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A Node Current-based 2-Index Formulation for the
Fixed-Destination Multi-Depot Travelling Salesman Problem

M. Burgera,∗, Z. Sub, B. De Schutterb

aTBA, Karrepad 2a, 2623 AP Delft, The Netherlands
bDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

The travelling salesman problem forms a basis for many optimisation problems in logistics, finance, and engineering.
Several variants exist to accommodate for different problem types. In this article we discuss the fixed-destination,
multi-depot travelling salesman problem, where several salesmen will start from different depots, and they are required
to return to the depot they originated from. We propose a novel formulation for this problem using 2-index binary
variables and node currents, and compare it to other 2-index formulations from the literature. This novel formulation
requires less binary variables and continuous variables to formulate a problem, resulting in lower computation times.
Using a large benchmark the effectiveness of the new formulation is demonstrated.

Keywords: travelling salesman, node current, integer programming, fixed-destination problem

1. INTRODUCTION

Although the travelling salesman problem (TSP) can
be stated simply as “Find the shortest route that con-
nects all cities on a map”, solving this problem has kept
people busy for decades. The ongoing quest for faster
algorithms for finding (an approximation of) the optimal
solution of the TSP has led to a large amount of litera-
ture on the subject. Heuristic methods [22, 29] can be
used to find solutions of large TSP instances quickly, but
no guarantees can be given for finding the optimal solu-
tion. In this article we consider exact formulations that
guarantee finding the globally optimal solution. A com-
prehensive discussion of the history and state-of-the-art
for solving the TSP can be found in [1, 14].

1.1. Literature Review
The power of the TSP [15, 30, 33] does not only lie in

finding tours of minimal distance along cities, but also
in the fact that it forms the mathematical basis of many
scheduling and routing problems. Extensions such as
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the vehicle routing problem [25, 46] and the pick-up and
delivery problem [36, 37, 42, 43] are important prob-
lems in the fields of logistics and economics. Recent
applications include the optimal maintenance routing
and scheduling for offshore wind farms [23], and the
optimal delivery or pickup of goods using hybrid elec-
tric vehicles [17]. In those problems one usually tries
to minimise some ‘cost’ (e.g. distance, time, money,
or a combination) using multiple ‘salesmen’ (e.g. peo-
ple, trucks, air planes, vessels) that can visit the ‘cities’
(e.g. shops, harbours, airports, or actual cities). The
use of multiple salesmen to visit the cities makes the
problems harder to solve due to the increase in possi-
ble solutions. The multiple travelling salesmen problem
(mTSP) is at the basis of the vehicle routing problem
and the pick-up and delivery problem.

The essence of mTSP is to find the shortest total travel
distance for multiple salesmen starting from and return-
ing to a single depot/home city. Since certain problems
require more than one depot (e.g. for delivering goods to
shops that can be supplied from multiple storage facili-
ties), an extension to the multi-depot multiple-salesmen
TSP (MmTSP) has been made [3]. In this case the prob-
lem consists of finding the shortest distance such that
several salesmen will start at a depot, they visit all the
cities once (and only once), and return to a depot again.
When it is not important at what depot the salesmen end
their route, we talk about a nonfixed-destination prob-
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lem; when the salesmen are supposed to return to their
original depot we talk about a fixed-destination prob-
lem [24]. The work of [6] is also concerned with multi-
depot TSPs, where the number of salesmen per depot is
not limited and the travel distances are symmetric. In
this article we will focus on problems with a fixed num-
ber of salesmen per depot, and asymmetric costs.

The fixed-destination Multi-depot multiple-salesmen
TSP (FMmTSP) is a restricted case of the nonfixed-
destination problem, with the additional constraint that
all salesmen should return to their original location.
Therefore, the former is more difficult to solve than
the latter; the solutions to the FMmTSP are a subset
of the solutions to the MmTSP. In [24] a mixed-integer
linear programming (MILP) description for the fixed-
destination problem has been proposed using 3-index
decision variables, resulting in a large increase in binary
variables for each added depot.

Cycle (or subtour) elimination constraints (CECs) are
used to ensure that no cycles exist within the set of city
nodes. They have been a topic of active research over
many decennia, starting with the use of loop constraints
by Dantzig et al. [15] in 1954, the node potentials by
Miller et al. [30] in 1960, and (multi)-commodity flow-
based constraints in [20] starting from 1978. Loop
conditions give strong linear programming relaxations,
but the number of constraints grows exponentially with
the problem size. The number of node-potential-based
constraints only grows quadratically with the problem
size, but they result in much weaker relaxations. Using
multi-commodity flow formulations it is possible to ob-
tain strong relaxations, but with a number of constraints
growing cubically in the problem size.

Cycle imposement constraints (CICs) can be used to
ensure a (minimum) number of cycles in a set of nodes.
Fixed-destination solutions for TSP-like problems can
be created by enforcing that there should be at least
D cycles in the combined set of depot and city nodes,
while using CECs to ensure that no subtours exist in the
set of city nodes; when D equals the number of depots
this will result in exactly D cycles in the network; one
for each of the depots. CICs have only recently been
discussed in the literature, starting with the path elim-
ination constraints of Belenguer et al. [5] in 2011, the
multi-commodity flow-based constraints of Bektaş [4]
in 2012, and the node currents of [8] in 2014.

Table 1 shows the order of the number of the dis-
cussed CECs and CICs. This article will introduce
the node current-based CICs, which can be seen as the
equivalent of the node potentials for cycle imposement.

Table 1: Overview of CECs and CICs and the order of their num-
bers

Order Cycle elimination Cycle imposement
O(2N) loop conditions [15] path elimination [5]
O(N3) commodity flow [20] commodity flow [4]
O(N2) node potentials [30] node currents [8]

1.2. Contributions
The main contribution of this article is the generalisa-

tion of the node current constraints from [8] for the one-
salesman-per-depot case to the multiple-salesmen-per-
depot case, resulting in a novel formulation for FMmT-
SPs with asymmetric costs. Furthermore, assignment
constraints are presented that limit the number of sales-
men per depot for the MmTSP.

Node currents are used for cycle imposement con-
straints, which ensure each salesman to return to his
original depot. They can be seen as the dual to
the node potentials introduced by Miller et al. [30] in
their subtour elimination constraints. We have used
a preliminary version of these cycle imposement con-
straints for micro-ferry scheduling problems with the
purpose of identifying which micro-ferry will pick up
which customer [10], and for the routing of multiple
harvesters [9]. In the current article this method is used
to enforce fixed-destination solutions to the MmTSP.

For an FMmTSP with L nodes/locations, including D
depots and C cities, two approaches where L = 2D + C
exist in the literature [4, 32]; we will introduce an ap-
proach that uses L = D + C nodes, thereby reducing
the amount of costly binary variables2. This formula-
tion has been presented for the fixed-destination, multi-
depot, single-salesman-per-depot TSP in [8]; here we
introduce the generalisation for problems with multiple
salesmen per depot.

1.3. Outline
Section 2 provides an introduction to the FMmTSP,

and defines the problem discussed in this article. An
FMmTSP formulation consists of four components,
which are discussed in detail in Section 3. The main
contribution of this article is the introduction of node
currents as a means to enforce fixed-destination solu-
tions through cycle imposement constraints. This ap-
proach is discussed in Section 4, and it is compared to
two existing approaches. A computational comparison
for three distinct FMmTSP formulations will be given in
Section 5, followed by concluding remarks in Section 6.

2In general, using more binary variables will lead to larger com-
putation times for solving the problem.
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2. PROBLEM DESCRIPTION

For the mTSP with one depot (and multiple salesmen)
it is obvious that all salesmen should return to this single
depot. However, when considering multiple depots, two
situations can occur: either the salesmen may end their
tour at any depot, or they are required to return to their
original depot. The latter is a restricted case of the for-
mer and can be obtained by using additional constraints,
as will be discussed next.

2.1. Description of the MmTSP

We consider the MmTSP, where there are D depots
available from where C cities should be visited. Each
depot d has a certain number of salesmen available, in-
dicated by md. Each city should be visited by one and
only one salesman. The cost to travel from city i to j
is denoted by the constant ci j. The costs can be asym-
metric, i.e., ci j and c ji might be different. The decision
variable xi j indicates whether (xi j = 1) or not (xi j = 0)
city j is visited directly after city i by a salesman.

The locations of both the cities and the salesmen can
be taken into account in the modelling by denoting both
the D locations of the depots (where the salesmen are)
and the C locations of the cities as one set of L = C + D
locations. The sets D, C, and L—associated with the
depots, the cities, and the locations respectively— are
defined as

D = {1, . . . ,D}, C = {D + 1, . . . , L}, L = D∪ C. (1)

2.2. Description of the FMmTSP

For the fixed-destination problems, the additional re-
striction that all salesmen should return to their original
depots makes the FMmTSP more difficult to solve. The
reason is that compared with the non-fixed destination
MmTSP, new auxiliary variables or decision variables
of higher index are required for the fixed-destination
setting to impose the additional restriction that each
salesman must return to his departing depot. In the lit-
erature often the (fixed-destination) multi-depot prob-
lems (or multi-vehicle problems when considering ve-
hicle routing) are solved using a 3-index variant of the
decision variables [3, 12, 39, 46], thereby drastically in-
creasing the number of binary variables (that are com-
putationally expensive) with each depot added to the
problem. The three indices represent 1) the origin, 2)
the destination, and 3) the depot (vehicle) number. An
example of an MILP description of both nonfixed- and
fixed-destination MmTSP formulations using 3-index
formulations is given in [24].

D C

c5

c1 c2

c3

c4

c6

d1

d2

d3

Figure 1: A solution to the FmMTSP. Cycles should be eliminated in
the set C, whereas they should be imposed in the set L = D∪ C.

Recently, formulations of the MmTSP [32] and
FMmTSP [4] using 2-index binary variables have been
presented in the literature. Both methods make use of a
copy D′ of the set of depot nodes D, where one depot
serves as a start point and the other depot serves as the
end point of a tour for a salesman. For D depot nodes
and C city nodes in the original problem, there will be
2D depot nodes and C city nodes in the extended prob-
lem. The resulting set of nodes in the graph is

L′ = D∪ C ∪D′, (2)

where the copied set of the D depots inD is defined as

D′ = {1′, . . . ,D′} = {L + 1, . . . , L + D}, (3)

such that node i and node i′ = L+i represent the start and
end depot of depot i∈D, respectively. This formulation
results in L′ = 2D + C nodes in the graph3.

A transformation of the MmTSP problem to an asym-
metric TSP has been proposed by Oberlin et al. [31, 32]
by using a copy of the depot nodes as in (3). More
recently Bektaş [4] has proposed a method to solve
the FMmTSP using D′ based on commodity flows. In
Section 4 we will introduce a formulation that only re-
quires L = D + C nodes to represent the same problem.

3With an efficient implementation –where the start node only has
outgoing arcs and the end node only has incoming arcs– the number
of arcs (and thereby the number of binary variables) remains the same.
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3. PROBLEM FORMULATION

The FMmTSP can be described as a mathematical
program consisting of the following components4

minimise costs (4a)
subject to assignment constraints (4b)

cycle elimination constraints (4c)
cycle imposement constraints (4d)

In this section we provide a brief overview of the cur-
rently available types of constraints for each of the com-
ponents. For a more thorough discussion on the avail-
able cycle (subtour) elimination constraints (including
the relations of their linear relaxation strengths) we re-
fer to [41] and the references therein.

For ease of notation we will use the index d′ and the
setsD′ andL′ in this section, where their definition will
depend on the type of formulation that is used, as spec-
ified in Table 2.

Table 2: The definition of prime symbols for formulations with
and without depot-node copies.

with copies of depots without copies of depots
d′ d + L d
D′ {L + 1, . . . , L + D} D

L′ {1, . . . , L + D} L

3.1. Costs
The cost in (FMm)TSPs is the distance the salesmen

travel, resulting in minimising the total travel distance

Jtd =
∑
i∈L′

∑
j∈L′

ci jxi j, (5)

where ci j ≥ 0 is the travel distance between cities i
and j, and xi j ∈ {0, 1} is a decision variable satisfying

xi j =

1 if city j is visited directly after city i,
0 otherwise.

(6)

When using 3-index decision variables xi jk the total
travel distance is given by

Jtd =
∑
i∈L

∑
j∈L

∑
k∈D

ci jxi jk, (7)

4Constraints (4c) are commonly known as subtour elimination
constraints (SECs). Since the term ‘subtour’ has the implicit prop-
erty of being undesired, we will present the counterpart of the SECs
as cycle imposement constraints, thereby using the modern term ‘cy-
cle’ instead of ‘subtour’. For consistency we therefore also use the
term cycle elimination constraints.

where ci j ≥ 0 is the travel distance between cities i
and j, and xi jk ∈ {0, 1} is a decision variable satisfying

xi jk =


1 if city j is visited directly after city i by a

salesman originating from depot k,
0 otherwise.

(8)

3.2. Assignment Constraints

The assignment constraints ensure that each node has
exactly one incoming arc and one outgoing arc (see
Figure 1), thereby satisfying a necessary condition for
visiting the cities once and only once.

3.2.1. Description of the assignment constraints
The assignment constraints for the (F)MmTSP [3, 27]

are given by

∑
j∈L′

xd j = md ∀ d∈D (9a)∑
j∈L′

xi j = 1 ∀ i∈C (9b)∑
i∈L′

xi j = 1 ∀ j∈C (9c)∑
i∈L′

xid′ = md ∀ d′ ∈D′ (9d)

xi j ∈ {0, 1} ∀ i, j∈L′ (9e)

Due to (9a) all of the md salesmen will leave their
depot d, and by (9b) each city i is succeeded by ex-
actly one location (a salesman leaves the city). Further-
more, equations (9c) ensure that each city j is preceded
by exactly one location (a salesman enters the city),
whereas (9d) ensures that md salesmen will return to de-
pot d′. The setD′ denotes —depending on the problem
formulation— either a copy of the depot nodes, or the
original setD of depot nodes, as defined in Table 2. Fi-
nally, (9e) ensures that the decision variable xi j is treated
as a binary variable.

3.2.2. Variants for the assignment constraints
The assignment constraints in (9) force all md sales-

men to leave their depot, and also require md salesmen
to return to depot d. The former is restrictive for both
fixed- and nonfixed-destination problems, whereas the
latter only restricts the solutions for the FMmTSP. Both
restrictions can be loosened as shown next.

Idle salesmen: To allow salesmen to stay at the de-
pot without visiting a city (hence some salesmen may be

4



‘idle’; they do not provide any work), the equality con-
straints (9a) and (9d) can be substituted by (see [45])∑

j∈L′
xd j ≤ md ∀ d∈D (9a∗)∑

i∈L′
xid′ =

∑
j∈L

xd j ∀ d′ ∈D′ (9d∗)

where (9a∗) limits the amount of salesmen that can leave
depot d to md (which equals the number of salesmen
present at depot d), whereas (9d∗) ensures that the same
amount of salesmen that have left the depot, will also
return to the depot.

Fixed-capacity depots: For nonfixed-destination
problems the number of salesmen at a depot will in
general be different before and after the salesmen trav-
elled. To avoid solutions where certain depots will re-
ceive more salesmen than they can facilitate, an upper
bound on the number of salesmen that are allowed to
return to each specific depot should be set. To accom-
plish this we propose the following.

If the capacity of depot d (with d′ the associated end
depot) is qd′ salesmen one could substitute (9d∗) with

md +
∑
i∈L′

xid′ ≤ qd +
∑
j∈L′

xd j ∀ d′ ∈D′ (9d⋆1 )∑
d′∈D′

∑
j∈L′

xd′ j =
∑
d∈D

∑
i∈L′

xid (9d⋆2 )

Inequalities (9d⋆1 ) ensure that no more than qd′ salesmen
end up in depot d′,5 whereas (9d⋆2 ) ensures that all the
salesmen that leave a depot will also return to a depot.

3.3. Cycle Elimination Constraints
Note that the constraints (9) do not avoid

i) the existence of cycles (subtours) in C, resulting
in routes along cities that do not have a salesman
associated with them,

ii) the existence of cycles in L′ containing more than
one node from D, resulting in a schedule where
salesmen end their tour at an arbitrary depot.

The former situation would result in a schedule where
some cities will not be visited by a salesman (since no-
one is assigned to do so), whereas the latter situation
would result in a schedule where the salesmen do not
have the guarantee that they return to their original de-
pot. To assure that each city is visited by a salesman,

5The number of salesman returning to depot d′ is less or equal to
the capacity qd minus the number of salesmen md present at the start
plus the number of salesmen that leave depot d.

solutions using cycle elimination constraints have been
proposed in the literature [15, 19, 20, 30]. These con-
straints are based on different concepts, for which a brief
description will be provided next; a more detailed de-
scription can be found in [34].

3.3.1. Loop conditions
The loop conditions were introduced in the seminal

work of Dantzig et al. [15], which can be stated as∑
i, j∈S

xi j ≤ |S| − 1 ∀ S ⊂ L′, 2 ≤ |S| ≤ L′ − 1, (10)

where |S| represents the cardinality of set S (see [21]).
These constraints provide strong linear programming
relaxations, but the number of constraints grows expo-
nentially with the number of nodes.

3.3.2. Node potentials
Miller et al. [30] proposed an approach for eliminat-

ing cycles by using additional variables ui that repre-
sent node potentials. Using the strengthened formula-
tion of Desrochers and Laporte [16], the C continuous
variables ui should satisfy

ui − u j + Cxi j + (C − 2)x ji ≤ C − 1 ∀ i, j∈C, (11)

resulting in C2 inequality constraints.
The node potential representation has been extended

by Kara and Bektaş [4, 24] to set workload bounds6 on
the number of cities a salesman should visit. Denoting u
and u as the minimum and maximum number of cities
the salesmen may visit respectively, the cycle impose-
ment constraints

ui − u j + uxi j + (u − 2)xi j ≤ u − 1 ∀ i, j∈C (12a)

ui + (u − 2)
∑
d∈D

xdi −
∑

d′∈D′
xid′ ≤ u − 1 ∀ i∈C (12b)

ui +
∑
d∈D

xdi + (2 − u)
∑

d′∈D′
xid′ ≥ 2 ∀ i∈C (12c)

ensure that each salesman will be assigned between u
and u cities to visit, and city i will be the ui-th city a
salesman visits7. Inequalities (12a) provide cycle elimi-
nation constraints. In both (12b) and (12c) the first sum-
mation is 1 if and only if node i represents the first city

6Loop conditions representation with workload bound were first
proposed in [24] for the mTSP (single depot), and were extended in
[4] for the MmTSP (multidepot)

7In [4, 24] it is stated that these inequality constraints are only
valid for u ≥ 4; this is only under the restriction that salesmen should
at least visit two cities, and hence xdi = xid′ = 1 is not allowed.
Lifting this restriction by allowing salesmen to visit zero or one city
these inequality constraints are valid for all u ≥ 0.
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of a tour (and it is 0 otherwise), and the second summa-
tion is 1 if and only if node i represents the last city of
a tour (and is 0 otherwise). Therefore, (12b) and (12c)
ensure that ui ≤ u and ui ≥ u for the last cities in a tour,
thereby setting the desired upper and lower bound re-
spectively on the number of visited cities per salesman.

For the TSP with time windows [2] the constraints

ti − t j + τi j + Txi j ≤ T (13)

can be seen as a variant of the node potential approach,
where ti is the time instant city i is visited, τi j is the
potential difference between the nodes, and T is a suffi-
ciently large constant.

3.3.3. Commodity flows
Gavish and Graves [20] introduced commodity flows

as a means for eliminating undesired cycles. The L′2

continuous variables fi j should satisfy the constraints∑
j∈L′

fi j −
∑
j∈L′

f ji = 1 ∀ i∈C (14a)

fi j ≤ Cxi j ∀ i∈C, j∈L′ (14b)
fi j ≥ 0 ∀ i, j∈L′ (14c)

Extensions to two-commodity flows [18] and multi-
commodity flows [11, 47] have been proposed, resulting
in stronger linear programming relaxations [26, 35].

3.3.4. Time periods
For a graph with L′ nodes, Fox et al. [19] present a cy-

cle elimination formulation using a 3-index binary vari-
able representation xi jt, where

xi jt =

1 if i precedes j as the t-th node in the tour,
0 otherwise.

(15)
The index t∈T represents the time period in which the
salesman travels from city i to city j. To ensure that all
cities are visited in some time period, and that in each
time period only one city is visited, the O(L′3) binary
variables xi jt should satisfy

∑
i∈L′

∑
j∈L′

∑
t∈T

xi jt = L′ (16a)∑
j∈L′

∑
t∈T\{1}

txi jt −
∑
j∈L′

∑
t∈T

tx jit = 1 ∀ i∈L′− (16b)

xi jt ∈ {0, 1} ∀ i, j∈L′ t∈T
(16c)

Constraints (16a) and (16c) replace the assignment
constraints (9). Equality constraints (16b) ensure that in
each time period t exactly one city i is visited.

3.4. Cycle Imposement Constraints

To assure that each salesman returns to the origi-
nal depot, additional constraints are needed to enforce
cycles that start and end in the same depot (or paths
leading from one start depot towards the associated end
depot). Opposite to the cycle elimination constraints,
the constraints that enforce the existence of a certain
amount of cycles in a graph can be seen as cycle impose-
ment constraints. To the authors’ best knowledge, cur-
rently only three approaches exist for obtaining fixed-
destination solutions; using 3-index binary variables,
or using 2-index binary variables plus commodity flow
variables [4, 24], or using the path elimination con-
straints [5], which introduces no new variables, but
modifies the definition of the 2-index binary variable
associated with each arc. We will introduce a fourth
approach in Section 4 that is based on node currents,
which can be seen as the dual of the node potentials in-
troduced by Miller et al. [30] presented in (11).

3.4.1. 3-Index formulation
Using decision variables xi jd that satisfy

xi jd =

1 if i precedes j directly in the tour of depot d,
0 otherwise,

(17)
the existence of D cycles can be enforced [24] using∑

j∈C

xd jd = md ∀ d∈D (18a)

∑
d∈D

xd jd +
∑
i∈C

xi jd

 = 1 ∀ j∈C (18b)

xd jd +
∑
i∈C

xi jd = x jdd +
∑
i∈C

x jid ∀ d∈D, j∈C (18c)∑
j∈C

xd jd =
∑
j∈C

x jdd ∀ d∈D (18d)

Constraints (18a) and (18d) ensure that exactly md sales-
men depart and return to depot d. Constraints (18b)
guarantee that each city are visited exactly once. Con-
straints (18c) ensure the path continuity. Together with
the degree constraints (18b), constraints (18c) ensure
that a salesman starts at depot d and visits city j first will
either continue to another city i or return to the same
depot. Note that this formulation uses O(L2D) binary
variables, and the number of binary variables increases
cubically with the number of depots (as opposed to the
quadratic increase for 2-index formulations).
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3.4.2. Multi-commodity flow formulation
A multi-commodity flow problem is a network flow

problem with multiple flows [38]. Besides applications
for cycle elimination (as discussed in Section 3.3.3) it
was shown by Bektaş [4] that this concept can also
be used for enforcing fixed-destination solutions to the
mTSP. In this context a commodity f d represents the
number of salesmen originating from depot d. The con-
straints based on commodity flows [4] are given by∑

j∈C∪D′
f d
d j −

∑
j∈D∪C

f d
jd = md ∀ d∈D (19a)∑

j∈C∪D′
f d
i j −

∑
j∈D∪C

f d
ji = 0 ∀ i∈C, d∈D (19b)∑

j∈D∪C

f d
jd′ −

∑
j∈C∪D′

f d
d′ j = md ∀ d′ ∈D′ (19c)

0 ≤ f d
i j ≤ xi j ∀ i, j∈L′, d∈D (19d)

In this formulation each depot d in D acts as a
source of commodity f d, while each depot d′ in D′

acts as a sink where only commodity d = d′ − L is
accepted. By (19a) exactly md units of commodity f d

will leave depot d (meaning that md salesmen will leave
the depot). Constraints (19b) are flow-conservation con-
straints that guarantee that the same amount of com-
modity f d entering a node i will also leave node i
(meaning that each salesman that enters a city will also
leave the city). By (19c) exactly md units of com-
modity f d will reach depot d′ (meaning that md sales-
men will arrive at the duplicate depot node d′). Com-
bined with the assignment constraints (9), the inequality
constraints (19d) restrict the commodities to only flow
along arcs that are part of the selected routes; if xi j = 0
no commodity can flow from city i to city j. This for-
mulation uses L′2D commodity flow variables f d

i j, where
L′ = 2D + C is the number of nodes in the graph.

3.4.3. Path elimination constraints
The path elimination constraints, first proposed

in [5], fix the destination of each salesman by elimi-
nating paths that start and end in two different depots.
The idea is inspired by the chain-baring constraints in-
troduced in [28]. Although originally designed for loca-
tion routing problems, path elimination constraints have
been applied to many fixed-destination mTSP variants
[6, 13, 44]. The decision variables are

xi j =

1 if (i, j) is traversed exactly once,
0 otherwise,

(20)

for i, j∈L and

wi j =

1 if (i, j) is in a return trip,
0 otherwise,

(21)

for all i∈D, j∈C. The path elimination constraints
given by [5] are∑

p,q∈S∪{i, j}

xpq +
∑
d∈D◦

x jd +
∑

d∈D\D◦
xid ≤ |S| + 2 (22)

∀i, j∈C,∀S ⊆ C\{i, j},∀D◦ ⊂ D

If all cities in S ∪ {i, j} are in a consecutive path,
then the loop conditions (10) are satisfied with equality,
i.e.,
∑

p,q∈S∪{i, j} = |S |+1. Because of constraints (22) we
have

∑
d∈D◦ x jd +

∑
d∈D\D◦ xid ≤ 1. This indicates

that a path connected to a depot in D◦ cannot be con-
nected to another depot in D\D◦. Constraints (22) can
eliminate all unwanted paths that visit at least two cities
and start and end in different depots. The constraints∑

d∈D
xd j + wd j ≤ 1 ∀ j∈C (23)

are needed to also eliminate undesired paths that visit
only one city (and start and end in different depots).This
formulation requires O(L2 + DC) binary variables, and
the number of constraints (O(2CC22D) grows exponen-
tially with the number of cities and depots. Just as for
the loop conditions (10) these constraints are suitable
for branch-and-cut implementations, but not to formu-
late the complete problem and use a MILP solver to ob-
tain optimal solutions.

4. NOVEL FMmTSP FORMULATION

In the previous section it has been discussed that the
FMmTSP can be formulated using four components (as
provided in (4)). The cost that needs to be minimised
is the total travel distance of the salesmen, for which a
standard formulation is given in (5). For the assignment
constraints the conventional constraints are given in (9),
but variations can be used to e.g. allow some salesmen
to be idle or to limit the number of salesmen that may
end at a depot, as discussed in Section 3.2.2. The com-
ponent that has the most variants in literature provides
the cycle elimination constraints (or subtour elimination
constraints), discussed in Section 3.3.

The component that has received the least atten-
tion provides the cycle imposement constraints. Un-
til recently, fixed-destination solutions for mTSPs
and its variants have been ensured by using 3-index
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formulations of the decision variables as discussed
in Section 3.4.1. The formulation of Bektaş pro-
posed in [4] is the first formulation that ensures fixed-
destination solutions using 2-index binary variables
and the multi-commodity flow constraints presented in
Section 3.4.2. In this section we will introduce a novel
approach for cycle imposement. This approach is also
based on 2-index binary variables, where one continu-
ous variable per node is added to the formulation to en-
sure a fixed-destination solution. The new formulation
needs a few less binary variables than the formulation
of [4]; more importantly, it uses DL times less continu-
ous variables than the multi-commodity flow approach.

4.1. Cycle Imposement through Node Currents

Inspired by the node potentials of Miller, Tucker,
and Zemlin [30] we propose an alternative formula-
tion of the FMmTSP using node currents [8]. Similar
to the commodity flow transported between cities over
the arcs, the current in an electric circuit can also be
considered as a flow in a directed graph. With the de-
pots representing current sources, a proper electric cir-
cuit contains only cycles (if not, there would be an open
circuit or short circuit), which corresponds to the cycle
imposement constraint stating that every salesman must
return to his departing depot. A flow conservation law
combined with assignment constraints forces the current
flowing into a node to be equal to the current flowing out
of the node, so that nodes in the same cycle must have
the same current. Thus, we can view the current ki as a
property of node i (instead of a property of the arc xi j).

4.1.1. Node current formulation
For the newly proposed node current formulation

there is no need to use copies of the depot nodes. There-
fore, this formulation will use less binary variables as
for the copy-based formulation, since there are D less
nodes to represent the graph. Fixed-destination solu-
tions can be obtained by using L = D + C continuous
variables ki satisfying the cycle imposement constraints

kd = d ∀ d∈D (24a)
ki − k j ≤ (D−1)(1−xi j) ∀ i, j∈L (24b)

resulting in ki ≤ k j if xi j = 1 using (D + C)2 − C con-
straints. Additionally, one can obtain the tighter con-
straint ki = k j if xi j = 1 by adding

k j − ki ≤ (D−1)(1−xi j) ∀ i, j∈L. (24c)

to the constraints (24a)–(24b), resulting in stronger lin-
ear relaxations at the cost of using more constraints. If

the minimum number of cities to visit is set to be at least
two one can substitute (24b)–(24c) with

ki − k j ≤ (D−1)(1−xi j−x ji) ∀ i, j∈L. (24d)

This enforces the equality ki = k j using half the amount
of inequality constraints. Notice that constraints (24d)
exclude solutions where a salesman visits only one
node, since xi j + x ji = 2 is infeasible by (24d).

Theorem 4.1 (Cycle imposement). The MILP consist-
ing of (5), (9), any of the cycle elimination constraints,
and the cycle imposement constraints (24) will result in
a graph with exactly

∑
d∈D

md cycles, where each node

d∈D is contained in exactly md cycles.

Proof. Let the directed graph G = (L,A) be the graph
associated with a feasible solution of the given MILP.
The node set of G coincides with the set of locations of
the FMmTSP, and the arc setA is defined as

∀i, j∈L, (i, j) ∈ A if and only if xi j = 1

Define a cut (D,C) on G, and denote the subset of for-
ward and backward arcs in the cut set as

δ+ = {(i, j) ∈ A |i ∈ D, j ∈ C}

δ− = {(i, j) ∈ A |i ∈ C, j ∈ D}

which represents all salesmen leaving the depots and all
salesmen returning from the cities, respectively. By as-
signment constraints on the city nodes (9b)–(9c), the in-
and out- degree of each node in C is one, and the cycle
elimination constraints ensure that no cycles exist in C,
so no path can start or end in C. Therefore |δ+| = |δ−|,
indicating that any salesman leaving a depot must also
return to a depot (see Figure 2).

The above arguments actually show that the graph
associated with a solution of the non-fixed destination
MmTSP contains exactly

∑
d∈D

md distinct paths starting

and ending in D. Now we need to prove that by the
additional cycle imposement constraints for the fixed-
destination setting, the

∑
d∈D

md distinct paths are all cy-

cles, and each node d∈D is contained in exactly md cy-
cles, i.e., each path starting in a depot node d∈D must
also end in the same depot d. We prove this statement
by induction.

For any path P = {d, ci1 ci2 . . . d∗}, where d, d∗ ∈D
and ci1, ci2 · · · ∈ C, by constraint (24b) that the node
current ki is non-decreasing along a path, one has

kd ≤ kci1 ≤ kci2 ≤ · · · ≤ kd∗
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In addition, by (24a) each depot node is assigned a
unique node current, and hence

1 ≤ kd ≤ D ∀d ∈ D.

We use the following inductive steps to prove that any
path starting in depot d must also end in the same depot.

i) By (9a) there will be mD paths leaving depot D.
For any path P starting in depot d = D, one has
D = kd ≤ kd∗ ≤ D, where the upper limit follows
from the fact that a path must return to a depot,
for which D is the highest value. Thus kd∗ = D,
indicating d∗ = D = d. Therefore, a path starting
in node D can only end in node D. By (9a)–(9d)
exactly mD cycles start and end in depot D,
i.e., depot D is contained in exactly mD cycles, and
can accept no more incoming arcs because the con-
straint (9d) on its in-degree is already satisfied.

ii) For any path P starting in depot d = D − 1, sim-
ilarly one has D − 1 = kd ≤ kd∗ ≤ D. So kd∗ can
only take the value D or D − 1, i.e., path P can
only end in depot D or D − 1. By the previous ar-
gument P cannot end in D because (9d) is already
satisfied for d = D, so the mD−1 paths starting at
depot D − 1 can only end in depot D − 1. Simi-
larly, by the assignment constraints, depot D − 1 is
contained in exactly mD−1 cycles, and can accept
no more incoming arcs.

iii) Continuing this argumentation for any path P start-
ing in depot d, P can only end in the same depot d
since the constraint (9d) is already satisfied for de-
pots d + 1 to D, and by the assignment constraints
depot d is contained in exactly md cycles.

iv) Finally, it follows that any path P starting in depot 1
must end in depot 1.

By assigning a unique value to the node cur-
rents of the depots through (24a) and adding
constraints (24b)–(24c) or (24d)—such that ki = k j if
there is a connection between nodes i and j— it is
guaranteed that a tour starting at depot d will return to
depot d without visiting another depot by Theorem 4.1.

Note. For the optimal solution the node current vari-
ables will implicitly satisfy

1 ≤ ki ≤ D ∀i ∈ L, (25)

and these bounds can be set explicitly in the MILP for-
mulation without affecting the result.

D C

c5

k4=1 k5=3

k9=3 k8=1

k6=3

k7=3

k1=1

k2=2

k3=3

c1 c2

c3

c4

c6

d1

d2

d3

Figure 2: A solution without a copy of the set D, using node currents
to ensure a fixed-destination solution. Each of the three cycles has a
unique ‘current’: the depot nodes act as current sources of 1, 2 and
3 Ampère respectively, and this current is flowing through the arcs
and nodes. Since each node has exactly one incoming arc and one
outgoing arc (due to the assignment constraints) this ‘node current’
uniquely defines to which depot a city is assigned.

Figure 2 shows an example of a feasible solution for
D = 3 depots and C = 6 cities. Note that within the
set L = D ∪ C the existence of three cycles has been
imposed, whereas in the set C no cycles exist due to the
cycle elimination constraints.

4.1.2. MILP formulation using node currents
As an alternative to the FMmTSP formulation pre-

sented in [4] we propose a novel formulation of the
problem based on node currents as cycle imposement
constraints. It is based on 2-index decision variables
using the cost function given by (5). The formulation
will be presented using the standard assignment con-
straint given in (9), but the variant with idle salesmen
may also be used. For a comparison with the formula-
tion in [4] (which excludes the possibility of idle sales-
men) it should be possible to set workload bounds for
the salesmen, therefore the cycle elimination constraints
(12) are chosen. For the computational comparison in
the next section the minimum number of cities to visit
per salesman will be u = 1, therefore we use constraints
(24a–24c) to impose

∑
d∈D

md cycles in the set L; if u ≥ 2

it would be more efficient to use (24a) and (24d). The
maximum number of cities per salesman can be set to

u = C + u(1 −
∑
d∈D

md) (26)

where
∑

d∈D md gives the total number of salesmen, such
that u(1 −

∑
d∈D md) becomes the minimum number of
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cities that need to be visited by other salesmen; a single
salesman can visit at most all cities minus the minimum
number of cities visited by the others. The MILP for-
mulation of the FMmTSP using workload bounds and
node currents then becomes

min.
∑
i∈L

∑
j∈L

ci jxi j (27)

s.t.
∑
i∈L

xic =
∑
j∈L

xc j = 1 ∀ c∈C∑
i∈L

xid =
∑
j∈L

xd j = md ∀ d∈D

ui − u j + uxi j + (u−2)x ji ≤ u−1 ∀ i, j∈C

ui + (u−2)
∑
d∈D

xdi −
∑
d∈D

xid ≤ u−1 ∀ i∈C

ui +
∑
d∈D

xdi + (2 − u)
∑
d∈D

xid ≥ 2 ∀i∈C

kd = d ∀ d∈D

ki − k j ≤ (D−1)(1−xi j) ∀ i, j∈L

k j − ki ≤ (D−1)(1−xi j) ∀ i, j∈L

xi j ∈ {0, 1}, 1≤ui≤C, 1≤ki≤D ∀ i, j∈L

Note. As opposed to the two alternative FMmTSP for-
mulations [4, 31], this novel formulation does not use
copies of the depot nodes, therefore only L = D + C
nodes are needed for this formulation instead of 2D+C.
Furthermore, unlike the other two formulations, the
costs of travelling between the nodes remains the same
as for the nonfixed-destination problem, hence there is
no need to build a new cost matrix; the original cost ma-
trix C can be used without any modification.

4.2. Properties of Fixed-Destination Formulations
Adding more variables to an optimisation problem

in general results in larger computation times and a
higher memory usage. Compared to continuous vari-
ables the number of binary variables used in a program-
ming problem can significantly influence the computa-
tion times. Therefore, reducing the number of binary
variables to represent a problem can result in a notice-
able performance gain. Although in general the addi-
tion of a few continuous variables has little influence on
the computation times, using many continuous variables
can cause problems due to the larger memory use, and
would also result in larger computation times.

Table 3 shows the number of nodes, binary variables,
continuous variables, equality constraints, and inequal-
ity constraints that are needed to represent the FMmTSP
per formulation. In the following ‘I’ denotes the novel

MILP formulation (27), ‘II’ denotes the extended for-
mulation based on [32], and ‘III’ denotes the formula-
tion from [4].

Table 3: Properties of the three formulation types, divided into the
number of nodes (N), binary variables (BV), continuous variables
(CV), equality constraints (EC), and inequality constraints (IC).

I II III
N L=C+D L′=C+2D L′=C+2D

BV (C+D)2 (C+D)2 (C+D)2

CV 2C+2D 2C+4D (DL′+1)L′

EC 2C+3D 2C+4D 2C+ (4+L′)D
IC C2+2C+2L2 C2+2C+2L′2 C2+2C+DL′2

Notice that besides less binary variables, the newly
proposed formulation also uses less continuous vari-
ables compared to the formulation of [4]; there are D+C
node currents necessary to solve the fixed-destination
problem, compared to D(2D + C)2 commodity flow pa-
rameters needed to represent the D different commodi-
ties that could move along the (2D + C)2 arcs in the ex-
tended network.

5. COMPUTATIONAL COMPARISON

The three aforementioned formulations for solving
FMmTSPs are compared by solving a large number of
test cases. First we describe the benchmark that we use,
followed by a discussion on the results. The formula-
tions provide optimal solutions for the FMmTSP, and
all computation times give the time it took to reach this
optimum. When the optimum was not reached within 3
hours wall-clock time the test was marked as failed.

5.1. Description of Test Instances

To compare the three formulations of the FMmTSP
we have chosen 32 symmetric and asymmetric TSP test
cases with size ranging from 14 to 170 nodes from the
library TSPLIB [40], where the numbers in the name of
the test instance (e.g. dantzig42) represent the number
of locations L in the problem. For each test case we have
selected D cities to represent depots. Since e.g. the cities
in dantzig42 are given in the order of the optimal tour
(and hence subsequent cities are close to each other),
the depot nodes are selected as the i-th cities satisfying

i = 1 + (d − 1)
⌊
C
D

⌋
∀d∈D, (28)

where ⌊a⌋ represents the operator that returns the largest
integer smaller than or equal to a. This approach is
used to reduce the chance that the depots are close to
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each other. The number of depots D varies from 2 to 6
for each test case. We consider two scenarios, namely,
one-salesman-at-each-depot and multiple-salesmen-at-
each-depot (The number of salesmen at each depot for
the second scenario is fairly distributed using the proce-
dure described in Appendix A.) In this way we create a
benchmark of 32×5×2 = 320 FMmTSP test instances,
which are solved using three different formulations, and
three MILP solvers.

Since the formulation using the commodity flows ac-
cording to (19) requires that each salesman visits at least
one city (due to (19a)), we set u = 1 and u = C to ob-
tain the same problem for each formulation. All com-
putations are performed on a desktop computer with
an Intel Xeon E5-1620 Quad Core CPU and 64 GB
of RAM, running 64-bit versions of SUSE Linux En-
terprise Desktop 11, and Matlab R2014b. Three state-
of-the-art commercial and free MILP solvers are used,
namely, CPLEX 12.5 (called via Tomlab 8.0), Gurobi
Optimizer 5.6, and CBC 2.9.4 from COIN-OR (called
via the OPTI-Toolbox).

The results for the one-salesman-at-each-depot prob-
lem are reported in Tables B.7–B.9, followed by the re-
sults for the multiple-salesmen-at-each-depot problem
in Tables B.10–B.12 of Appendix B. To reduce the
chance that the outcome is affected by random events,
we chose to run each test case a few times and take the
average value of the computation times. Tables B.10–
B.12 of Appendix B contain the average CPU time to
find the optimal solution over 10 runs for each small test
case, and over 5 runs for each large test case, for each
number of depots D. A time limit of 3 hours is imposed
on each test run, and all reported times are in seconds.

5.2. Comparison of Problem Formulations

When a test case is solved to optimality within 3
hours wall-clock time, we register this time. Other-
wise, we mark the test case as failed. A comparison
is made between the three formulations on both the av-
erage CPU times and the number of failed cases.

5.2.1. Comparison of average CPU times
To compare the three problem formulations, we have

split the benchmark into four sets:

• Small problems with a single salesman per depot

• Large problems with a single salesman per depot

• Small problems with multiple salesmen per depot

• Large problems with multiple salesmen per depot

The first 16 test cases (burma14 up to ry48p) are con-
sidered small problems, while the last 16 test cases
(hk48 up to ftv170) are included in the large problems.
Table 4 shows the relative increase in CPU time needed
to compute the solution compared to formulation I. For
the FMmTSP with a single salesman per depot, for-
mulation I was the fastest on average; for the variant
with multiple salesmen per depot formulation II outper-
formed the other two. Although formulation II uses a
few more binary values than formulation I, it cannot be
concluded from our results that the use of more binary
variables results in larger computation times.

Table 4: The average relative difference for the mean CPU times
compared with formulation I. The average is taken over all test in-
stances that are successfully computed by the corresponding for-
mulation and solver. A positive result means longer computation
time, indicating worse performance.

Small Large Small Large
Solver & single & single & multi & multi
CPLEX 7% 192% −27% 455%

II Gurobi 51% 7% −13% −9%
CBC 46% 33% −18% -
CPLEX 535% 1880% 104% 720%

III Gurobi 113% 78% 37% 24%
CBC 621% 1676% 130% -

Notice that the difference between formulation I and
II is small (I is less than 1.5 times faster than II for all
averages), but formulation III is significantly slower on
average when using CPLEX or CBC, even for the small
instances (where memory use is not yet expected to be a
problem); for Gurobi the differences are smaller. Never-
theless, we conclude that the use of node current formu-
lations are expected to be faster than multi-commodity-
based formulations for fixed-destination problems.

5.2.2. Comparison of failed test cases

Next we compare how often a test case did not reach
an optimal solution in time. We distinguish between the
results for a single salesman per depot and for multiple
salesmen per depot. For each formulation we provide
the number of failed cases (per solver) in Table 5.

From Table 5, it is clear that formulation II demon-
strates stronger ability to solve large test cases. For-
mulation III also performs rather well in solving large
test cases when there are multiple salesmen at each de-
pot, but it has problems for cases with a single salesman
per depot. CPLEX and Gurobi seem to perform equally
well, but also here it becomes clear that CBC cannot
match the other two solvers.

11



Table 5: The number of failed test instances (‘failed’) and the
size (i.e., the number of nodes) of the largest instance success-
fully solved (‘largest’) for each formulation (I, II, and III) solved
per solver type. ‘Single’ means one-salesman-at-each-depot, and
‘multiple’ means multiple-salesmen-at-each-depot. The number
before ‘/’ is the number of failed test instances out of the 160 that
were performed.

Solver Single Multiple
Failed Largest Failed Largest

CPLEX 9/160 124 37/160 124
I Gurobi 12/160 170 40/160 124

CBC 49/160 76 92/160 42
CPLEX 14/160 124 8/160 124

II Gurobi 15/160 124 11/160 124
CBC 51/160 64 90/160 42

CPLEX 30/160 124 25/160 124
III Gurobi 24/160 124 19/160 124

CBC 52/160 64 90/160 42

6. CONCLUDING REMARKS

In this article we have provided a brief overview of
cycle elimination and imposement constraints, and 2-
index formulations for the fixed-destination multi-depot
travelling salesman problem. A novel cycle impose-
ment constraint formulation has been proposed based
on node currents, which can be seen as the dual of the
node potentials of Miller, Tucker, and Zemlin [30]. The
main advantage of the novel formulation over the exist-
ing formulations is the reduced number of binary and
continuous variables needed to formulate the problem.
Furthermore, the novel formulation can be used to find
solutions where several salesmen can be idle.

The comparisons of the formulations have been per-
formed using three state-of-the-art MILP solvers. Sim-
ilar to the node potential constraints (11), the node cur-
rent constraints can be used to easily formulate (vari-
ants of) fixed-destination multi-depot problems. This
approach is suitable for the initial development of for-
mulations; once it is confirmed that the formulation pro-
vides the desired solutions, one can use more sophisti-
cated techniques, e.g. Benders’ decomposition [7], to
reformulate the problems and solve them faster. The
proposed formulation was able to solve problems up to
170 nodes using general MILP solvers, and [4] found
optimal solutions up to 170 nodes using Benders’ de-
composition. By using a branch-and-cut algorithm [6]
even managed to solve (symmetric) problems up to 255
cities and 25 depot to optimality within reasonable time.
It would be interesting to see whether improvements
can be obtained by using the node currents combined
with e.g. Benders’ decomposition or user-specified cuts.
Furthermore, the proposed formulation for FMmTSP

can be applied to other scheduling and routing prob-
lems.

Appendix A. Allocation of Salesmen over Depots

A three-step procedure is described to allocate sales-
men for the multiple-salesmen-at-each-depot scenario.

Step 1: Compute the number of cities C = L − D, and
generate the total number of salesmen to be assigned to
the D depots

S = min
(
max
(
D + 1,

⌊L
3

⌋)
,C − 1

)
We choose

⌊
L
3

⌋
for the total number of salesmen

(as long as it lies in the interval [D + 1, C − 1]),
since too few salesmen are insufficient to consider
the multiple-salesmen-at-each-depot scenario, and too
many salesmen can lead to idle salesmen in the solution.

Step 2: Assign x =
⌊ S

D

⌋
salesmen to each depot, and

calculate the number of the unassigned salesmen

r = S − x · D

Step 3: Assign one salesman to the depots with index

i = 1 + (k − 1)
⌊D

r

⌋
∀k ∈ {1, 2, · · · r}

Since the number of remaining salesmen calculated at
Step 2 is always less than D, all salesmen have been
assigned to a depot after performing the three-step pro-
cedure. Moreover, the last step also ensures a fair allo-
cation of the remaining salesmen.

Appendix B. List of Results

The optimal values for the benchmark described in
Appendix A are provided in Table B.6. These values
are obtained by summarising all instances successfully
solved by three MILP solvers (CPLEX, Gurobi, and
CBC) and three formulations under a 3-hour time limit.
A complete list of tables with the average CPU time
(in seconds) for all test instances solved by the three
afore mentioned formulations, and three different MILP
solvers is presented in Table B.7-B.12. The fastest in-
stances are indicated by the bold-faced numbers, and the
symbol “-” is used to denote the failed test instances.
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Table B.6: Summary of optimal values obtained using three solvers and three formulations.
one-salesman-at-each-depot multiple-salesmen-at-each-depot

test case D=2 D=3 D=4 D=5 D=6 D=2 D=3 D=4 D=5 D=6
burma14 3098 3033 2993 3480 3728 3253 3079 3039 3696 3944
ulysses16 6986 6326 6097 5809 8862 8324 6873 6101 5816 9774

gr17 2054 1819 1945 1684 1815 2374 2056 2182 1818 1953
br17 36 23 16 6 34 39 23 16 6 34
gr21 2716 2662 2674 2684 3228 3623 3454 3932 3004 3360

ulysses22 6445 6282 6435 6147 6855 12520 6769 7701 6386 6888
fri26 930 939 940 932 903 1442 1385 1143 1093 1061

bayg29 1596 1598 1641 1583 1608 1955 1972 1962 1867 1851
bays29 1988 1993 2018 1972 1966 2471 2469 2476 2369 2351
ftv33 1302 1291 1292 1237 1214 1831 1732 1536 1402 1490
ftv35 1457 1453 1429 1396 1421 2157 1999 1801 1918 1735
ftv38 1521 1510 1518 1455 1512 2297 2158 1962 1941 1966

dantzig42 661 633 645 611 631 1202 1016 977 795 813
swiss42 1272 1262 1274 1277 1257 2054 1982 1640 1583 1604

ftv44 1611 1602 1608 1569 1582 2744 2232 2546 2205 2171
ry48p 14097 14318 14366 14306 14146 23925 22637 19560 18506 19378
hk48 11439 11358 11222 11285 11310 18259 19258 14989 14697 13717
eil51 426.358 423.013 424.452 431.966 423.28 712.039 624.878 554.267 549.326 558.837

berlin52 7464.36 7591.94 7528.97 7501.83 7733.97 11896.5 14113.6 9754.51 9460.11 9444.27
ft53 6926 7029 6880 6842 6896 12211 12012 9376 8857 8943
ftv55 1590 1585 1594 1623 1584 2905 2715 2865 2666 2279
ftv64 1782 1835 1798 1770 1846 3052 3067 2722 2935 2601
st70 671.792 667.264 659.917 654.026 655.046 1423.55 1166.02 1023.21 1029.61 884.627
eil76 542.325 541.004 540.436 555.114 551.761 941.31 898.858 866.489 864.664 795.141
gr96 54795 55076 54047 54653 54999 130169 126797 101320 88968 92425

kroB100 21954.8 21698.8 21695.2 21680.6 21415.8 47224.9 40190.7 38024.8 32726.8 33430.7
kroC100 20504.7 20400.2 20308.2 20321.8 20434 49947.6 39621.9 40213.4 35719.9 32695.2
kroD100 21493 - - 20792.4 - 60888.7 47247.5 36873.3 36597.8 37458.2
kroE100 21896.9 21932.2 21700.5 21865 21386.3 46588.1 42585.9 35477.3 33493 37063.9
eil101 641.711 637.213 636.541 641.933 640.554 1353.47 1414.26 1098.31 973.447 973.366

kro124p 36316 36244 36252 36041 36427 69844 67146 - 58912 53206
ftv170 2755 2740 - 2744 - - - - - -

Table B.7: Mean CPU time (in seconds) obtained from the CPLEX solver, for scenario one-salesman-at-each-depot.
type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6

I 0.50 0.19 0.19 0.31 0.40 4.30 32.14 1.34 0.45 1.97
II burma14 0.21 0.25 0.16 0.23 0.15 hk48 8.06 33.00 2.26 0.79 1.54
III 0.34 0.18 0.34 0.26 0.24 114.81 25.21 10.05 4.00 36.04
I 1.16 0.30 0.17 0.23 392.31 1.86 2.25 1.88 13.28 2.18
II ulysses16 0.57 0.31 0.23 0.23 0.32 eil51 2.48 1.69 2.49 9.05 1.54
III 21.30 0.37 0.35 0.37 0.43 70.44 29.06 15.39 152.15 26.55
I 0.36 0.36 0.33 0.20 0.25 1.71 5.58 1.22 1.65 28.17
II gr17 0.32 0.27 0.29 0.29 0.21 berlin52 1.58 5.98 1.85 2.68 9.55
III 1.39 0.35 0.32 0.26 0.34 264.08 27.24 14.69 12.67 110.63
I 0.39 0.35 0.25 0.30 0.30 2.31 67.92 2.04 2.17 1.36
II br17 0.43 0.39 0.26 0.24 0.28 ft53 4.54 20.50 3.84 2.72 1.67
III 1.09 0.61 0.25 0.34 0.31 866.05 1024.84 52.29 46.70 18.25
I 0.23 0.25 0.24 0.25 1.79 1.19 1.08 1.51 5.87 12.48
II gr21 0.23 0.20 0.19 0.21 0.22 ftv55 1.93 1.37 2.34 2.37 0.85
III 0.41 0.28 0.27 0.34 0.38 4.13 9.30 17.74 7.31 28.34
I 0.44 0.28 0.51 0.30 3.62 1.68 7.01 2.51 1.30 14.36
II ulysses22 0.55 0.37 0.59 0.41 0.38 ftv64 1.56 13.07 1.67 3.09 3.09
III 1.86 0.40 0.92 0.64 0.73 21.04 59.80 22.06 9.54 1107.09
I 0.54 0.45 0.41 0.51 0.33 107.87 45.59 146.17 106.91 25.82
II fri26 0.63 0.77 0.55 0.48 0.52 st70 253.25 82.69 171.05 122.70 35.93
III 4.68 0.92 1.17 1.34 1.35 527.36 92.28 698.98 448.71 131.62
I 0.38 0.57 3.01 0.36 1.15 10.83 11.52 5.57 3034.21 1060.30
II bayg29 0.45 0.67 2.72 0.33 0.86 eil76 14.81 15.08 8.32 25.54 6.06
III 2.62 1.18 9.71 0.85 2.98 71.22 126.64 120.74 444.12 98.20
I 0.45 0.39 1.30 0.30 0.46 52.71 232.55 23.88 158.68 405.34
II bays29 0.40 0.53 1.46 0.30 0.75 gr96 126.06 129.70 51.32 97.39 181.88
III 1.87 0.73 9.85 0.75 1.77 366.28 2506.87 342.34 - -
I 0.71 2.76 0.53 0.38 0.32 715.08 253.79 10249.36 159.69 418.96
II ftv33 0.91 1.04 0.73 0.40 0.32 kroB100 1100.80 223.31 - 265.20 915.75
III 73.28 1.52 1.43 1.77 1.33 - 2192.25 - - -
I 0.49 0.54 0.37 0.34 0.31 1079.32 198.89 175.56 759.76 2653.58
II ftv35 0.57 0.51 0.44 0.29 0.37 kroC100 2032.30 299.03 199.45 632.67 1007.79
III 2.18 1.24 1.61 1.68 1.70 6054.43 7025.49 - - -
I 0.77 0.60 0.47 0.48 0.62 - - - 8739.53 -
II ftv38 0.62 0.59 0.70 0.34 0.67 kroD100 2995.81 - - - -
III 3.86 1.63 1.70 1.83 3.15 6718.39 - - - -
I 3.25 0.75 1.80 0.87 0.61 440.11 222.39 254.65 676.93 44.51
II dantzig42 3.96 1.40 2.25 1.55 0.66 kroE100 798.82 238.56 163.79 946.49 -
III 36.54 2.06 6.93 6.10 5.23 - - - - -
I 1.50 1.13 1.42 1.75 1.27 78.90 26.07 133.80 71.34 71.21
II swiss42 1.84 1.65 2.41 1.92 1.87 eil101 338.65 33.88 143.56 117.90 58.03
III 33.78 6.40 6.61 16.46 9.48 6377.94 - - - -
I 1.17 0.67 1.27 0.58 0.95 25.41 34.76 22.02 11.13 33.28
II ftv44 0.99 0.96 0.82 0.58 0.62 kro124p 1154.00 2196.56 - - -
III 3.26 1.99 6.16 4.47 3.79 1151.96 2195.11 - - -
I 1.52 7.30 8.02 5.60 6.46 - - - - -
II ry48p 2.32 13.40 11.75 9.48 1.23 ftv170 - - - - -
III 37.00 32.92 36.70 44.33 11.96 - - - - -
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Table B.8: Mean CPU time (in seconds) obtained from the Gurobi Optimizer, for the scenario one-salesman-at-each-depot.
type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6

I 0.07 0.07 0.04 0.22 0.68 7.17 86.31 2.55 0.23 3.10
II burma14 0.13 0.06 0.09 0.10 0.04 hk48 3.66 107.00 2.22 0.41 5.32
III 0.14 0.08 0.08 0.14 0.09 4.27 105.61 5.51 0.59 4.86
I 2.05 0.15 0.05 0.07 461.46 2.69 3.97 0.99 32.10 4.03
II ulysses16 1.02 0.26 0.04 0.08 0.27 eil51 1.86 2.89 1.53 38.29 2.56
III 1.59 0.27 0.11 0.24 0.26 3.86 2.78 4.56 21.79 3.32
I 0.19 0.14 0.18 0.03 0.11 2.06 10.88 1.94 1.84 49.24
II gr17 0.35 0.17 0.28 0.05 0.10 berlin52 1.10 8.64 2.86 3.90 21.73
III 1.08 0.27 0.40 0.08 0.18 3.50 29.66 6.74 5.95 29.06
I 1.14 0.78 0.21 0.11 0.33 28.29 56.11 22.43 19.16 36.85
II br17 2.71 0.43 0.24 0.22 0.32 ft53 7.13 46.61 43.77 11.04 6.97
III 2.52 0.70 0.32 0.19 0.43 28.82 39.73 35.95 111.07 11.81
I 0.13 0.06 0.16 0.07 3.04 1.84 1.69 3.10 10.94 18.37
II gr21 0.21 0.09 0.23 0.10 0.07 ftv55 1.60 2.28 2.12 2.32 1.59
III 0.20 0.20 0.29 0.45 0.11 4.15 3.98 4.17 4.12 4.33
I 0.46 0.18 0.42 0.23 3.19 1.84 4.22 2.56 1.46 21.49
II ulysses22 0.67 0.22 0.47 0.55 0.46 ftv64 1.62 4.96 1.68 3.17 5.62
III 0.70 0.31 1.26 0.47 0.48 1.95 12.61 4.02 2.82 8.09
I 0.40 0.72 0.97 0.51 0.38 636.50 241.88 1133.48 379.68 29.23
II fri26 0.76 0.98 1.01 0.67 0.48 st70 - 261.64 1506.71 475.47 84.12
III 0.87 1.24 1.30 1.36 0.80 1595.30 307.17 4683.77 1098.81 189.27
I 0.73 0.55 4.45 0.47 2.27 9.48 11.43 4.68 10547.85 2205.36
II bayg29 0.88 0.99 3.41 1.23 1.03 eil76 6.85 10.49 2.50 14.06 2.51
III 0.95 1.13 5.70 1.18 2.07 13.21 27.92 4.30 48.19 8.06
I 0.38 0.57 2.81 0.42 1.32 349.41 957.70 97.39 362.25 329.48
II bays29 0.54 1.09 2.92 0.40 1.00 gr96 209.83 376.86 128.38 443.95 666.62
III 0.69 0.96 3.84 0.30 1.26 259.31 1196.67 124.34 439.49 -
I 0.55 0.85 0.91 0.37 0.17 6013.72 420.09 - 1580.18 2098.60
II ftv33 2.12 1.17 1.18 0.87 0.27 kroB100 5341.60 1115.09 - 1071.68 4772.04
III 1.85 1.24 3.19 0.65 0.46 - 1648.63 - - -
I 0.64 0.63 0.31 0.23 0.18 - - 319.52 2720.50 -
II ftv35 1.17 0.97 0.26 0.37 0.24 kroC100 - 2370.29 308.45 5469.71 -
III 1.27 0.71 0.54 0.63 0.49 5304.34 - 2094.30 - -
I 0.94 0.79 0.62 0.27 0.71 - - - - -
II ftv38 1.31 1.22 0.61 0.26 1.55 kroD100 8377.61 - - - -
III 1.00 0.64 1.09 0.51 0.98 10581.25 - - - -
I 4.67 0.77 2.39 1.84 0.56 - 1189.62 800.29 6460.41 303.35
II dantzig42 4.98 2.17 1.27 1.55 0.63 kroE100 10475.87 1143.61 675.25 8845.54 525.64
III 4.77 2.44 1.52 1.59 0.98 - 3482.50 1186.41 - -
I 2.37 1.45 1.70 2.80 1.49 229.58 317.55 242.76 140.20 189.96
II swiss42 2.33 1.77 3.20 3.63 2.89 eil101 125.33 26.50 126.40 157.08 47.72
III 5.27 5.63 4.97 5.00 5.09 421.55 17.71 356.45 - -
I 0.61 0.81 1.51 0.32 0.83 30.17 254.38 24.80 16.82 269.64
II ftv44 1.23 0.97 0.81 0.85 0.62 kro124p 74.38 336.59 77.14 - -
III 0.76 1.25 1.48 1.02 1.02 74.46 337.20 77.08 - -
I 3.35 8.76 14.18 6.82 7.52 32.24 26.90 - 24.86 -
II ry48p 2.84 14.54 77.48 14.98 2.16 ftv170 - - - - -
III 3.89 18.89 17.72 29.67 3.86 - - - - -

Table B.9: Mean CPU time (in seconds) obtained from the CBC solver, for scenario one-salesman-at-each-depot. As the largest test case
that CBC can solve for this scenario is eil76, we have truncated the table to make it more concise.

type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6
I 0.79 0.41 0.39 1.55 49.48 133.87 19.19 30.06 23.48 4.92
II burma14 0.78 0.44 0.57 0.70 0.75 dantzig42 356.50 15.07 89.85 128.51 5.17
III 2.55 0.72 0.99 0.55 0.60 - 75.43 339.87 126.71 70.08
I 33.17 1.97 0.32 0.51 6772.37 27.77 79.93 21.82 41.73 16.61
II ulysses16 11.18 0.86 0.42 0.72 1.35 swiss42 45.40 25.81 60.22 48.75 27.37
III 28.21 1.67 0.35 1.78 2.42 598.24 68.51 72.12 132.23 102.62
I 1.19 0.65 0.52 0.32 0.45 23.38 5.13 237.46 8.41 20.77
II gr17 1.68 1.04 1.05 0.50 0.92 ftv44 9.08 9.95 24.70 13.49 11.77
III 3.56 1.36 0.82 1.31 1.04 65.52 38.73 30.67 106.26 104.84
I 599.43 46.45 0.54 0.58 33.90 20.75 1775.21 729.87 222.86 1302.83
II br17 618.82 23.23 0.83 0.89 1.00 ry48p 216.58 321.03 4956.45 348.75 17.26
III 1995.82 31.05 2.50 1.91 1.10 577.59 875.94 1188.08 1306.19 220.15
I 0.64 0.54 0.99 1.05 25.46 333.89 - 75.05 6.73 43.39
II gr21 0.77 0.65 1.89 1.00 0.84 hk48 406.06 7452.41 152.95 11.88 11.87
III 1.32 4.39 0.96 3.52 0.79 2509.90 7621.84 51.88 33.55 174.17
I 5.87 0.93 5.31 1.64 70.65 51.23 34.59 44.43 935.99 247.47
II ulysses22 6.23 1.34 2.27 2.25 5.73 eil51 47.27 21.94 36.56 853.15 14.74
III 31.50 4.18 16.83 7.09 6.54 2116.50 70.25 76.43 490.93 101.66
I 1.99 6.20 7.97 9.51 3.93 13.95 129.52 27.39 106.86 3666.44
II fri26 7.10 8.37 14.70 7.04 7.99 berlin52 11.10 362.80 53.40 86.09 548.08
III 140.05 11.24 11.38 12.23 16.64 9137.46 1977.97 135.74 355.46 423.07
I 5.31 8.11 67.46 3.75 15.35 159.03 - 9468.16 121.40 85.57
II bayg29 8.51 15.64 67.00 2.06 23.53 ft53 152.91 527.96 - 130.30 24.68
III 29.43 13.70 104.49 8.47 24.26 - 1926.62 1004.57 439.18 85.58
I 4.46 11.88 42.83 3.24 78.02 16.37 14.44 36.75 259.52 614.58
II bays29 7.22 16.14 22.97 2.20 11.73 ftv55 116.94 27.70 22.57 31.31 15.38
III 24.90 10.34 37.78 12.36 9.43 2539.82 86.93 86.52 337.31 314.63
I 12.61 10.90 7.60 2.83 1.52 36.75 192.80 627.11 27.18 879.96
II ftv33 14.44 15.71 17.40 9.78 3.04 ftv64 93.52 225.63 104.97 34.65 98.39
III 319.31 15.58 22.57 59.12 64.11 2311.47 211.36 318.15 650.50 770.92
I 6.44 3.34 4.68 2.33 3.18 - - - - -
II ftv35 21.41 5.17 5.55 3.45 3.83 st70 - - - - -
III 177.13 13.57 17.46 17.31 30.32 - - - - -
I 7.81 4.58 6.90 3.13 9.90 1246.47 402.44 69.14 - -
II ftv38 15.28 8.56 8.37 4.55 6.24 eil76 - - - - -
III 39.18 39.36 8.82 40.58 12.55 - - - - -
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Table B.10: Mean CPU time (in seconds) obtained from the CPLEX solver, for the scenario multiple-salesmen-at-each-depot.
type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6

I 0.26 0.16 0.21 0.48 0.54 1.92 - 0.66 1.28 1.97
II burma14 0.22 0.29 0.23 0.22 0.16 hk48 2.06 3.36 1.10 1.16 1.85
III 0.29 0.27 0.26 0.28 0.21 4.26 9.11 5.00 11.19 19.29
I 6.91 0.23 0.14 0.33 1037.06 1.01 0.82 0.49 7.12 83.13
II ulysses16 0.20 0.27 0.17 0.24 0.25 eil51 2.22 2.01 0.43 3.84 1.45
III 0.26 0.33 0.23 0.32 0.39 4.44 11.14 2.04 27.18 14.75
I 0.36 0.33 0.33 0.18 0.23 1.15 3.85 2.05 1.63 588.83
II gr17 0.42 0.29 0.35 0.23 0.23 berlin52 0.83 1.69 2.57 1.65 2.68
III 0.44 0.56 0.40 0.37 0.31 6.12 16.82 13.62 11.57 37.65
I 0.35 0.28 0.27 0.20 0.28 - 2305.90 2.07 96.97 2.40
II br17 0.32 0.29 0.21 0.24 0.25 ft53 1.93 336.30 4.82 5.75 2.66
III 0.45 0.33 0.27 0.37 0.39 44.95 31.36 49.45 16.60 10.19
I 0.40 0.45 91.74 0.29 1.30 4.16 - 2627.80 - 1158.37
II gr21 0.22 0.27 0.21 0.20 0.17 ftv55 0.98 2.57 5.96 19.94 1.93
III 0.35 0.27 0.25 0.28 0.28 10.74 23.80 7.58 21.99 9.09
I 0.31 0.25 0.42 0.49 2.12 1.20 1.10 91.39 2.79 -
II ulysses22 0.29 0.31 0.44 0.36 0.31 ftv64 0.56 1.69 1.14 0.78 4.01
III 0.43 0.31 0.82 0.64 0.63 1.70 5.86 4.56 5.50 38.52
I 0.38 0.73 0.42 0.45 0.44 - - 27.42 - 120.53
II fri26 0.40 0.34 0.44 0.59 0.42 st70 22.42 10.68 27.66 8.85 49.54
III 0.59 0.69 1.06 0.89 1.04 50.52 101.39 159.51 144.87 343.32
I 0.28 0.27 0.38 0.66 0.49 3.66 51.39 2.50 - -
II bayg29 0.40 0.37 0.64 0.31 0.65 eil76 4.72 1.38 2.74 2.37 2.96
III 0.42 0.41 1.28 0.82 1.45 32.96 7.01 67.98 45.81 43.07
I 0.25 0.33 0.55 1.04 0.55 136.12 - - - -
II bays29 0.21 0.32 0.61 0.46 0.41 gr96 70.37 32.37 5271.15 216.89 400.03
III 0.33 0.62 1.36 0.74 1.54 430.93 739.18 3902.65 - -
I 5.32 0.55 0.39 0.19 0.67 11.80 42.46 - 154.68 -
II ftv33 0.38 0.74 0.44 0.27 0.42 kroB100 19.18 29.77 324.27 232.42 1647.09
III 0.88 1.19 0.98 0.53 2.17 85.15 477.31 - - -
I 0.34 0.69 0.43 1.38 0.28 35.14 - 5360.70 - -
II ftv35 0.43 0.48 0.41 0.34 0.26 kroC100 32.06 575.64 178.00 70.52 253.15
III 0.51 0.88 1.03 1.11 0.79 340.68 1199.03 - - -
I 88.85 0.64 5.76 0.55 3.32 - - 33.37 - -
II ftv38 0.28 0.73 0.47 0.54 0.55 kroD100 62.94 226.68 18.18 6993.22 157.58
III 0.59 1.95 2.90 1.27 3.07 312.03 923.29 - - -
I 0.47 0.43 1.23 0.86 0.72 271.89 - 6675.83 - -
II dantzig42 0.41 0.34 2.64 1.26 0.57 kroE100 143.93 138.07 242.76 8398.49 58.45
III 1.13 1.21 11.39 2.73 11.66 479.70 858.16 - - -
I 1.41 554.87 1.73 10.63 13.95 - - 23.64 - -
II swiss42 0.49 2.11 1.61 1.05 1.49 eil101 45.14 19.24 16.01 52.81 18.28
III 1.20 11.93 10.22 2.41 21.49 350.63 357.35 - - -
I 1233.89 1.32 1968.36 0.54 1.11 4.03 5.51 - 2768.97 39.11
II ftv44 0.35 0.51 1.06 0.64 0.40 kro124p 185.08 1410.72 - - -
III 1.29 1.21 4.36 2.84 1.44 184.42 1412.88 - - -
I 1.25 3691.25 16.56 52.54 - - - - - -
II ry48p 2.06 3.36 4.29 1.34 1.21 ftv170 - - - - -
III 7.43 12.42 28.10 8.19 11.64 - - - - -

Table B.11: Mean CPU time (in seconds) obtained from Gurobi Optimizer, for the scenario multiple-salesmen-at-each-depot.
type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6

I 0.04 0.04 0.04 0.52 0.61 2.21 - 0.48 0.99 2.71
II burma14 0.04 0.05 0.05 0.05 0.04 hk48 1.23 1.52 0.68 2.05 2.84
III 0.05 0.07 0.09 0.09 0.08 3.14 5.46 1.74 2.10 3.04
I 6.14 0.14 0.02 0.11 1054.08 0.83 2.58 0.50 17.94 164.84
II ulysses16 0.08 0.09 0.04 0.17 0.24 eil51 0.79 0.95 0.30 2.86 1.70
III 0.06 0.23 0.07 0.27 0.30 2.27 2.03 0.63 6.36 2.04
I 0.16 0.13 0.21 0.03 0.12 1.70 3.96 3.41 2.09 1013.67
II gr17 0.25 0.25 0.30 0.05 0.07 berlin52 1.48 1.61 3.19 2.79 4.77
III 0.79 0.39 0.37 0.12 0.16 13.82 2.04 8.20 3.48 14.19
I 0.30 0.07 0.11 0.03 0.27 6739.40 - 20.23 133.20 16.10
II br17 0.52 0.07 0.13 0.04 0.11 ft53 6.66 65.09 55.45 9.69 21.73
III 1.20 0.11 0.17 0.10 0.26 3.40 33.89 106.06 64.09 16.45
I 0.12 0.36 105.00 0.18 1.38 6.28 - 3558.18 - 5136.91
II gr21 0.22 0.31 0.17 0.11 0.07 ftv55 1.04 3.00 6.88 32.69 5.11
III 0.35 0.36 0.14 0.22 0.17 1.88 3.56 2.48 6.14 2.65
I 0.26 0.13 0.33 0.34 3.75 0.31 1.59 67.29 3.23 -
II ulysses22 0.14 0.08 0.65 0.35 0.29 ftv64 0.26 0.68 1.10 2.24 5.07
III 0.20 0.12 0.83 0.55 0.51 0.79 1.35 1.89 1.27 6.26
I 0.31 1.55 0.72 0.48 0.35 - - 97.57 - 878.29
II fri26 0.43 0.63 0.56 0.78 0.91 st70 56.77 16.84 223.73 29.98 2060.49
III 0.41 1.00 0.68 0.65 0.51 54.24 45.69 161.56 135.73 1274.02
I 0.07 0.21 0.45 0.57 0.77 1.82 50.45 7.30 - -
II bayg29 0.11 0.22 0.90 0.49 1.23 eil76 2.82 1.30 1.68 2.06 1.40
III 0.21 0.39 1.45 0.81 0.91 5.60 0.79 6.57 5.28 2.98
I 0.14 0.24 0.60 1.67 1.35 266.89 - - - -
II bays29 0.13 0.35 1.01 0.71 1.01 gr96 560.08 32.93 - 1685.22 344.50
III 0.29 0.43 1.15 0.68 0.92 277.99 50.03 658.95 1055.28 -
I 3.85 0.57 0.57 0.11 0.99 40.80 68.72 - 546.46 -
II ftv33 0.65 0.87 0.46 0.19 1.08 kroB100 17.19 147.15 805.84 1425.71 -
III 1.51 1.37 0.75 0.29 0.69 39.94 256.84 - - -
I 0.52 0.74 0.68 1.86 0.30 141.21 - - - -
II ftv35 0.65 0.49 0.47 0.25 0.23 kroC100 46.60 675.18 697.69 245.39 2182.16
III 0.39 0.58 0.83 0.50 0.33 103.36 933.91 848.71 - -
I 89.25 1.20 11.33 0.57 3.15 - - 57.62 - -
II ftv38 0.59 0.66 1.43 0.26 1.01 kroD100 125.71 1042.29 33.18 - 262.00
III 0.66 0.81 1.14 0.46 0.66 388.16 903.60 67.51 - -
I 0.33 0.25 1.03 1.62 1.38 810.50 - - - -
II dantzig42 0.39 0.68 1.68 0.90 1.94 kroE100 322.32 373.75 732.20 - 84.27
III 0.64 0.89 1.06 1.44 1.40 526.81 421.44 387.38 - -
I 1.00 750.93 2.02 17.79 15.17 - - 19.28 - -
II swiss42 0.40 3.11 2.93 0.78 3.01 eil101 31.80 13.56 3.77 48.96 11.67
III 1.15 9.78 4.58 2.55 4.63 41.80 66.04 5.72 - -
I 2981.10 3.50 2019.71 1.48 3.72 10.60 11.34 - - 192.54
II ftv44 0.34 0.84 1.86 1.21 0.47 kro124p 9.69 10.08 81.48 - -
III 0.91 0.61 1.05 0.93 0.55 9.73 10.02 81.07 - -
I 1.85 3081.24 22.57 112.09 - - - - - -
II ry48p 3.87 2.89 3.07 1.71 1.08 ftv170 - - - - -
III 2.57 3.14 4.28 2.26 1.80 - - - - -
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Table B.12: Mean CPU time (in seconds) obtained from the CBC solver, for the scenario multiple-salesmen-at-each-depot. As the largest
test case that CBC can solve for this scenario is swiss42, we have truncated the table to make it more concise.

type test case D=2 D=3 D=4 D=5 D=6 test case D=2 D=3 D=4 D=5 D=6
I 0.40 0.42 0.40 2.45 15.72 0.60 1.03 5.67 76.38 26.24
II burma14 0.37 0.45 0.53 0.52 0.43 bayg29 0.70 1.29 7.53 2.39 10.80
III 0.80 0.48 0.95 0.54 0.71 5.24 8.82 8.73 19.08 22.07
I 96.08 0.64 0.32 0.46 - 0.64 1.89 3.03 66.69 12.45
II ulysses16 0.71 0.80 0.44 0.60 1.62 bays29 1.58 1.42 6.97 1.70 3.29
III 0.92 1.38 0.48 0.74 0.93 4.26 2.09 10.62 11.07 17.07
I 1.63 0.82 6.61 0.33 0.50 121.84 3.58 8.75 1.61 39.19
II gr17 2.60 0.93 2.42 0.54 0.86 ftv33 2.57 5.49 3.86 2.17 7.21
III 13.86 2.66 1.29 1.28 1.30 17.29 16.61 9.76 1.39 29.50
I 4.84 0.79 0.53 0.33 6.96 1.97 67.43 8.85 86.78 1.45
II br17 5.41 0.68 1.31 0.50 0.75 ftv35 3.51 4.45 6.10 4.80 2.28
III 39.25 1.35 1.62 0.50 1.83 3.03 20.41 26.28 52.22 1.21
I 0.87 2.79 2147.21 1.95 50.15 2896.58 15.63 277.51 3.42 439.83
II gr21 1.07 1.35 1.30 0.92 0.76 ftv38 5.05 18.83 12.75 4.86 6.74
III 3.46 1.18 1.19 2.35 0.49 9.85 25.90 62.36 2.68 25.37
I 1.26 1.18 4.80 1.47 96.28 3.84 6.43 20.49 44.62 15.31
II ulysses22 1.00 1.71 3.96 1.51 6.83 dantzig42 7.19 5.12 24.19 13.97 18.96
III 6.85 3.00 6.94 2.65 12.51 17.89 5.83 54.73 120.24 82.66
I 3.18 17.85 11.20 5.32 5.82 35.59 - 73.03 765.07 305.13
II fri26 1.88 5.37 11.99 6.44 2.94 swiss42 6.65 78.95 37.61 8.37 239.81
III 37.25 18.56 8.25 8.83 11.83 30.72 96.86 85.50 10.98 98.13
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