microgrid consists of several
factors. Considering a prediction horizon Np, the operational
cost of the microgrid for the whole prediction period is
defined as:

J(k) =
Nveh

∑
i=1

(Np−1

∑
k=0

(
Wf,i|∆sf,i(k)|−Ce(k)(uf,i(k)−ub,i(k))

)
+CH2

(
xf,i(k)− xf,i(k+Np)

)
+Ce,batt

(
xb,i(k)− xb,i(k+Np)

))
+

Np−1

∑
k=0

Ce(k)ein(k). (12)

The operational cost of the system takes into account the
consumption of hydrogen and the consumption of the energy
that is stored in the batteries of the cars. The price of the
hydrogen is denoted as CH2 and the price of the energy of the
batteries is denoted as Ce,batt. Moreover, Ce(k) is the price of

the electricity power and ein(k) is the power that is imported
from the main power network at time step k.

The degradation cost is caused by the transition from one
mode of the vehicle’s fuel cell to another. For example, if
the fuel cell is off and at the next time step it is switched on,
this change of operational mode causes degradation. In (12),
the ∆ operator is used to represent the difference between
two consecutive values of its operand, e.g. ∆sf,i(k) = sf,i(k)−
sf,i(k−1), and Wf,i is a weight that is determined based on
the specification of fuel cell i.

III. ROBUST MPC METHODS
A. Min-max robust MPC

The power balance inside the microgrid is described by
the following power balance equation:

Pd(k)+ω(k) = ein(k)+
Nveh

∑
i=1

(
uf,i(k)−ub,i(k)

)
, (13)

where Pd(k) is the prediction of the power demand of the load

and
Nveh
∑

i=1
uf,i(k)−ub,i(k) is the power provided by the parking

lot. The uncertainty, ω(k), in the system is unknown and
denotes the deviation of the prediction of the power demand
from its actual value.

The uncertainty ω(k) influences the operational cost of the
microgrid through the power ein(k) that is exchanged with
the main power network, which is assumed to be constrained
as:

ein ≤ ein(k)≤ ēin. (14)

Therefore, the constraints that need to be satisfied regarding
the power balance inside the microgrid read as:

Pd(k)+ω(k)−
Nveh

∑
i=1

(
uf,i(k)−ub,i(k)

)
≥ ein (15a)

Pd(k)+ω(k)−
Nveh

∑
i=1

(
uf,i(k)−ub,i(k)

)
≤ ēin. (15b)

By assuming that the uncertainty is bounded such that:

ω ≤ ω(k)≤ ω̄, (16)

a min-max robust MPC strategy for this problem setting
is designed in [13]. The aim the proposed strategy is to
minimize the operational cost of the microgrid with respect to
the worst case realization of the uncertainty. The optimization
problem of the min-max strategy in [13] is formulated as:

min
Ṽ

{
max

{
W0Ṽ +Wd ˜̄ω,W0Ṽ +Wdω̃

}}
(17)

subject to A1Ṽ ≤ G1.

In (17), Ṽ is the decision vector of the optimization problem
over the prediction horizon, Np, of MPC. Moreover, W0 and
Wd are constant matrices and ω̃ = [ω,ω, ...,ω]TNp×1 and ˜̄ω =

[ω̄, ω̄, ..., ω̄]TNp×1. In addition, A1 and G1 are used in order to
incorporate the power balance constraints (15) and the rest
of the system’s constraints, which are explicitly described in
[13].



B. Chance-constrained robust MPC

In chance-constrained robust MPC the uncertainty is con-
sidered as a stochastic process. As a result, the cost function
of the optimization problem depends on the expected value
of the uncertainty. In this paper, the probability distribution
of the uncertainty is assumed to be a truncated normal
distribution, ω(k) ∼ Tr(0,σ2,ω, ω̄). Here, the mean of the
assumed truncated distribution is zero, σ denotes the stan-
dard deviation of the distribution, and ω and ω̄ represent
the lower and the upper bound on the value of the random
process respectively.

In general, in chance-constrained robust MPC we trans-
form some, or all, of the system’s constraints into prob-
abilistic constraints. In this paper, we transform only the
constraints (15) into probabilistic constraints as:

Pr
[Nveh

∑
i=1

(
uf,i(k)−ub,i(k)

)
−Pd(k)−ω(k)≤−ein(k)

]
≥ 1−α (18a)

Pr
[
−

Nveh

∑
i=1

(
uf,i(k)−ub,i(k)

)
+Pd(k)+ω(k)≤ ēin(k)

]
≥ 1−α, (18b)

where α is the probability level of the violation of the
constraints. Therefore, by allowing the violation of the con-
straints in (15), any deviation of the load from the predicted
values can be compensated by the main power network.

In general, the presence of a chance constraint inequality,
such as (18), makes the optimization problem difficult to
solve numerically because the constraints have a probabilistic
form. However, by assuming that the distribution of the
uncertainty in this case is approximated by the normal distri-
bution, i.e. ω(k)∼ N(0,σ2), it is possible to use the inverse
standard cumulative distribution function, Φ−1, in order to
obtain an easily solvable problem [11], [16]. Therefore, by
using the inverse standard cumulative distribution function,
the constraints (18) can be written as:

Nveh

∑
i=1

(
uf,i(k)−ub,i(k)

)
≤−ein(k)+Pd(k)+

σΦ
−1(1−α) (19a)

−
Nveh

∑
i=1

(
uf,i(k)−ub,i(k)

)
≤ ēin(k)−Pd(k)−

σΦ
−1(1−α). (19b)

In chance-constrained robust MPC, the expected value of
the uncertainty ω(k) appears in the cost function:

min
Ṽ

W0Ṽ +WdE[ω̃], (20)

where ω̃ = [ω(k),ω(k + 1), ...,ω(k + Np − 1)]T. Here, the
stacked vector ω̃ depends on k; however, k is dropped here
and in the rest of this paper for the shake of simplicity. If the
uncertainty has a normal distribution, i.e., ω(k)∼ N(0,σ2),

then E[ω̃] = 0. Therefore, the optimization problem for the
chance-constrained method reads as:

min
Ṽ

W0Ṽ (21)

subject to A2Ṽ ≤ G2.

Here, A2 and G2 are used to express the constraints (19) and
the rest of the system’s constraints.

C. Standard scenario-based robust MPC

In the standard scenario-based robust MPC strategy, the
uncertainty in the power demand prediction is assumed to
be described by a finite number of scenarios: ω̃s for s =
1, ..., S. We call a scenario as a sequence of uncertainties
in consecutive time steps as ω̃s = [ωs(k), . . . ,ωs(k + Np −
1)]T, where for all j ∈ {0, . . . ,Np − 1}, ωs(k + j) ∈ [ω, ω̄].
Each scenario s = 1, ..., S is assigned to a probability of
occurrence ps ∈ [0,1] and since the scenarios describe the
same uncertainty it holds that:

S
∑

s=1
ps = 1. (22)

The standard scenario-based strategy uses the available sce-
narios that describe the uncertainty and aims to minimize the
average operational cost of the microgrid, which depends on
the available scenarios.

The constraints related to the limits of the exchanged
power between the microgrid and the main power network
are now defined as:

Pd(k+ j)+ωs(k+ j)−
Nveh

∑
i=1

(
uf,i(k+ j)−ub,i(k+ j)

)
≥ ein (23a)

Pd(k+ j)+ωs(k+ j)−
Nveh

∑
i=1

(
uf,i(k+ j)−ub,i(k+ j)

)
≤ ēin, (23b)

which should hold for every scenario s = 1, ...,S.
Similar to the previous methods, in order to minimize the

average operational cost, the following optimization problem
should be solved:

min
Ṽ

{
W0Ṽ +Wd

S

∑
s=1

psω̃s

}
(24)

subject to A3Ṽ ≤ G3.

D. Lenient-scenario-based robust MPC

The ability of the microgrid to exchange power with the
main power network can be used to soften the constraints
(23) that are related to the main power network limits.
The soft constraints imply that this method is lenient on
the violation of the constraints as now there is not any
hard constraints related to the exchanged power with the
main power network. Therefore, in this control strategy, the
maximum capacity of power connection lines are not hard
constraints, but a part of the cost in the optimization problem.



In order to soften the constraints, a penalty cost term is
added to the cost function of the optimization problem (24).
Therefore, the system cost function at time step k reads as:

W0Ṽ +Wd

S

∑
s=1

psω̃s + Jp, (25)

where Jp is a penalty term defined as:

Jp =
S

∑
s=1

k+Np−1

∑
k=0

Ce(k)max
{

0, (26)

−Pd(k)− ω̃sub,s(k)+
Nveh

∑
i=1

(
uf,i(k)−ub,i(k)

)
+ ein,

Pd(k)+ ω̃sub,s(k)−
Nveh

∑
i=1

(
uf,i(k)−ub,i(k)

)
− ēin

}
.

If the constraint (23) is satisfied, then the penalty cost term is
zero. Otherwise, a penalty term is added to the cost function
that is equal to the amount of excess energy exchange
between the microgrid and the power grid multiplied by the
electricity price Ce.

In order to incorporate the cost function (25) in a Mixed
Integer Linear Programming (MILP) problem, an auxiliary
continuous variable, cs(k), is introduced that should satisfy
the following constraints for all time steps k and for all of
the scenarios:

cs(k)≥ 0 (27a)
cs(k)≥−Pd(k)− ω̃s(k)+Pvp(k)+ ein (27b)
cs(k)≥ Pd(k)+ ω̃s(k)−Pvp(k)− ēin. (27c)

In fact, the value of the auxiliary variable cs(k) indicates how
much power is violating the main power network limits at
time step k in the case that scenario s is realized.

By defining a new vector Ṽ2 that includes both the previous
optimization variables in Ṽ and also the new auxiliary
variables c̃s = [cs(k), ...,cs(k + Np − 1)]T, the optimization
problem of the controller can be written as:

min
Ṽ2

{
W1Ṽ2 +Wd

S

∑
s=1

psω̃s

}
(28)

subject to A4Ṽ2 ≤ G4,

where W1 is a constant matrix.

IV. CASE STUDY

The control strategies that were developed in Section III
are now implemented in a case study where two fuel cell
cars are considered inside the parking lot. The constant
coefficients related to the fuel cells of the cars are assumed to
be αf,1 = αf,2 =

0.47
28 · 10−3 [g/J] and βf,1 = βf,2 = 0.03 [g/s],

based on the results of [14]. Moreover, the charging and
discharging constants of the cars’ batteries are assumed
to be ηc,1 = ηd,1 = 0.9 and ηc,2 = ηd,2 = 0.8 respectively,
according to [17].

The owners of the fuel cell cars require that the amount
of hydrogen in the storage tank does not become less than 1
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Fig. 2: Power demand, Pd, that needs to be satisfied in 24
hours and uncertainty ω

kg and the energy that is stored in each battery is required
to remain between 10 kWh and 24 kWh.

Furthermore, the maximum power generation of each fuel
cell is assumed to be 30 kW. The maximum power of charg-
ing or discharging the batteries is assumed to be 2 kW. In
addition, we assume a connection between the microgrid and
the power grid with a maximum power exchange capability
of 66 kW. Therefore, the exchanged power between the
microgrid and the main power network is constrained to be
in the interval [-66, 66] kW.

The probability level of the violation of the constraints
for the chance-constrained robust MPC method is set to
α = 0.05. The scenarios of the uncertainty for the scenario-
based methods and the realized uncertainty follow the trun-
cated normal distribution, i.e. Tr(0,σ2,ω, ω̄). Here, σ =
max{|ω̄|,|ω|}

3 .
The 24-hours predicted power demand that needs to be

satisfied is adapted from [13] and is depicted in Figure 2.
Moreover, this figure shows the bounds of the considered
uncertainty in the power demand, which are ω = −10 kW
and ω̄ = 10 kW, as well as the realized uncertainty, ω . A
scenario set that contains 50 scenarios of the uncertainty
is considered for the scenario-based methods and all the
scenarios that belong to the scenario set are considered to
be equiprobable.

The simulation is performed in MATLAB R2015b [18]
and the solver Gurobi [19] is used in order to solve the
MILP problem of each method.

The three new developed robust MPC methods are able
to provide a less conservative power scheduling of the
microgrid compared to the min-max strategy, as it is depicted
in Table I. This table provides a comparison between the
operational closed-loop cost of the microgrid, the number
of the constraint violations, and the violating power for each
method in 24 hours. Furthermore, the power that is imported
from the main power network in the chance-constrained
and the lenient-scenario-based methods is depicted in Figure
3. Any value of imported power above the black line in
this figure shows a violation of the main power network
constraints.

All the new developed methods reduce the operational cost



TABLE I: Operational closed-loop cost (e), number of
constraint violations, total violating power (kW), and peak
of violating power (kW)

Min-max Chance-
constrained

Standard
scenario-based

Lenient-
scenario-based

Operational
closed-loop cost (e) 245.83 217.97 228.41 215.06

Number of
constraint violations 0 4 1 7

Total violating
power (kW) 0 7.22 3.54 12.47

Peak of violating
power (kW) 0 3.97 3.54 4.31
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Fig. 3: Imported power from the main power network related
to the chance-constrained method and the lenient-scenario-
based method

of the microgrid. The most violations happen in the lenient-
scenario-based method because of the soft constraints. In
addition, the standard scenario-based strategy cannot guar-
antee the satisfaction of the power exchange constraint, as
one violation has happened in our simulation. The peak of the
violating power in all of the developed methods is relatively
small considering the bounds of the uncertainty, which
implies that the main power network is not continuously
strained by the violating power.

If the violation of the main power network constraints
does not result in a critical situation, which we have assumed
for typical power connection lines between a microgrid and
the power network, the lenient-scenario-based robust MPC
strategy results in lower operational costs compared to the
other developed methods. However, a chance-constrained
method allow us to set a bound on the constraints violation,
and, hence, this method can control the strain on the power
connection lines.

V. CONCLUSIONS

In this paper, we have developed three robust MPC
strategies for the optimal power scheduling of the fuel-
cell-car-based microgrid; namely, the chance-constrained, the
scenario-based, and the lenient-scenario-based method. An
advantage of the methods developed in this paper compared
to the min-max approach developed in [13] is the reduction
of conservatism and reaching a better system performance.
The improvement in the system performance is achieved at
the cost of violating constraints. Among the three developed

control methods, the chance-constrained method allows us
to determine the probability of the constraint violations.
The lenient-scenario-based method results in a satisfactory
low operational cost compared to the standard scenario-
based method. However, the standard scenario-based method
has a lower rate of constraint violations compared to the
lenient scenario-based method. The severity of the constraint
violations in real applications is the key in the selection of
the most suitable control method.
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