A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem

M. Burger, Z. Su, and B. De Schutter

If you want to cite this report, please use the following reference instead:

*This report can also be downloaded via https://pub.deschutter.info/abs/17_013.html
A Node Current-based 2-Index Formulation for the Fixed-Destination Multi-Depot Travelling Salesman Problem

M. Burgera,*, Z. Sub, B. De Schutterb

aTBA, Karrepaad 2a, 2623 AP Delft, The Netherlands
bDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

The travelling salesman problem forms a basis for many optimisation problems in logistics, finance, and engineering. Several variants exist to accommodate for different problem types. In this article we discuss the fixed-destination, multi-depot travelling salesman problem, where several salesmen will start from different depots, and they are required to return to the depot they originated from. We propose a novel formulation for this problem using 2-index binary variables and node currents, and compare it to other 2-index formulations from the literature. This novel formulation requires less binary variables and continuous variables to formulate a problem, resulting in lower computation times. Using a large benchmark the effectiveness of the new formulation is demonstrated.

Keywords: travelling salesman, node current, integer programming, fixed-destination problem

1. INTRODUCTION

Although the travelling salesman problem (TSP) can be stated simply as “Find the shortest route that connects all cities on a map”, solving this problem has kept people busy for decades. The ongoing quest for faster algorithms for finding (an approximation of) the optimal solution of the TSP has led to a large amount of literature on the subject. Heuristic methods \cite{22, 29} can be used to find solutions of large TSP instances quickly, but no guarantees can be given for finding the optimal solution. In this article we consider exact formulations that guarantee finding the globally optimal solution. A comprehensive discussion of the history and state-of-the-art for solving the TSP can be found in \cite{1, 14}.

1.1. Literature Review

The power of the TSP \cite{15, 30, 33} does not only lie in finding tours of minimal distance along cities, but also in the fact that it forms the mathematical basis of many scheduling and routing problems. Extensions such as the vehicle routing problem \cite{25, 46} and the pick-up and delivery problem \cite{36, 37, 42, 43} are important problems in the fields of logistics and economics. Recent applications include the optimal maintenance routing and scheduling for offshore wind farms \cite{23}, and the optimal delivery or pickup of goods using hybrid electric vehicles \cite{17}. In those problems one usually tries to minimise some ‘cost’ (e.g. distance, time, money, or a combination) using multiple ‘salesmen’ (e.g. people, trucks, air planes, vessels) that can visit the ‘cities’ (e.g. shops, harbours, airports, or actual cities). The use of multiple salesmen to visit the cities makes the problems harder to solve due to the increase in possible solutions. The multiple travelling salesmen problem (mTSP) is at the basis of the vehicle routing problem and the pick-up and delivery problem.

The essence of mTSP is to find the shortest total travel distance for multiple salesmen starting from and returning to a single depot/home city. Since certain problems require more than one depot (e.g. for delivering goods to shops that can be supplied from multiple storage facilities), an extension to the multi-depot multiple-salesmen TSP (MmTSP) has been made \cite{3}. In this case the problem consists of finding the shortest distance such that several salesmen will start at a depot, they visit all the cities once (and only once), and return to a depot again. When it is not important at what depot the salesmen end their route, we talk about a nonfixed-destination prob-
lem; when the salesmen are supposed to return to their original depot we talk about a fixed-destination problem [24]. The work of [6] is also concerned with multi-depot TSPs, where the number of salesmen per depot is not limited and the travel distances are symmetric. In this article we will focus on problems with a fixed number of salesmen per depot, and asymmetric costs.

The fixed-destination Multi-depot multiple-salesmen TSP (FMmTSP) is a restricted case of the nonfixed-destination problem, with the additional constraint that all salesmen should return to their original location. Therefore, the former is more difficult to solve than the latter; the solutions to the FMmTSP are a subset of the solutions to the MmTSP. In [24] a mixed-integer linear programming (MILP) description for the fixed-destination problem has been proposed using 3-index decision variables, resulting in a large increase in binary variables for each added depot.

Cycle (or subtour) elimination constraints (CECs) are used to ensure that no cycles exist within the set of city nodes. They have been a topic of active research over many decades, starting with the use of loop constraints by Dantzig et al. [15] in 1954, the node potentials by Miller et al. [30] in 1960, and (multi)-commodity flow-based constraints in [20] starting from 1978. Loop conditions give strong linear programming relaxations, but the number of constraints grows exponentially with the problem size. The number of node-potential-based constraints only grows quadratically with the problem size, but they result in much weaker relaxations. Using multi-commodity flow formulations it is possible to obtain strong relaxations, but with a number of constraints growing cubically in the problem size.

Cycle imposition constraints (CICs) can be used to ensure a (minimum) number of cycles in a set of nodes. Fixed-destination solutions for TSP-like problems can be created by enforcing that there should be at least D cycles in the combined set of depot and city nodes, while using CECs to ensure that no subtours exist in the set of city nodes; when D equals the number of depots this will result in exactly D cycles in the network; one for each of the depots. CICs have only recently been discussed in the literature, starting with the path elimination constraints of Belenguer et al. [5] in 2011, the multi-commodity flow-based constraints of Bektas [4] in 2012, and the node currents of [8] in 2014.

Table 1: Overview of CECs and CICs and the order of their numbers

<table>
<thead>
<tr>
<th>Order</th>
<th>CECs</th>
<th>CICs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(N^3)$</td>
<td>node potentials [30]</td>
<td>node currents [8]</td>
</tr>
</tbody>
</table>

1.2. Contributions

The main contribution of this article is the generalisation of the node current constraints from [8] for the one-salesman-per-depot case to the multiple-salesmen-per-depot case, resulting in a novel formulation for FMmTSPs with asymmetric costs. Furthermore, assignment constraints are presented that limit the number of salesmen per depot for the MmTSP.

Node currents are used for cycle imposition constraints, which ensure each salesman to return to his original depot. They can be seen as the dual to the node potentials introduced by Miller et al. [30] in their subtour elimination constraints. We have used a preliminary version of these cycle imposition constraints for micro-ferry scheduling problems with the purpose of identifying which micro-ferry will pick up which customer [10], and for the routing of multiple harvesters [9]. In the current article this method is used to enforce fixed-destination solutions to the MmTSP.

For an FMmTSP with L nodes/locations, including D depots and C cities, two approaches where $L = 2D + C$ exist in the literature [4, 32]; we will introduce an approach that uses $L = D + C$ nodes, thereby reducing the amount of costly binary variables2. This formulation has been presented for the fixed-destination, multi-depot, single-salesman-per-depot TSP in [8]; here we introduce the generalisation for problems with multiple salesmen per depot.

1.3. Outline

Section 2 provides an introduction to the FMmTSP, and defines the problem discussed in this article. An FMmTSP formulation consists of four components, which are discussed in detail in Section 3. The main contribution of this article is the introduction of node currents as a means to enforce fixed-destination solutions through cycle imposition constraints. This approach is discussed in Section 4, and it is compared to two existing approaches. A computational comparison for three distinct FMmTSP formulations will be given in Section 5, followed by concluding remarks in Section 6.

2In general, using more binary variables will lead to larger computation times for solving the problem.
2. PROBLEM DESCRIPTION

For the mTSP with one depot (and multiple salesmen) it is obvious that all salesmen should return to this single depot. However, when considering multiple depots, two situations can occur: either the salesmen may end their tour at any depot, or they are required to return to their original depot. The latter is a restricted case of the former and can be obtained by using additional constraints, as will be discussed next.

2.1. Description of the MmTSP

We consider the MmTSP, where there are D depots available from where C cities should be visited. Each depot d has a certain number of salesmen available, indicated by md. Each city should be visited by one and only one salesman. The cost to travel from city i to j is denoted by the constant cij. The costs can be asymmetric, i.e., cij and cji might be different. The decision variable xij indicates whether (xij = 1) or not (xij = 0) city j is visited directly after city i by a salesman.

The locations of both the cities and the salesmen can be taken into account in the modelling by denoting both the set of the depots (where the salesmen are) and the set of the cities as one set of L = C + D locations. The sets D, C, and L—with associated the depots, the cities, and the locations respectively—are defined as

\[D = \{1, \ldots, D\}, \quad C = \{D + 1, \ldots, L\}, \quad L = D \cup C. \] \hspace{1cm} (1)

2.2. Description of the FMmTSP

For the fixed-destination problems, the additional restriction that all salesmen should return to their original depots makes the FMmTSP more difficult to solve. The reason is that compared with the non-fixed destination MmTSP, new auxiliary variables or decision variables of higher index are required for the fixed-destination setting to impose the additional restriction that each salesman must return to his departing depot. In the literature often the (fixed-destination) multi-depot symmetric TSP has been proposed by Oberlin et al. [31, 32] by using a copy of the depot nodes as in (3). More recently Bektas [4] has proposed a method to solve the FMmTSP using \(D' \) based on commodity flows. In Section 4 we will introduce a formulation that only requires \(L = D + C \) nodes to represent the same problem.

\[L' = D \cup C \cup D', \] \hspace{1cm} (2)

where the copied set of the D depots in D is defined as

\[D' = \{1', \ldots, D'\} = \{L+1, \ldots, L+D\}, \] \hspace{1cm} (3)

such that node \(i \) and node \(i' = L+i \) represent the start and end depot of depot \(i \in D \), respectively. This formulation results in \(L' = 2D + C \) nodes in the graph.3

A transformation of the MmTSP problem to an asymmetric TSP has been proposed by Oberlin et al. [31, 32] by using a copy of the depot nodes as in (3). More recently Bektas [4] has proposed a method to solve the FMmTSP using \(D' \) based on commodity flows. In Section 4 we will introduce a formulation that only requires \(L = D + C \) nodes to represent the same problem.

3With an efficient implementation where the start node only has outgoing arcs and the end node only has incoming arcs the number of arcs (and thereby the number of binary variables) remains the same.
3. PROBLEM FORMULATION

The FMmTSP can be described as a mathematical program consisting of the following components:

\[
\begin{align*}
\text{minimise} & \quad \text{costs} \\
\text{subject to} & \quad \text{assignment constraints} \\
& \quad \text{cycle elimination constraints} \\
& \quad \text{cycle imposition constraints}
\end{align*}
\]

(4a) (4b) (4c) (4d)

In this section we provide a brief overview of the currently available types of constraints for each of the components. For a more thorough discussion on the available cycle (subtour) elimination constraints (including the relations of their linear relaxation strengths) we refer to [41] and the references therein.

For ease of notation we will use the index \(d'\) and the sets \(D'\) and \(L'\) in this section, where their definition will depend on the type of formulation that is used, as specified in Table 2.

Table 2: The definition of prime symbols for formulations with and without depot-node copies.

<table>
<thead>
<tr>
<th></th>
<th>with copies of depots</th>
<th>without copies of depots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d')</td>
<td>(d + L)</td>
<td>(d)</td>
</tr>
<tr>
<td>(D')</td>
<td>([L + 1, \ldots, L + D])</td>
<td>(D)</td>
</tr>
<tr>
<td>(L')</td>
<td>([1, \ldots, L + D])</td>
<td>(L)</td>
</tr>
</tbody>
</table>

3.1. Costs

The cost in (FMm)TSPs is the distance the salesmen travel, resulting in minimising the total travel distance

\[
J_d = \sum_{i \in L} \sum_{j \in L} c_{ij} x_{ij},
\]

(5)

where \(c_{ij} \geq 0\) is the travel distance between cities \(i\) and \(j\), and \(x_{ij} \in \{0, 1\}\) is a decision variable satisfying

\[
x_{ij} = \begin{cases}
1 & \text{if city } j \text{ is visited directly after city } i, \\
0 & \text{otherwise}.
\end{cases}
\]

(6)

When using 3-index decision variables \(x_{ijk}\) the total travel distance is given by

\[
J_d = \sum_{i \in L} \sum_{j \in L} \sum_{k \in D} c_{ijk} x_{ijk},
\]

(7)

3.2. Assignment Constraints

The assignment constraints ensure that each node has exactly one incoming arc and one outgoing arc (see Figure 1), thereby satisfying a necessary condition for visiting the cities once and only once.

3.2.1. Description of the assignment constraints

The assignment constraints for the (F)MmTSP [3, 27] are given by

\[
\sum_{j \in D} x_{id} = m_d \quad \forall d \in D
\]

(9a)

\[
\sum_{j \in C} x_{ij} = 1 \quad \forall i \in C
\]

(9b)

\[
\sum_{i \in L} x_{ij} = 1 \quad \forall j \in C
\]

(9c)

\[
\sum_{i \in L} x_{id} = m_d \quad \forall d' \in D'
\]

(9d)

\[
x_{ij} \in \{0, 1\} \quad \forall i, j \in L'
\]

(9e)

Due to (9a) all of the \(m_d\) salesmen will leave their depot \(d\), and by (9b) each city \(i\) is succeeded by exactly one location (a salesman leaves the city). Furthermore, equations (9c) ensure that each city \(j\) is preceded by exactly one location (a salesman enters the city), whereas (9d) ensures that \(m_d\) salesmen will return to depot \(d'\). The set \(D'\) denotes —depending on the problem formulation— either a copy of the depot nodes, or the original set \(D\) of depot nodes, as defined in Table 2. Finally, (9e) ensures that the decision variable \(x_{ij}\) is treated as a binary variable.

3.2.2. Variants for the assignment constraints

The assignment constraints in (9) force all \(m_d\) salesmen to leave their depot, and also require \(m_d\) salesmen to return to depot \(d\). The former is restrictive for both fixed- and nonfixed-destination problems, whereas the latter only restricts the solutions for the FMmTSP. Both restrictions can be loosened as shown next.

Idle salesmen: To allow salesmen to stay at the depot without visiting a city (hence some salesmen may be

\[c_{ij} \geq 0\] is the travel distance between cities \(i\) and \(j\), and \(x_{ijk} \in \{0, 1\}\) is a decision variable satisfying

\[
x_{ijk} = \begin{cases}
1 & \text{if city } j \text{ is visited directly after city } i \text{ by a salesman originating from depot } k, \\
0 & \text{otherwise}.
\end{cases}
\]

(8)

\[c_{ij} \geq 0\] is the travel distance between cities \(i\) and \(j\), and \(x_{ijk} \in \{0, 1\}\) is a decision variable satisfying

\[
x_{ijk} = \begin{cases}
1 & \text{if city } j \text{ is visited directly after city } i \text{ by a salesman originating from depot } k, \\
0 & \text{otherwise}.
\end{cases}
\]

(8)

\[c_{ij} \geq 0\] is the travel distance between cities \(i\) and \(j\), and \(x_{ijk} \in \{0, 1\}\) is a decision variable satisfying

\[
x_{ijk} = \begin{cases}
1 & \text{if city } j \text{ is visited directly after city } i \text{ by a salesman originating from depot } k, \\
0 & \text{otherwise}.
\end{cases}
\]

(8)

\[c_{ij} \geq 0\] is the travel distance between cities \(i\) and \(j\), and \(x_{ijk} \in \{0, 1\}\) is a decision variable satisfying

\[
x_{ijk} = \begin{cases}
1 & \text{if city } j \text{ is visited directly after city } i \text{ by a salesman originating from depot } k, \\
0 & \text{otherwise}.
\end{cases}
\]

(8)

\[c_{ij} \geq 0\] is the travel distance between cities \(i\) and \(j\), and \(x_{ijk} \in \{0, 1\}\) is a decision variable satisfying

\[
x_{ijk} = \begin{cases}
1 & \text{if city } j \text{ is visited directly after city } i \text{ by a salesman originating from depot } k, \\
0 & \text{otherwise}.
\end{cases}
\]

(8)

\[c_{ij} \geq 0\] is the travel distance between cities \(i\) and \(j\), and \(x_{ijk} \in \{0, 1\}\) is a decision variable satisfying

\[
x_{ijk} = \begin{cases}
1 & \text{if city } j \text{ is visited directly after city } i \text{ by a salesman originating from depot } k, \\
0 & \text{otherwise}.
\end{cases}
\]

(8)

\[c_{ij} \geq 0\] is the travel distance between cities \(i\) and \(j\), and \(x_{ijk} \in \{0, 1\}\) is a decision variable satisfying

\[
x_{ijk} = \begin{cases}
1 & \text{if city } j \text{ is visited directly after city } i \text{ by a salesman originating from depot } k, \\
0 & \text{otherwise}.
\end{cases}
\]

(8)
\[
\begin{align*}
\sum_{j \in \mathcal{L}} x_{dj} & \leq m_d \quad \forall d \in \mathcal{D} & (9a^*) \\
\sum_{j \in \mathcal{L}} x_{d^*j} & = \sum_{j \in \mathcal{L}} x_{dj} \quad \forall d^* \in \mathcal{D}' & (9d^*)
\end{align*}
\]

where \((9a^*)\) limits the amount of salesmen that can leave depot \(d\) to \(m_d\) (which equals the number of salesmen present at depot \(d\)), whereas \((9d^*)\) ensures that the same number of salesmen that have left the depot, will also return to the depot.

Fixed-capacity depots: For nonfixed-destination problems the number of salesmen at a depot will in general be different before and after the salesmen travelled. To avoid solutions where certain depots will receive more salesmen than they can facilitate, an upper bound on the number of salesmen that are allowed to return to each specific depot should be set. To accomplish this we propose the following.

If the capacity of depot \(d\) (with \(d^*\) the associated end depot) is \(q_{d^*}\) salesmen one could substitute \((9d^*)\) with

\[
\begin{align*}
m_d + \sum_{j \in \mathcal{L}} x_{d^*j} & \leq q_d + \sum_{j \in \mathcal{L}} x_{dj} \quad \forall d^* \in \mathcal{D}' & (9d^*) \\
\sum_{d' \in \mathcal{D}} \sum_{j \in \mathcal{L}} x_{d'j} & = \sum_{d \in \mathcal{D}} \sum_{j \in \mathcal{L}} x_{dj} & (9d^*_2)
\end{align*}
\]

Inequalities \((9d^*)\) ensure that no more than \(q_{d^*}\) salesmen end up in depot \(d^*\),\(^5\) whereas \((9d^*_2)\) ensures that all the salesmen that leave a depot will also return to a depot.

3.3. Cycle Elimination Constraints

Note that the constraints \((9)\) do not avoid

i) the existence of cycles (subtours) in \(C\), resulting in routes along cities that do not have a salesman associated with them,

ii) the existence of cycles in \(L'\) containing more than one node from \(\mathcal{D}\), resulting in a schedule where salesmen end their tour at an arbitrary depot.

The former situation would result in a schedule where some cities will not be visited by a salesman (since none is assigned to do so), whereas the latter situation would result in a schedule where the salesmen do not have the guarantee that they return to their original depot. To assure that each city is visited by a salesman,

solutions using cycle elimination constraints have been proposed in the literature \([15, 19, 20, 30]\). These constraints are based on different concepts, for which a brief description will be provided next; a more detailed description can be found in \([34]\).

3.3.1. Loop conditions

The loop conditions were introduced in the seminal work of Dantzig et al. \([15]\), which can be stated as

\[
\sum_{i \in S} x_{ij} \leq |S| - 1 \quad \forall S \subseteq \mathcal{L}', \ 2 \leq |S| \leq \mathcal{L}' - 1, \quad (10)
\]

where \(|S|\) represents the cardinality of set \(S\) (see \([21]\)). These constraints provide strong linear programming relaxations, but the number of constraints grows exponentially with the number of nodes.

3.3.2. Node potentials

Miller et al. \([30]\) proposed an approach for eliminating cycles by using additional variables \(u_i\) that represent node potentials. Using the strengthened formulation of Desrochers and Laporte \([16]\), the \(G\) continuous variables \(u_i\) should satisfy

\[
u_i - u_j + C x_{ij} + (C - 2) x_{ji} \leq C - 1 \quad \forall i, j \in \mathcal{C}, \quad (11)\]

resulting in \(G^2\) inequality constraints.

The node potential representation has been extended by Kara and Bektas \([4, 24]\) to set workload bounds\(^6\) on the number of cities a salesman should visit. Denoting \(\bar{u}\) and \(\underline{u}\) as the minimum and maximum number of cities the salesmen may visit respectively, the cycle imposition constraints

\[
\begin{align*}
u_i - u_j + (\bar{u} - 2) x_{ij} & \leq \bar{u} - 1 \quad \forall i, j \in \mathcal{C} \quad (12a) \\
u_i + (\bar{u} - 2) \sum_{d \in \mathcal{D}} x_{di} - \sum_{d' \in \mathcal{D}'} x_{d'i} & \leq \bar{u} - 1 \quad \forall i \in \mathcal{C} \quad (12b) \\
u_i + \sum_{d \in \mathcal{D}} x_{di} + (2 - \underline{u}) \sum_{d' \in \mathcal{D}'} x_{d'i} & \geq \underline{u} \quad \forall i \in \mathcal{C} \quad (12c)
\end{align*}
\]

ensure that each salesman will be assigned between \(\underline{u}\) and \(\bar{u}\) cities to visit, and city \(i\) will be the \(u_i\)-th city a salesman visits\(^7\). Inequalities \((12a)\) provide cycle elimination constraints. In both \((12b)\) and \((12c)\) the first summation is \(1\) if and only if node \(i\) represents the first city

\(^5\)The number of salesman returning to depot \(d^*\) is less or equal to the capacity \(q_{d^*}\) minus the number of salesmen \(m_d\) present at the start plus the number of salesmen that leave depot \(d\).

\(^6\)Loop conditions representation with workload bound were first proposed in \([24]\) for the mTSP (single depot), and were extended in \([4]\) for the MmTSP (multidepot).

\(^7\)In \([4, 24]\) it is stated that these inequality constraints are only valid for \(\underline{u} \geq 4\); this is only under the restriction that salesmen should at least visit two cities, and hence \(x_{di} = x_{d'i} = 1\) is not allowed. Lifting this restriction by allowing salesmen to visit zero or one city these inequality constraints are valid for all \(\underline{u} \geq 0\).
of a tour (and it is 0 otherwise), and the second summation is 1 if and only if node \(i\) represents the last city of a tour (and is 0 otherwise). Therefore, (12b) and (12c) ensure that \(u_i \leq \overline{u}\) and \(u_i \geq \underline{u}\) for the last cities in a tour, thereby setting the desired upper and lower bound respectively on the number of visited cities per salesman.

For the TSP with time windows [2] the constraints
\[
t_i - t_j + \tau_{ij} + T \mathbf{x}_{ij} \leq T \tag{13}
\]
can be seen as a variant of the node potential approach, where \(t_i\) is the time instant city \(i\) is visited, \(\tau_{ij}\) is the potential difference between the nodes, and \(T\) is a sufficiently large constant.

3.3.3. Commodity flows
Gavish and Graves [20] introduced commodity flows as a means for eliminating undesired cycles. The \(L^2\) continuous variables \(f_{ij}\) should satisfy the constraints
\[
\sum_{j \in L} f_{ij} - \sum_{j \in L'} f_{ji} = 1 \quad \forall i \in C \tag{14a}
\]
\[
f_{ij} \leq C x_{ij} \quad \forall i \in C, j \in L' \tag{14b}
\]
\[
f_{ij} \geq 0 \quad \forall i, j \in L' \tag{14c}
\]
Extensions to two-commodity flows [18] and multi-commodity flows [11, 47] have been proposed, resulting in stronger linear programming relaxations [26, 35].

3.3.4. Time periods
For a graph with \(L\) nodes, Fox et al. [19] present a cycle elimination formulation using a 3-index binary variable representation \(x_{ijt}\), where
\[
x_{ijt} = \begin{cases} 1 & \text{if } i \text{ precedes } j \text{ as the } t\text{-th node in the tour}, \\ 0 & \text{otherwise}. \end{cases}
\tag{15}
\]
The index \(t \in T\) represents the time period in which the salesman travels from city \(i\) to city \(j\). To ensure that all cities are visited in some time period, and that in each time period only one city is visited, the \(O(L^3)\) binary variables \(x_{ijt}\) should satisfy
\[
\sum_{i \in L} \sum_{j \in L} \sum_{t \in T} x_{ijt} = L^3 \tag{16a}
\]
\[
\sum_{j \in L} \sum_{t \in T} x_{ijt} - \sum_{j \in L} \sum_{t \in T} x_{jiti} = 1 \quad \forall i \in L' \quad \tag{16b}
\]
\[
x_{ijt} \in \{0, 1\} \quad \forall i, j \in L', \ t \in T \tag{16c}
\]
Constraints (16a) and (16c) replace the assignment constraints (9). Equality constraints (16b) ensure that in each time period \(t\) exactly one city \(i\) is visited.

3.4. Cycle Imposement Constraints
To assure that each salesman returns to the original depot, additional constraints are needed to enforce cycles that start and end in the same depot (or paths leading from one start depot towards the associated end depot). Opposite to the cycle elimination constraints, the constraints that enforce the existence of a certain amount of cycles in a graph can be seen as cycle imposement constraints. To the authors’ best knowledge, currently only three approaches exist for obtaining fixed-destination solutions; using 3-index binary variables, or using 2-index binary variables plus commodity flow variables [4, 24], or using the path elimination constraints [5], which introduces no new variables, but modifies the definition of the 2-index binary variable associated with each arc. We will introduce a fourth approach in Section 4 that is based on node currents, which can be seen as the dual of the node potentials introduced by Miller et al. [30] presented in (11).

3.4.1. 3-Index formulation
Using decision variables \(x_{ijd}\) that satisfy
\[
x_{ijd} = \begin{cases} 1 & \text{if } i \text{ precedes } j \text{ directly in the tour of depot } d, \\ 0 & \text{otherwise}, \end{cases} \tag{17}
\]
the existence of \(D\) cycles can be enforced [24] using
\[
\sum_{j \in C} x_{ijd} = m_d \quad \forall d \in D \tag{18a}
\]
\[
\sum_{d \in D} \left(\sum_{j \in C} x_{ijd} + \sum_{j \not \in C} x_{jdd} \right) = 1 \quad \forall j \in C \tag{18b}
\]
\[
x_{ijd} + \sum_{j \not \in C} x_{ijd} = x_{jdd} + \sum_{j \in C} x_{jdd} \quad \forall d \in D, j \not \in C \tag{18c}
\]
\[
\sum_{j \in C} x_{ijd} = \sum_{j \not \in C} x_{jdd} \quad \forall d \in D \tag{18d}
\]
Constraints (18a) and (18d) ensure that exactly \(m_d\) salesmen depart and return to depot \(d\). Constraints (18b) guarantee that each city is visited exactly once. Constraints (18c) ensure the path continuity. Together with the degree constraints (18b), constraints (18c) ensure that a salesman starts at depot \(d\) and visits city \(j\) first will either continue to another city \(i\) or return to the same depot. Note that this formulation uses \(O(L^3D)\) binary variables, and the number of binary variables increases cubically with the number of depots (as opposed to the quadratic increase for 2-index formulations).
A multi-commodity flow problem is a network flow problem with multiple flows [38]. Besides applications for cycle elimination (as discussed in Section 3.3.3) it was shown by Bektas [4] that this concept can also be used for enforcing fixed-destination solutions to the mTSP. In this context a commodity \(f^d \) represents the number of salesmen originating from depot \(d \). The constraints based on commodity flows [4] are given by

\[
\begin{align*}
\sum_{j \in D \cup D'} f^d_{dj} - \sum_{j \in D \cup C} f^d_{jd} &= m_d \quad \forall d \in D
\end{align*}
\]

(19a)

\[
\sum_{j \in D \cup D'} f^d_{ij} - \sum_{j \in D \cup C} f^d_{ji} = 0 \quad \forall i \in C, d \in D
\]

(19b)

\[
\sum_{j \in D \cup D'} f^d_{ij} - \sum_{j \in D \cup C} f^d_{jd} = m_d \quad \forall d' \in D'
\]

(19c)

\[
0 \leq f^d_{ij} \leq x_{ij} \quad \forall i, j \in \mathcal{L}', d \in D
\]

(19d)

In this formulation each depot \(d \) in \(D \) acts as a source of commodity \(f^d \), while each depot \(d' \) in \(D' \) acts as a sink where only commodity \(d = d' \) is accepted. By (19a) exactly \(m_d \) units of commodity \(f^d \) will leave depot \(d \) (meaning that \(m_d \) salesmen will leave the depot). Constraints (19b) are flow-conservation constraints that guarantee that the same amount of commodity \(f^d \) entering a node \(i \) will also leave node \(i \) (meaning that each salesman that enters a city will also leave the city). By (19c) exactly \(m_d \) units of commodity \(f^d \) will reach depot \(d' \) (meaning that \(m_d \) salesmen will arrive at the duplicate depot node \(d' \)). Combined with the assignment constraints (9), the inequality constraints (19d) restrict the commodities to only flow along arcs that are part of the selected routes; if \(x_{ij} = 0 \) no commodity can flow from city \(i \) to city \(j \). This formulation uses \(L^2 D \) commodity flow variables \(f^d_{ij} \), where \(\mathcal{L}' = 2D + C \) is the number of nodes in the graph.

3.4.3. Path elimination constraints

The path elimination constraints, first proposed in [5], fix the destination of each salesman by eliminating paths that start and end in two different depots. The idea is inspired by the chain-barring constraints introduced in [28]. Although originally designed for location routing problems, path elimination constraints have been applied to many fixed-destination mTSP variants [6, 13, 44]. The decision variables are

\[
x_{ij} = \begin{cases} 1 & \text{if } (i, j) \text{ is traversed exactly once,} \\ 0 & \text{otherwise,} \end{cases}
\]

(20)

for \(i, j \in \mathcal{L} \) and

\[
w_{ij} = \begin{cases} 1 & \text{if } (i, j) \text{ is in a return trip,} \\ 0 & \text{otherwise,} \end{cases}
\]

(21)

for all \(i \in D, j \in C \). The path elimination constraints given by [5] are

\[
\sum_{d \in D} x_{pq} + \sum_{d \in D} x_{jd} + \sum_{d \in D} x_{jd} \leq |S| + 2 \quad \forall i, j \in C, \forall S \subseteq C \setminus \{i, j\}, \forall D^c \subset D
\]

(22)

If all cities in \(S \cup \{i, j\} \) are in a consecutive path, then the loop conditions (10) are satisfied with equality, i.e., \(\sum_{p \in S, q \in \{i, j\}} = |S| + 1 \). Because of constraints (22) we have \(\sum_{d \in D} x_{jd} + \sum_{d \in D \setminus D'} x_{jd} \leq 1 \). This indicates that a path connected to a depot in \(D' \) cannot be connected to another depot in \(D \setminus D' \). Constraints (22) can eliminate all unwanted paths that visit at least two cities and start and end in different depots. The constraints

\[
\sum_{d \in D} x_{dj} + w_{dj} \leq 1 \quad \forall j \in C
\]

(23)

are needed to also eliminate undesired paths that visit only one city (and start and end in different depots). This formulation requires \(O(L^2 + DC) \) binary variables, and the number of constraints \(O(2^L C^2 2^D) \) grows exponentially with the number of cities and depots. Just as for the loop conditions (10) these constraints are suitable for branch-and-cut implementations, but not to formulate the complete problem and use a MILP solver to obtain optimal solutions.

4. NOVEL FMmTSP FORMULATION

In the previous section it has been discussed that the FMmTSP can be formulated using four components (as provided in (4)). The \textit{cost} that needs to be minimised is the total travel distance of the salesmen, for which a standard formulation is given in (5). For the \textit{assignment constraints} the conventional constraints are given in (9), but variations can be used to e.g. allow some salesmen to be idle or to limit the number of salesmen that may end at a depot, as discussed in Section 3.3.2. The component that has the most variants in literature provides the cycle elimination constraints (or subtour elimination constraints), discussed in Section 3.3.

The component that has received the least attention provides the cycle imposition constraints. Until recently, fixed-destination solutions for mTSPs and its variants have been ensured by using 3-index
formulations of the decision variables as discussed in Section 3.4.1. The formulation of Bektas proposed in [4] is the first formulation that ensures fixed-destination solutions using 2-index binary variables and the multi-commodity flow constraints presented in Section 3.4.2. In this section we will introduce a novel approach for cycle imposition. This approach is also based on 2-index binary variables, where one continuous variable per node is added to the formulation to ensure a fixed-destination solution. The new formulation needs a few less binary variables than the formulation of [4]; more importantly, it uses DL times less continuous variables than the multi-commodity flow approach.

4.1. Cycle Imposition through Node Currents

Inspired by the node potentials of Miller, Tucker, and Zemlin [30] we propose an alternative formulation of the FMmTSP using node currents [8]. Similar to the commodity flow transported between cities over the arcs, the current in an electric circuit can also be considered as a flow in a directed graph. With the depots representing current sources, a proper electric circuit contains only cycles (if not, there would be an open circuit or short circuit), which corresponds to the cycle imposition constraint stating that every salesman must return to his departing depot. A flow conservation law combined with assignment constraints forces the current flowing into a node to be equal to the current flowing out of the node, so that nodes in the same cycle must have the same current. Thus, we can view the current k_i as a property of the node i (instead of a property of the arc x_{ij}).

4.1.1. Node current formulation

For the newly proposed node current formulation there is no need to use copies of the depot nodes. Therefore, this formulation will use less binary variables as for the copy-based formulation, since there are D less nodes to represent the graph. Fixed-destination solutions can be obtained by using $L = D + C$ continuous variables k_i satisfying the cycle imposition constraints

$$k_d = d \quad \forall d \in D$$ \hspace{1cm} (24a)

$$k_i - k_j \leq (D-1)(1-x_{ij}) \quad \forall i, j \in L$$ \hspace{1cm} (24b)

resulting in $k_i \leq k_j$ if $x_{ij} = 1$ using $(D + C)^2 - C$ constraints. Additionally, one can obtain the tighter constraint $k_i = k_j$ if $x_{ij} = 1$ by adding

$$k_j - k_i \leq (D-1)(1-x_{ij}) \quad \forall i, j \in L.$$ \hspace{1cm} (24c)

to the constraints (24a)-(24b), resulting in stronger linear relaxations at the cost of using more constraints. If the minimum number of cities to visit is set to be at least two one can substitute (24b)–(24c) with

$$k_i - k_j \leq (D-1)(1-x_{ij}) \forall i, j \in L.$$ \hspace{1cm} (24d)

This enforces the equality $k_i = k_j$ using half the amount of inequality constraints. Notice that constraints (24d) exclude solutions where a salesman visits only one node, since $x_{ij} + x_{ji} = 2$ is infeasible by (24d).

Theorem 4.1 (Cycle imposition). The MILP consisting of (5), (9), any of the cycle elimination constraints, and the cycle imposition constraints (24) will result in a graph with exactly $\sum_{d \in D} m_d$ cycles, where each node $d \in D$ is contained in exactly m_d cycles.

Proof. Let the directed graph $G = (L, A)$ be the graph associated with a feasible solution of the given MILP. The node set of G coincides with the set of locations of the FMmTSP, and the arc set A is defined as

$$\forall i, j \in L, (i, j) \in A \text{ if and only if } x_{ij} = 1$$

Define a cut (D, C) on G, and denote the subset of forward and backward arcs in the cut set as

$$\delta_+ = \{(i, j) \in A \mid i \in D, j \in C\}$$

$$\delta_- = \{(i, j) \in A \mid i \in C, j \in D\}$$

which represents all salesmen leaving the depots and all salesmen returning from the cities, respectively. By assignment constraints on the city nodes (9b)–(9c), the in-and out-degree of each node in C is one, and the cycle elimination constraints ensure that no cycles exist in C, so no path can start or end in C. Therefore $|\delta_+| = \delta_-$, indicating that any salesman leaving a depot must also return to a depot (see Figure 2).

The above arguments actually show that the graph associated with a solution of the non-fixed destination MmTSP contains exactly $\sum_{d \in D} m_d$ distinct paths starting and ending in D. Now we need to prove that by the additional cycle imposition constraints for the fixed-destination setting, the $\sum_{d \in D} m_d$ distinct paths are all cycles, and each node $d \in D$ is contained in exactly m_d cycles, i.e., each path starting in a depot node $d \in D$ must also end in the same depot d. We prove this statement by induction.

For any path $P = \{d, c_1, c_2, \ldots, d^*\}$, where $d, d^* \in D$ and $c_1, c_2, \ldots \in C$, by constraint (24b) that the node current k_i is non-decreasing along a path, one has

$$k_d \leq k_{c_1} \leq k_{c_2} \leq \cdots \leq k_{d^*}$$

In addition, by (24a) each depot node is assigned a unique node current, and hence

\[1 \leq k_d \leq D \quad \forall d \in \mathcal{D}. \]

We use the following inductive steps to prove that any path starting in depot \(d \) must also end in the same depot.

i) By (9a) there will be \(m_d \) paths leaving depot \(D \). For any path \(P \) starting in depot \(d = D \), one has \(D = k_d \leq k_d \leq D \), where the upper limit follows from the fact that a path must return to a depot, for which \(D \) is the highest value. Thus \(k_d = D \), indicating \(d^* = D = d \). Therefore, a path starting in node \(D \) can only end in node \(D \). By (9a)–(9d) exactly \(m_d \) cycles start and end in depot \(D \), i.e., depot \(D \) is contained in exactly \(m_d \) cycles, and can accept no more incoming arcs because the constraint (9d) on its in-degree is already satisfied.

ii) For any path \(P \) starting in depot \(d = D - 1 \), similarly one has \(D - 1 = k_d \leq k_d \leq D \). So \(k_d \) can only take the value \(D \) or \(D - 1 \), i.e., path \(P \) can only end in depot \(D \) or \(D - 1 \). By the previous argument \(P \) cannot end in \(D \) because (9d) is already satisfied for \(d = D \), so the \(m_{D-1} \) paths starting at depot \(D - 1 \) can only end in depot \(D - 1 \). Similarly, by the assignment constraints, depot \(D - 1 \) is contained in exactly \(m_{D-1} \) cycles, and can accept no more incoming arcs.

iii) Continuing this argumentation for any path \(P \) starting in depot \(d \), \(P \) can only end in the same depot \(d \) since the constraint (9d) is already satisfied for depots \(d + 1 \) to \(D \), and by the assignment constraints depot \(d \) is contained in exactly \(m_d \) cycles.

iv) Finally, it follows that any path \(P \) starting in depot 1 must end in depot 1.

By assigning a unique value to the node currents of the depots through (24a) and adding constraints (24b)–(24c) or (24d) — such that \(k_i = k_j \) if there is a connection between nodes \(i \) and \(j \) — it is guaranteed that a tour starting at depot \(d \) will return to depot \(d \) without visiting another depot by Theorem 4.1.

Note. For the optimal solution the node current variables will implicitly satisfy

\[1 \leq k_i \leq D \quad \forall i \in \mathcal{L}, \quad (25) \]

and these bounds can be set explicitly in the MILP formulation without affecting the result.

Figure 2 shows an example of a feasible solution for \(D = 3 \) depots and \(C = 6 \) cities. Note that within the set \(\mathcal{L} = \mathcal{D} \cup \mathcal{C} \) the existence of three cycles has been imposed, whereas in the set \(\mathcal{C} \) no cycles exist due to the cycle elimination constraints.

4.1.2. MILP formulation using node currents

As an alternative to the FMmTSP formulation presented in [4] we propose a novel formulation of the problem based on node currents as cycle imposement constraints. It is based on 2-index decision variables using the cost function given by (5). The formulation will be presented using the standard assignment constraint given in (9), but the variant with idle salesmen may also be used. For a comparison with the formulation in [4] (which excludes the possibility of idle salesmen) it should be possible to set workload bounds for the salesmen, therefore the cycle elimination constraints (12) are chosen. For the computational comparison in the next section the minimum number of cities to visit per salesman will be \(u = 1 \), therefore we use constraints (24a–24c) to impose \(\sum_{d \in \mathcal{D}} m_d \) cycles in the set \(\mathcal{L} \); if \(u \geq 2 \) it would be more efficient to use (24a) and (24d). The maximum number of cities per salesman can be set to

\[\bar{u} = C + u(1 - \sum_{d \in \mathcal{D}} m_d) \quad (26) \]

where \(\sum_{d \in \mathcal{D}} m_d \) gives the total number of salesmen, such that \(u(1 - \sum_{d \in \mathcal{D}} m_d) \) becomes the minimum number of
cities that need to be visited by other salesmen; a single salesman can visit at most all cities minus the minimum number of cities visited by the others. The MILP formulation of the FMmTSP using workload bounds and node currents then becomes

\[
\begin{align*}
\min & \sum_{i \in L} \sum_{j \in L} c_{ij} x_{ij} \\
\text{s.t.} & \quad \sum_{i \in L} x_{ic} = \sum_{j \in L} x_{cj} = 1 \quad \forall c \in C \\
& \quad \sum_{i \in L} x_{id} = \sum_{j \in L} x_{dj} = m_i d \quad \forall d \in D \\
& \quad u_i - u_j + (\bar{u} + 2)(x_{ij} - 1) \leq \bar{u} - 1 \quad \forall i, j \in C \\
& \quad u_i - (\bar{u} - 2) \sum_{d \in D} x_{id} - \sum_{d \in D} x_{jd} \leq \bar{u} - 1 \quad \forall i \in C \\
& \quad u_i + \sum_{d \in D} x_{id} + (2 - \bar{u}) \sum_{d \in D} x_{jd} \geq 2 \quad \forall i \in C \\
& \quad k_d = d \quad \forall d \in D \\
& \quad k_i - k_j \leq (D - 1)(1 - x_{ij}) \quad \forall i, j \in L \\
& \quad k_i - k_j \leq (D - 1)(1 - x_{ij}) \quad \forall i, j \in L \\
& \quad x_{ij} \in \{0, 1\}, 1 \leq u_i \leq C, 1 \leq k_i \leq D \quad \forall i, j \in L
\end{align*}
\]

\(\text{Note.} \) As opposed to the two alternative FMmTSP formulations [4, 31], this novel formulation does not use copies of the depot nodes, therefore only \(L = D + C\) nodes are needed for this formulation instead of \(2D + C\). Furthermore, unlike the other two formulations, the costs of travelling between the nodes remains the same as for the nonfixed-destination problem, hence there is no need to build a new cost matrix; the original cost matrix \(C\) can be used without any modification.

4.2. Properties of Fixed-Destination Formulations

Adding more variables to an optimisation problem in general results in larger computation times and a higher memory usage. Compared to continuous variables the number of binary variables used in a programming problem can significantly influence the computation times. Therefore, reducing the number of binary variables to represent a problem can result in a noticeable performance gain. Although in general the addition of a few continuous variables has little influence on the computation times, using many continuous variables can cause problems due to the larger memory use, and would also result in larger computation times.

Table 3 shows the number of nodes, binary variables, continuous variables, equality constraints, and inequality constraints that are needed to represent the FMmTSP per formulation. In the following ‘I’ denotes the novel MILP formulation (27), ‘II’ denotes the extended formulation based on [32], and ‘III’ denotes the formulation from [4].

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>(L = C + D)</td>
<td>(L = C + 2D)</td>
<td>(L = C + 2D)</td>
</tr>
<tr>
<td>BV</td>
<td>((C + D))</td>
<td>((C + D))</td>
<td>((C + D))</td>
</tr>
<tr>
<td>CV</td>
<td>(2C + 2D)</td>
<td>(2C + 4D)</td>
<td>((DL + 1))</td>
</tr>
<tr>
<td>EC</td>
<td>(2C + 3D)</td>
<td>(2C + 4D)</td>
<td>(2G + (4 + L)D)</td>
</tr>
<tr>
<td>IC</td>
<td>(C^2 + 2G + 2L^2)</td>
<td>(C^2 + 2G + 2L^2)</td>
<td>(C^2 + 2G + DL^2)</td>
</tr>
</tbody>
</table>

Notice that besides less binary variables, the newly proposed formulation also uses less continuous variables compared to the formulation of [4]; there are \(D + C\) node currents necessary to solve the fixed-destination problem, compared to \(D(2D + C)^2\) commodity flow parameters needed to represent the \(D\) different commodities that could move along the \((2D + C)^2\) arcs in the extended network.

5. COMPUTATIONAL COMPARISON

The three aforementioned formulations for solving FMmTSPs are compared by solving a large number of test cases. First we describe the benchmark that we use, followed by a discussion on the results. The formulations provide optimal solutions for the FMmTSP, and all computation times give the time it took to reach this optimum. When the optimum was not reached within 3 hours wall-clock time the test was marked as failed.

5.1. Description of Test Instances

To compare the three formulations of the FMmTSP we have chosen 32 symmetric and asymmetric TSP test cases with size ranging from 14 to 170 nodes from the library TSPLIB [40], where the numbers in the name of the test instance (e.g. dantzig42) represent the number of locations \(L\) in the problem. For each test case we have selected \(D\) cities to represent depots. Since e.g. the cities in dantzig42 are given in the order of the optimal tour (and hence subsequent cities are close to each other), the depot nodes are selected as the \(i\)-th cities satisfying

\[
i = 1 + (d - 1) \left\lfloor \frac{C}{D} \right\rfloor \quad \forall d \in D,
\]

where \(\lfloor a \rfloor\) represents the operator that returns the largest integer smaller than or equal to \(a\). This approach is used to reduce the chance that the depots are close to
each other. The number of depots D varies from 2 to 6 for each test case. We consider two scenarios, namely, one-salesman-at-each-depot and multiple-salesmen-at-each-depot (the number of salesmen at each depot for the second scenario is fairly distributed using the procedure described in Appendix A.) In this way we create a benchmark of $32 \times 5 \times 2 = 320$ FMmTSP test instances, which are solved using three different formulations, and three MILP solvers.

Since the formulation using the commodity flows according to (19) requires that each salesman visits at least one city (due to (19a)), we set $u = 1$ and $U = C$ to obtain the same problem for each formulation. All computations are performed on a desktop computer with an Intel Xeon E5-1620 Quad Core CPU and 64 GB of RAM, running 64-bit versions of SUSE Linux Enterprise Desktop 11, and Matlab R2014b. Three state-of-the-art commercial and free MILP solvers are used, namely, CPLEX 12.5 (called via Tomlab 8.0), Gurobi Optimizer 5.6, and CBC 2.9.4 from COIN-OR (called via the OPTI-Toolbox).

The results for the one-salesman-at-each-depot problem are reported in Tables B.7–B.9, followed by the results for the multiple-salesmen-at-each-depot problem in Tables B.10–B.12 of Appendix B. To reduce the chance that the outcome is affected by random events, we chose to run each test case a few times and take the average value of the computation times. Tables B.10–B.12 of Appendix B contain the average CPU time to find the optimal solution over 10 runs for each small test case, and over 5 runs for each large test case, for each number of depots D. A time limit of 3 hours is imposed on each test run, and all reported times are in seconds.

5.2. Comparison of Problem Formulations

When a test case is solved to optimality within 3 hours wall-clock time, we register this time. Otherwise, we mark the test case as failed. A comparison is made between the three formulations on both the average CPU times and the number of failed cases.

5.2.2. Comparison of average CPU times

To compare the three problem formulations, we have split the benchmark into four sets:

- Small problems with a single salesman per depot
- Large problems with a single salesman per depot
- Small problems with multiple salesmen per depot
- Large problems with multiple salesmen per depot

The first 16 test cases (burma14 up to ry48p) are considered small problems, while the last 16 test cases (hk48 up to ftv170) are included in the large problems. Table 4 shows the relative increase in CPU time needed to compute the solution compared to formulation I. For the FMmTSP with a single salesman per depot, formulation I was the fastest on average; for the variant with multiple salesmen per depot formulation II outperformed the other two. Although formulation II uses a few more binary values than formulation I, it cannot be concluded from our results that the use of more binary variables results in larger computation times.

Table 4: The average relative difference for the mean CPU times compared with formulation I. The average is taken over all test instances that are successfully computed by the corresponding formulation and solver. A positive result means longer computation time, indicating worse performance.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Small & single</th>
<th>Large & single</th>
<th>Small & multi</th>
<th>Large & multi</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPLEX</td>
<td>7%</td>
<td>192%</td>
<td>-27%</td>
<td>435%</td>
</tr>
<tr>
<td>Gurobi</td>
<td>51%</td>
<td>7%</td>
<td>-13%</td>
<td>-9%</td>
</tr>
<tr>
<td>CBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46%</td>
<td>33%</td>
<td>-18%</td>
<td>-9%</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPLEX</td>
<td>535%</td>
<td>1880%</td>
<td>104%</td>
<td>720%</td>
</tr>
<tr>
<td>Gurobi</td>
<td>113%</td>
<td>78%</td>
<td>37%</td>
<td>24%</td>
</tr>
<tr>
<td>CBC</td>
<td>621%</td>
<td>1676%</td>
<td>130%</td>
<td>-</td>
</tr>
</tbody>
</table>

Notice that the difference between formulation I and II is small (I is less than 1.5 times faster than II for all averages), but formulation III is significantly slower on average when using CPLEX or CBC, even for the small instances (where memory use is not yet expected to be a problem); for Gurobi the differences are smaller. Nevertheless, we conclude that the use of node current formulations are expected to be faster than multi-commodity-based formulations for fixed-destination problems.

5.2.2. Comparison of failed test cases

Next we compare how often a test case did not reach an optimal solution in time. We distinguish between the results for a single salesman per depot and for multiple salesmen per depot. For each formulation we provide the number of failed cases (per solver) in Table 5.

From Table 5, it is clear that formulation II demonstrates stronger ability to solve large test cases. Formulation III also performs rather well in solving large test cases when there are multiple salesmen at each depot, but it has problems for cases with a single salesman per depot. CPLEX and Gurobi seem to perform equally well, but also here it becomes clear that CBC cannot match the other two solvers.
Table 5: The number of failed test instances (‘failed’) and the size (i.e., the number of nodes) of the largest instance successfully solved (‘largest’) for each formulation (I, II, and III) solved per solver type. ‘Single’ means one-salesman-at-each-depot, and ‘multiple’ means multiple-salesmen-at-each-depot. The number before ‘/’ is the number of failed test instances out of the 160 that were performed.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Single</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Failed</td>
<td>Largest</td>
<td>Failed</td>
<td>Largest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>CPLEX</td>
<td>9/160</td>
<td>124</td>
<td>37/160</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gurobi</td>
<td>12/160</td>
<td>170</td>
<td>40/160</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBC</td>
<td>49/160</td>
<td>76</td>
<td>92/160</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>CPLEX</td>
<td>14/160</td>
<td>124</td>
<td>8/160</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gurobi</td>
<td>15/160</td>
<td>124</td>
<td>11/160</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBC</td>
<td>51/160</td>
<td>64</td>
<td>90/160</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>CPLEX</td>
<td>30/160</td>
<td>124</td>
<td>25/160</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gurobi</td>
<td>24/160</td>
<td>124</td>
<td>19/160</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBC</td>
<td>52/160</td>
<td>64</td>
<td>90/160</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

6. CONCLUDING REMARKS

In this article we have provided a brief overview of cycle elimination and imposement constraints, and 2-index formulations for the fixed-destination multi-depot travelling salesman problem. A novel cycle imposement constraint formulation has been proposed based on node currents, which can be seen as the dual of the node potentials of Miller, Tucker, and Zemlin [30]. The main advantage of the novel formulation over the existing formulations is the reduced number of binary and continuous variables needed to formulate the problem. Furthermore, the novel formulation can be used to find solutions where several salesmen can be idle.

The comparisons of the formulations have been performed using three state-of-the-art MILP solvers. Similar to the node potential constraints (11), the node current constraints can be used to easily formulate (variants of) fixed-destination multi-depot problems. This approach is suitable for the initial development of formulations; once it is confirmed that the formulation provides the desired solutions, one can use more sophisticated techniques, e.g. Benders’ decomposition [7], to reformulate the problems and solve them faster. The proposed formulation was able to solve problems up to 170 nodes using general MILP solvers, and [4] found optimal solutions up to 170 nodes using Benders’ decomposition. By using a branch-and-cut algorithm [6] even managed to solve (symmetric) problems up to 255 cities and 25 depot to optimality within reasonable time. It would be interesting to see whether improvements can be obtained by using the node currents combined with e.g. Benders decomposition or user-specified cuts. Furthermore, the proposed formulation for FMmTSP can be applied to other scheduling and routing problems.

Appendix A. Allocation of Salesmen over Depots

A three-step procedure is described to allocate salesmen for the multiple-salesmen-at-each-depot scenario.

Step 1: Compute the number of cities \(C = L - D \), and generate the total number of salesmen to be assigned to the \(D \) depots

\[S = \min \left(\max \left(D + 1, \left\lceil \frac{L}{3} \right\rceil \right), C - 1 \right) \]

We choose \(\left\lceil \frac{L}{3} \right\rceil \) for the total number of salesmen (as long as it lies in the interval \([D + 1, C - 1]\)), since too few salesmen are insufficient to consider the multiple-salesmen-at-each-depot scenario, and too many salesmen can lead to idle salesmen in the solution.

Step 2: Assign \(x = \left\lfloor \frac{S}{D} \right\rfloor \) salesmen to each depot, and calculate the number of the unassigned salesmen

\[r = S - x \cdot D \]

Step 3: Assign one salesman to the depots with index

\[i = 1 + (k - 1) \left\lfloor \frac{D}{r} \right\rfloor \quad \forall k \in \{1, 2, \cdots r\} \]

Since the number of remaining salesmen calculated at Step 2 is always less than \(D \), all salesmen have been assigned to a depot after performing the three-step procedure. Moreover, the last step also ensures a fair allocation of the remaining salesmen.

Appendix B. List of Results

The optimal values for the benchmark described in Appendix A are provided in Table B.6. These values are obtained by summarising all instances successfully solved by three MILP solvers (CPLEX, Gurobi, and CBC) and three formulations under a 3-hour time limit. A complete list of tables with the average CPU time (in seconds) for all test instances solved by the three aforementioned formulations, and three different MILP solvers is presented in Table B.7-B.12. The fastest instances are indicated by the bold-faced numbers, and the symbol ‘.’ is used to denote the failed test instances.
Table B.6: Summary of optimal values obtained using three solvers and three formulations.

<table>
<thead>
<tr>
<th>Test case</th>
<th>Dep1</th>
<th>Dep2</th>
<th>Dep3</th>
<th>Dep4</th>
<th>Dep5</th>
<th>Dep6</th>
</tr>
</thead>
<tbody>
<tr>
<td>bays16</td>
<td>6580</td>
<td>6226</td>
<td>697</td>
<td>3809</td>
<td>8886</td>
<td>8524</td>
</tr>
<tr>
<td>gr17</td>
<td>2054</td>
<td>1819</td>
<td>1943</td>
<td>1084</td>
<td>1815</td>
<td>2374</td>
</tr>
<tr>
<td>eu20</td>
<td>30</td>
<td>23</td>
<td>16</td>
<td>9</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>eu21</td>
<td>2716</td>
<td>2660</td>
<td>2674</td>
<td>2684</td>
<td>3228</td>
<td>5623</td>
</tr>
<tr>
<td>eu23</td>
<td>5485</td>
<td>5245</td>
<td>6537</td>
<td>6955</td>
<td>12521</td>
<td>6709</td>
</tr>
<tr>
<td>ft16</td>
<td>987</td>
<td>792</td>
<td>795</td>
<td>796</td>
<td>795</td>
<td>796</td>
</tr>
<tr>
<td>ft28</td>
<td>1398</td>
<td>1396</td>
<td>1396</td>
<td>1396</td>
<td>1396</td>
<td>1396</td>
</tr>
<tr>
<td>ft33</td>
<td>1849</td>
<td>1953</td>
<td>1926</td>
<td>1953</td>
<td>1926</td>
<td>1953</td>
</tr>
<tr>
<td>ft35</td>
<td>1587</td>
<td>1535</td>
<td>1513</td>
<td>1561</td>
<td>1529</td>
<td>1561</td>
</tr>
<tr>
<td>ft38</td>
<td>1524</td>
<td>1517</td>
<td>1458</td>
<td>1320</td>
<td>1247</td>
<td>1247</td>
</tr>
<tr>
<td>il12002</td>
<td>591</td>
<td>527</td>
<td>512</td>
<td>574</td>
<td>543</td>
<td>574</td>
</tr>
<tr>
<td>minsk2</td>
<td>1270</td>
<td>1267</td>
<td>1274</td>
<td>1277</td>
<td>1257</td>
<td>2055</td>
</tr>
<tr>
<td>minsk4</td>
<td>1631</td>
<td>1600</td>
<td>1608</td>
<td>1569</td>
<td>1382</td>
<td>2744</td>
</tr>
<tr>
<td>minsk10</td>
<td>1985</td>
<td>1952</td>
<td>1997</td>
<td>1952</td>
<td>2017</td>
<td>2362</td>
</tr>
<tr>
<td>minsk20</td>
<td>4346</td>
<td>3346</td>
<td>3346</td>
<td>3346</td>
<td>3346</td>
<td>3346</td>
</tr>
<tr>
<td>mnx2</td>
<td>9526</td>
<td>7082</td>
<td>6880</td>
<td>6842</td>
<td>6896</td>
<td>1221</td>
</tr>
<tr>
<td>mnx5</td>
<td>5558</td>
<td>5558</td>
<td>5558</td>
<td>5558</td>
<td>5558</td>
<td>5558</td>
</tr>
<tr>
<td>mnx40</td>
<td>1786</td>
<td>1826</td>
<td>1770</td>
<td>1786</td>
<td>2456</td>
<td>2722</td>
</tr>
<tr>
<td>mnx50</td>
<td>3614</td>
<td>3979</td>
<td>3979</td>
<td>3979</td>
<td>3979</td>
<td>3979</td>
</tr>
<tr>
<td>mnx100</td>
<td>4524</td>
<td>3224</td>
<td>3224</td>
<td>3224</td>
<td>3224</td>
<td>3224</td>
</tr>
<tr>
<td>mnx200</td>
<td>3362</td>
<td>3362</td>
<td>3362</td>
<td>3362</td>
<td>3362</td>
<td>3362</td>
</tr>
<tr>
<td>mnx500</td>
<td>2336</td>
<td>2336</td>
<td>2336</td>
<td>2336</td>
<td>2336</td>
<td>2336</td>
</tr>
<tr>
<td>mnx1000</td>
<td>2354</td>
<td>2354</td>
<td>2354</td>
<td>2354</td>
<td>2354</td>
<td>2354</td>
</tr>
<tr>
<td>mnx2000</td>
<td>2374</td>
<td>2374</td>
<td>2374</td>
<td>2374</td>
<td>2374</td>
<td>2374</td>
</tr>
</tbody>
</table>

Table B.7: Mean CPU time (in seconds) obtained from the CPLEX solver, for scenario one-salesman-at-each-depot.

<table>
<thead>
<tr>
<th>Type</th>
<th>Test case</th>
<th>Mean CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>bays14</td>
<td>0.21</td>
</tr>
<tr>
<td>III</td>
<td>bays16</td>
<td>0.57</td>
</tr>
<tr>
<td>II</td>
<td>uylays16</td>
<td>0.34</td>
</tr>
<tr>
<td>III</td>
<td>uylays16</td>
<td>0.48</td>
</tr>
<tr>
<td>II</td>
<td>gr17</td>
<td>0.10</td>
</tr>
<tr>
<td>III</td>
<td>gr17</td>
<td>0.23</td>
</tr>
<tr>
<td>II</td>
<td>br17</td>
<td>0.16</td>
</tr>
<tr>
<td>III</td>
<td>br17</td>
<td>0.55</td>
</tr>
<tr>
<td>II</td>
<td>gr23</td>
<td>0.14</td>
</tr>
<tr>
<td>III</td>
<td>gr23</td>
<td>0.61</td>
</tr>
<tr>
<td>II</td>
<td>ft26</td>
<td>0.03</td>
</tr>
<tr>
<td>III</td>
<td>ft26</td>
<td>0.15</td>
</tr>
<tr>
<td>II</td>
<td>bays29</td>
<td>0.30</td>
</tr>
<tr>
<td>III</td>
<td>bays29</td>
<td>0.45</td>
</tr>
<tr>
<td>II</td>
<td>bays29</td>
<td>0.46</td>
</tr>
<tr>
<td>III</td>
<td>bays29</td>
<td>0.83</td>
</tr>
<tr>
<td>II</td>
<td>ft33</td>
<td>0.34</td>
</tr>
<tr>
<td>III</td>
<td>ft33</td>
<td>0.48</td>
</tr>
<tr>
<td>II</td>
<td>ft33</td>
<td>0.34</td>
</tr>
<tr>
<td>III</td>
<td>ft33</td>
<td>0.46</td>
</tr>
<tr>
<td>II</td>
<td>ft33</td>
<td>0.34</td>
</tr>
<tr>
<td>III</td>
<td>ft33</td>
<td>0.46</td>
</tr>
<tr>
<td>II</td>
<td>ft38</td>
<td>0.48</td>
</tr>
<tr>
<td>III</td>
<td>ft38</td>
<td>0.97</td>
</tr>
<tr>
<td>II</td>
<td>dantzig42</td>
<td>0.30</td>
</tr>
<tr>
<td>III</td>
<td>dantzig42</td>
<td>0.54</td>
</tr>
<tr>
<td>II</td>
<td>minsk42</td>
<td>0.13</td>
</tr>
<tr>
<td>III</td>
<td>minsk42</td>
<td>0.23</td>
</tr>
<tr>
<td>II</td>
<td>ft34</td>
<td>0.24</td>
</tr>
<tr>
<td>III</td>
<td>ft34</td>
<td>0.24</td>
</tr>
<tr>
<td>II</td>
<td>ft48p</td>
<td>0.12</td>
</tr>
<tr>
<td>III</td>
<td>ft48p</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table B.8: Mean CPU time (in seconds) obtained from the CPLEX solver, for scenario one-salesman-at-each-depot.
Table B.8: Mean CPU time (in seconds) obtained from the Gurobi Optimizer, for the scenario one-salesman-at-each-depot.

<table>
<thead>
<tr>
<th>problem</th>
<th>time</th>
<th>index</th>
<th>node</th>
<th>0.97</th>
<th>0.93</th>
<th>0.96</th>
<th>0.98</th>
<th>hh48</th>
<th>0.24</th>
<th>3.19</th>
</tr>
</thead>
<tbody>
<tr>
<td>burma14</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>II</td>
<td>0.13</td>
<td>0.06</td>
<td>230.64</td>
<td>2.17</td>
<td>0.86</td>
<td>0.66</td>
<td>0.51</td>
<td>0.41</td>
<td>0.51</td>
<td>0.66</td>
</tr>
<tr>
<td>III</td>
<td>0.14</td>
<td>0.08</td>
<td>0.08</td>
<td>0.14</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>ulyses16</td>
<td>1.62</td>
<td>0.26</td>
<td>0.04</td>
<td>0.08</td>
<td>0.27</td>
<td>0.31</td>
<td>1.61</td>
<td>2.49</td>
<td>1.53</td>
<td>2.56</td>
</tr>
<tr>
<td>II</td>
<td>1.59</td>
<td>0.27</td>
<td>0.11</td>
<td>0.34</td>
<td>0.26</td>
<td>0.26</td>
<td>0.35</td>
<td>0.7</td>
<td>1.23</td>
<td>1.32</td>
</tr>
<tr>
<td>III</td>
<td>0.19</td>
<td>0.14</td>
<td>0.14</td>
<td>0.05</td>
<td>0.11</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>gr17</td>
<td>0.18</td>
<td>0.17</td>
<td>0.28</td>
<td>0.03</td>
<td>0.08</td>
<td>0.18</td>
<td>0.17</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>II</td>
<td>0.47</td>
<td>0.06</td>
<td>0.16</td>
<td>0.07</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>III</td>
<td>2.52</td>
<td>0.32</td>
<td>0.12</td>
<td>0.19</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>br17</td>
<td>1.14</td>
<td>0.47</td>
<td>0.21</td>
<td>0.11</td>
<td>0.31</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>II</td>
<td>2.69</td>
<td>0.47</td>
<td>0.27</td>
<td>0.37</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>III</td>
<td>0.72</td>
<td>0.30</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>yl50</td>
<td>0.91</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>II</td>
<td>0.72</td>
</tr>
<tr>
<td>III</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Table B.9: Mean CPU time (in seconds) obtained from the CBC solver, for scenario one-salesman-at-each-depot. As the largest test case that can solve this scenario is eil176, we have truncated the table to make it more concise.

<table>
<thead>
<tr>
<th>problem</th>
<th>time</th>
<th>index</th>
<th>0.60</th>
<th>0.60</th>
<th>0.60</th>
<th>0.60</th>
<th>0.60</th>
<th>0.60</th>
<th>0.60</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>burma14</td>
<td>0.68</td>
</tr>
<tr>
<td>III</td>
<td>2.53</td>
</tr>
<tr>
<td>ulyses16</td>
<td>11.18</td>
</tr>
<tr>
<td>II</td>
<td>8.21</td>
</tr>
<tr>
<td>III</td>
<td>0.77</td>
</tr>
<tr>
<td>gr17</td>
<td>1.68</td>
</tr>
<tr>
<td>II</td>
<td>2.17</td>
</tr>
<tr>
<td>III</td>
<td>0.76</td>
</tr>
<tr>
<td>br17</td>
<td>2.84</td>
</tr>
<tr>
<td>II</td>
<td>5.89</td>
</tr>
</tbody>
</table>

Note: The tables show the mean CPU time obtained from the Gurobi Optimizer and the CBC solver, respectively, for different problems. The time is measured in seconds.
Table B.10: Mean CPU time (in seconds) obtained from the CPLEX solver, for the scenario multiple-salesmen-at-each-depot.

<table>
<thead>
<tr>
<th>Type</th>
<th>Test Case</th>
<th>CPU Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>busrn14</td>
<td>0.25</td>
</tr>
<tr>
<td>I</td>
<td>burlc29</td>
<td>0.22</td>
</tr>
<tr>
<td>I</td>
<td>ftv35</td>
<td>0.53</td>
</tr>
<tr>
<td>I</td>
<td>gr17</td>
<td>0.54</td>
</tr>
<tr>
<td>I</td>
<td>br17</td>
<td>0.53</td>
</tr>
<tr>
<td>I</td>
<td>gr20</td>
<td>0.52</td>
</tr>
<tr>
<td>I</td>
<td>fn26</td>
<td>0.65</td>
</tr>
<tr>
<td>I</td>
<td>burlc29</td>
<td>0.60</td>
</tr>
<tr>
<td>I</td>
<td>ftv38</td>
<td>0.64</td>
</tr>
<tr>
<td>I</td>
<td>dantzig42</td>
<td>0.64</td>
</tr>
<tr>
<td>I</td>
<td>swiss42</td>
<td>0.67</td>
</tr>
<tr>
<td>I</td>
<td>ftv34</td>
<td>0.66</td>
</tr>
<tr>
<td>I</td>
<td>y48p</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Table B.11: Mean CPU time (in seconds) obtained from Gurobi Optimizer, for the scenario multiple-salesmen-at-each-depot.

<table>
<thead>
<tr>
<th>Type</th>
<th>Test Case</th>
<th>CPU Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>busrn14</td>
<td>0.04</td>
</tr>
<tr>
<td>I</td>
<td>burlc29</td>
<td>0.05</td>
</tr>
<tr>
<td>I</td>
<td>gr17</td>
<td>0.04</td>
</tr>
<tr>
<td>I</td>
<td>br17</td>
<td>0.07</td>
</tr>
<tr>
<td>I</td>
<td>gr21</td>
<td>0.05</td>
</tr>
<tr>
<td>I</td>
<td>ftv35</td>
<td>0.05</td>
</tr>
<tr>
<td>I</td>
<td>burlc29</td>
<td>0.05</td>
</tr>
<tr>
<td>I</td>
<td>ftv38</td>
<td>0.05</td>
</tr>
<tr>
<td>I</td>
<td>dantzig42</td>
<td>0.07</td>
</tr>
<tr>
<td>I</td>
<td>swiss42</td>
<td>0.07</td>
</tr>
<tr>
<td>I</td>
<td>ftv34</td>
<td>0.08</td>
</tr>
<tr>
<td>I</td>
<td>y48p</td>
<td>0.05</td>
</tr>
</tbody>
</table>

15
Table B.12: Mean CPU time (in seconds) obtained from the CBC solver, for the scenario multiple-salesmen-at-each-depot. As the largest test case that CBC can solve for this scenario is **swiss42**, we have truncated the table to make it more concise.

<table>
<thead>
<tr>
<th>Type</th>
<th>test case</th>
<th>(D=2)</th>
<th>(D=3)</th>
<th>(D=4)</th>
<th>(D=5)</th>
<th>(D=6)</th>
<th>test case</th>
<th>(D=2)</th>
<th>(D=3)</th>
<th>(D=4)</th>
<th>(D=5)</th>
<th>(D=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>burial14</td>
<td>0.42</td>
<td>0.40</td>
<td>2.35</td>
<td>13.72</td>
<td>bayg20</td>
<td>0.70</td>
<td>1.29</td>
<td>7.53</td>
<td>2.39</td>
<td>10.80</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bayg29</td>
<td>0.60</td>
<td>0.63</td>
<td>6.82</td>
<td>8.73</td>
<td>19.08</td>
<td>22.07</td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>0.37</td>
<td>0.45</td>
<td>0.53</td>
<td>0.82</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>0.80</td>
<td>0.46</td>
<td>0.54</td>
<td>0.71</td>
<td>5.24</td>
<td>8.82</td>
<td>8.73</td>
<td>19.08</td>
<td>22.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>0.92</td>
<td>1.38</td>
<td>0.48</td>
<td>0.74</td>
<td>0.93</td>
<td>4.26</td>
<td>2.09</td>
<td>10.62</td>
<td>11.07</td>
<td>17.07</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1.63</td>
<td>0.82</td>
<td>0.61</td>
<td>0.33</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>2.60</td>
<td>0.93</td>
<td>2.42</td>
<td>0.94</td>
<td>0.86</td>
<td>fin33</td>
<td>2.57</td>
<td>3.49</td>
<td>3.86</td>
<td>2.17</td>
<td>7.24</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>13.86</td>
<td>2.66</td>
<td>1.29</td>
<td>1.28</td>
<td>1.30</td>
<td>17.29</td>
<td>16.61</td>
<td>9.76</td>
<td>1.39</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>4.84</td>
<td>0.77</td>
<td>0.53</td>
<td>0.33</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>5.41</td>
<td>0.68</td>
<td>1.31</td>
<td>0.50</td>
<td>0.75</td>
<td>fin35</td>
<td>3.51</td>
<td>4.45</td>
<td>6.10</td>
<td>4.80</td>
<td>2.28</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>39.25</td>
<td>1.35</td>
<td>1.62</td>
<td>0.50</td>
<td>1.83</td>
<td>3.03</td>
<td>20.41</td>
<td>26.28</td>
<td>52.22</td>
<td>12.11</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1.07</td>
<td>2.79</td>
<td>2187.24</td>
<td>59.15</td>
<td>fin38</td>
<td>2.69</td>
<td>33.80</td>
<td>16.52</td>
<td>21.71</td>
<td>3.62</td>
<td>8.99</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>3.46</td>
<td>1.18</td>
<td>1.19</td>
<td>2.35</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1.26</td>
<td>1.18</td>
<td>1.40</td>
<td>0.67</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>4.00</td>
<td>1.71</td>
<td>3.96</td>
<td>1.51</td>
<td>6.83</td>
<td>dantzig42</td>
<td>7.39</td>
<td>3.12</td>
<td>21.19</td>
<td>13.97</td>
<td>18.96</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>6.85</td>
<td>3.00</td>
<td>6.94</td>
<td>2.65</td>
<td>12.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>3.51</td>
<td>1.82</td>
<td>11.20</td>
<td>5.34</td>
<td>3.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>5.18</td>
<td>14.75</td>
<td>11.20</td>
<td>5.34</td>
<td>3.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1.88</td>
<td>3.77</td>
<td>11.99</td>
<td>6.44</td>
<td>2.94</td>
<td>swiss42</td>
<td>6.65</td>
<td>78.95</td>
<td>37.61</td>
<td>8.37</td>
<td>239.81</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>37.25</td>
<td>18.56</td>
<td>8.25</td>
<td>8.83</td>
<td>11.83</td>
<td></td>
<td>50.72</td>
<td>50.86</td>
<td>85.50</td>
<td>10.98</td>
<td>98.13</td>
</tr>
</tbody>
</table>

Note: As the largest test case that CBC can solve for this scenario is **swiss42**, we have truncated the table to make it more concise.
References

[21] Harris, J., Hirst, J. L., Mossingho...

17

