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Zhou Sua,∗, Ali Jamshidib, Alfredo Núñezb, Simone Baldia, Bart De Schuttera

aDelft Center for Systems and Control, Mekelweg 2, Delft, The Netherlands
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Abstract

This paper develops a multi-level decision making approach for the optimal plan-
ning of maintenance operations of railway infrastructures, which are composed
of multiple components divided into basic units for maintenance. Scenario-
based chance-constrained Model Predictive Control (MPC) is used at the high
level to determine an optimal long-term component-wise intervention plan for
a railway infrastructure, and the Time Instant Optimization (TIO) approach
is applied to transform the MPC optimization problem with both continuous
and integer decision variables into a nonlinear continuous optimization prob-
lem. The middle-level problem determines the allocation of time slots for the
maintenance interventions suggested at the high level to optimize the trade-off
between traffic disruption and the setup cost of maintenance slots. Based on
the high-level intervention plan, the low-level problem determines the optimal
clustering of the basic units to be treated by a maintenance agent, subject to the
time limit imposed by the maintenance slots. The proposed approach is applied
to the optimal treatment of squats, with real data from the Eindhoven-Weert
line in the Dutch railway network.

List of Keywords
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1. Introduction

Maintenance is crucial for the proper functioning and lifetime extension of
a railway network, which is composed of various infrastructures with different
functions. The Dutch railway network, one of the most intensive railway net-
works in Europe, consists of tracks (6830 km), tunnels (5100), overhead wiring
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(4500 km), switches (7508), signaling systems, stations (388) and safety control
systems. The degradation of an infrastructure can severely impair the perfor-
mance of the whole railway network. One example is a squat, a typical type
of Rolling Contact Fatigue (RCF), that accelerates rail degradation, which can
potentially lead to derailment if not treated properly (Sandström and Ekberg,
2009). Grinding is effective for the treatment of early-stage squats, while rail
replacement would be the only solution for severe-stage squats. Another exam-
ple is ballast degradation, which can affect track geometries, causing unreliable
support for sleepers and potential rail buckling and derailment (Ling et al., 2014;
He et al., 2015). In this case, tamping is applied to correct the track geometry.

1.1. Maintenance for Infrastructures

Maintenance can be either reactive or proactive. A shift from reactive main-
tenance to proactive solutions can be identified in several European countries in
recent years (Zoeteman, 2001; Al-Douri et al.). Condition-based maintenance
(Kobbacy and Murthy, 2008; Ben-Daya et al., 2016), a proactive maintenance
strategy where decision making is based on the observed “condition” of an asset,
has received growing attention in various industrial fields (Jardine et al., 2006;
Fararooy and Allan, 1995). We apply the concept of maintenance optimiza-
tion (Dekker, 1996) in the planning of maintenance interventions1 for railway
infrastructures based on an explicit mathematical model describing the deterio-
ration process of the condition (Scarf, 1997). This is different from data-driven
approaches based on an expert system (Guler, 2012) or machine learning tech-
niques (Li et al., 2014), where no explicit model of the deterioration dynamics
is required (Scarf, 1997). Markov decision process and its variations are the
most popular stochastic models used in maintenance planning of transportation
infrastructures (Smilowitz and Madanat, 2000; Durango-Cohen and Madanat,
2008). A bi-variate Gamma process considering both longitudinal and trans-
verse level is used to schedule tamping intervention for a French high-speed line
in Mercier et al. (2012). In Zhang et al. (2013) a Weibull distribution is as-
sumed for the condition deterioration time probability density function, and an
optimal timetable of maintenance activities is determined for a regional railway
network considering multiple tamping crews to minimize the negative effects on
train schedule and maintenance cost. Not all stochastic approaches model the
deterioration dynamics as a stochastic process (Frangopol et al., 2004). One
example is the grey-box model proposed in Quiroga and Schnieder (2012) for
the aging process of track geometry. Deterministic models are relatively few
in literature. A linear model is applied in Wen et al. (2016) to describe the
degradation of track quality, and a quality-dependent-recovering upper bound
is used to ensure that the improvement of track quality by tamping can never
outperform the previous operation. An exponential model is used in Famurewa
et al. (2015) to describe the nominal degradation of track geometry, where the
improvement brought by tamping is modeled by an empirical regression model.
In this paper, we focus on the optimal planning of maintenance interventions
for a railway infrastructure using a condition-based maintenance strategy. Our
aim is to develop a comprehensive, systematic approach that is able to support

1Renewal is also considered as a maintenance intervention
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the maintenance decision making for a wide range of railway infrastructures.
In particular, we consider a railway infrastructure as a multi-component system
(Nicolai and Dekker, 2008) with independent deterioration dynamics, which can
be either linear or nonlinear. Moreover, we do not restrict the condition to take
only discrete values, thus avoiding the suppression of the rich deterioration dy-
namics brought by the discretization of the originally continuous condition in
most stochastic models (Frangopol et al., 2004).

1.2. Maintenance Intervention Planning

An optimization-based, multi-level approach is developed in this paper for
the optimal planning of maintenance interventions for railway infrastructures
like rail and ballast. A schematic plot for the multi-level approach is provided
in Figure 1. Three optimization problems, namely the intervention planning
problem, the slot allocation problem, and the clustering problem, are solved
at the high, middle, and low level, respectively. Based on the component-wise
discrete-time prediction model of the condition of the infrastructure, at each
time step the high-level intervention planning problem determines the optimal
maintenance intervention for each component over a given prediction horizon.
The sampling time, i.e. the length of each time step, is usually larger than one
month because of the slow deterioration dynamics of a railway infrastructure.
If a maintenance intervention is suggested at any time step at the high level,
it should be performed within a traffic-free time slot (4-8 hours at night) to
avoid any disruption to the train service. However, it is not always possible to
complete an intervention within such a short time slot, and a new operation
must then be scheduled into a new time slot to finish the required intervention,
resulting in an additional setup cost including machinery, logistic, personnel, etc.
This gives rise to the middle-level slot allocation problem, which determines the
time slots that optimize the trade-off between traffic disruption and the total
setup cost associated with each maintenance slot, while guaranteeing that the
total duration of the resulting maintenance slots is no less than the estimated
maintenance time. According to the intervention plan, the low-level clustering
problem then groups the basic units into clusters that can be treated within the
allocated time slots. If the resulting clusters cannot cover all the basic units
that need to be treated according to the high-level intervention plan because of
insufficient time slots, then the slot allocation problem is solved again with a
longer estimated maintenance time. This iterative procedure between the slot
allocation problem and the clustering problem repeats until all the basic units
that need to be treated are covered by a cluster. This cluster-wise work plan is
then applied to the infrastructure, and the condition of each component is then
regularly measured or updated by estimation.

1.3. State-of-the-Art

We use Model Predictive Control (MPC) Camacho and Alba (2013); Rawl-
ings and Mayne (2009) as the basic scheme for the long-term optimal planning of
maintenance interventions over a finite planning horizon. MPC has been applied
to various real-world decision making problems including risk management in
semiconductor manufacturing and irrigation canals (Zafra-Cabeza et al., 2008,
2011), inventory management in supply chains (Nandola and Rivera, 2013),
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Figure 1: Schematic plot of the proposed multi-level approach for optimal condition-based
maintenance planning.

and maintenance planning of railway infrastructures (Su et al., 2015). These
real-world problems typically involve systems with both continuous and discrete
dynamics. Such systems are usually modeled using the Mixed Logical Dynami-
cal (MLD) framework (Bemporad and Morari, 1999), and a sequence of discrete
control actions is determined by solving a mixed integer programming problem
at each time step. An alternative technique, Time-Instant Optimization (TIO)
(De Schutter and De Moor, 1998), is used in this paper. In the TIO-MPC
scheme, a sequence of continuous time instants indicating the occurrence of
each control action is optimized, resulting in a continuous, albeit non-smooth,
optimization problem at each time step. For some real-world applications, like
water level control for irrigation canals (van Ekeren et al., 2013; Sadowska et al.,
2014), the number of admissible control actions, e.g. opening and closing of bar-
riers, is relatively small even for a long prediction horizon. In this case, only a
small number of time instants are needed to indicate when each control action
occurs. This usually results in an optimization problem easier to solve than
the large mixed integer programming problem in MLD-MPC. A comparison
between the MLD and the TIO framework is given in Figure 2, where u(k) de-
notes the action performed at time step k, while tmaint and trenewal are vectors
containing all the time instants of the maintenance and renewal actions2. In
this example, at most two maintenance actions and one renewal action can be

2We use the notation (v)i to indicate the i-th element of the vector v.
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Figure 2: Comparisons between MLD and TIO framework illustrated by a small example,
in which at most two maintenance actions and one renewal actions can be performed to an
infrastructure within the one-year prediction window.

performed within the 12-month prediction horizon. The MLD-MPC controller
needs to optimize a discrete sequence of length 12 specifying which action (main-
tenance, renewal, or doing nothing) to be applied at each time step. However,
the TIO-MPC controller only needs to optimize a continuous sequence of length
3, containing the time instants at which the two maintenance actions and one
renewal action are performed, respectively. In this example, the TIO framework
is a better choice than the MLD framework as it only needs a small number of
continuous decision variables.

Maintenance decision making can be influenced by different randomness like
model uncertainties, missing data, measurement error, etc (Madanat, 1993). Ro-
bust control (Morari and Zafiriou, 1989), which guarantees good control perfor-
mance and constraint satisfaction within a specific range of uncertainties, should
be considered. Popular robust control approaches, like the min-max approach
(Campo and Morari, 1987; Gruber et al., 2013), are often conservative, as the
worst-case scenario does not always occur. To avoid conservatism, chance con-
straints (Prekopa, 1970) are considered, which guarantee that the constraint are
satisfied with a probability no less than a confidence level. Chance-constrained
MPC, which replaces all constraints with uncertainties by chance constraints,
and optimizes the expectation of the objective function, has been successfully
applied to the management of drinking water networks (Grosso et al., 2014) and
stock management in hospital pharmacy (Jurado et al., 2016). A scenario-based
approach is adopted for tractability.
Maintenance interventions should be performed within traffic-free time slots to
avoid disturbance or disruption to the current time table. However, unexpected
incidents are unavoidable. Slight perturbations can be handled by robust time
tables (e.g. Bešinović et al. (2016); Goverde et al. (2016)), but larger ones re-
quire real-time replanning of time tables (Quaglietta et al., 2016). An accurate
estimation of the length of disruption (e.g. the disruption model described in
Zilko et al. (2016)) can greatly benefit the decision-making in disruption man-
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agement. From the maintenance agent’s perspective, negative consequences of
unexpected events, e.g. delaying or canceling of train services, can be mini-
mized by considering cost of traffic disruption in the scheduling of maintenance
activities. Maintenance scheduling considering disruption to train traffic has
been extensively discussed in literature. An integer programming problem is
formulated in Higgins (1998) to schedule different types of routine maintenance
activities for a single railway line, minimizing disruption to and from train traf-
fic, and the weighted completion time of all maintenance activities. A mixed
integer programming problem is formulated in Budai et al. (2006) to minimizing
track possession cost and maintenance costs for a single railway line, considering
both routine activities and projects like grinding or tamping. The optimal long-
term scheduling of railway maintenance projects is formulated as a time-space
network model (Peng et al., 2011; Peng and Ouyang, 2012) to minimize the total
travel costs of maintenance crews and disruption to train traffic for a large-scale
railway network. A mixed integer linear programming model is developed in
Caetano and Teixeira (2016) for optimal scheduling of ballast, rail, and sleeper
renewal operations for a network, minimizing the expected life-cycle cost and
track unavailability costs caused by renewal operations. In Peng and Ouyang
(2014), the optimal clustering of maintenance jobs into projects to reduce the
total maintenance cost for a railway network is formulated as a vehicle rout-
ing problem with side constraints. A metaheuristic using simulated annealing
technique is developed in Santos and Teixeira (2012) to determine the optimal
length of track to be treated by a tamping machine.

1.4. Contributions and Structure of the Paper

The major contributions of this paper include:

(1) A multi-level decision making approach is developed taking into account
both long-term and short-term objectives in condition-based maintenance
planning, as well as the disruption to train traffic.

(2) We apply a tractable scenario-based chance-constrained scheme for the
high-level MPC controller to improve the robustness of the resulting in-
tervention plan.

(3) A case study with real data is performed for optimal treatment of squats
for the Eindhoven-Weert line in the Netherlands.

Unlike previous studies on optimal planning of railway preventive maintenance
activities (e.g. (Budai et al., 2006; Peng et al., 2011)), where condition deteriora-
tion is not explicitly considered, the proposed approach uses a condition-based
maintenance strategy, in which both the condition deterioration and mainte-
nance costs are minimized. Moreover, unlike other offline optimal condition-
based maintenance planning approaches (e.g. (Wen et al., 2016)), where one
optimization problem is solved for the whole planning horizon, we propose an
online model-based approach, where the prediction is made based on the “ac-
tual” condition calculated from real-time measurements to avoid accumulation
of estimation errors.
This paper is organized as follows: the general deterioration process of a rail-
way infrastructure and the chance-constrained TIO-MPC scheme are briefly
described in Section 2. The formal deterioration model is presented in Section
3, and the multi-level approach is formally explained in Section 4. A case study
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on the optimal treatment of squats is performed in Section 5, and conclusions
and future directions are provided in Section 6.

2. Preliminaries

2.1. Railway Defects and Maintenance Interventions

In this section, we briefly explain generic defects for railway infrastructures
and the corresponding maintenance interventions. Note that in this paper, full
renewal is also considered as a maintenance intervention. Figure 3 shows the
deterioration process of a generic defect (Esveld, 2001), e.g. a ballast defect,
for one component of a railway asset, e.g. a section of ballast. The condition
of the component is represented by one single measurable factor. The natu-
ral degradation3 is shown by the green dashed line, which will eventually hit
the operational limit, triggering a great hazard like derailment, if no adequate
intervention is performed. An intervention is performed to improve the con-
dition, when the predicted condition is close to the maintenance limit, which
is usually much smaller than the operational limit to allow for sufficient safety
margin. An intervention brings an abrupt improvement of the condition, quan-
tified by the vertical drop of the degradation level after the intervention. Full
renewal can always restore a component to an “as good as new” condition. In
comparison, corrective maintenance, like tamping and grinding, is inefficient,
in the sense that the level of improvement that can be achieved by a correc-
tive maintenance becomes less the more it is applied. This is also shown in the
monotonically increasing dashed red line connecting the conditions immediately
after each maintenance intervention. Moreover, the deterioration also becomes
faster after each maintenance intervention, demonstrated by the more steep nat-
ural degradation between two consecutive maintenance interventions. Finally,
renewal becomes the only option when a maintenance intervention becomes so
inefficient that it can no longer improve the condition.

2.2. MPC

In this section, we briefly explain the basic mechanism of chance-constrained
TIO-MPC, the formal description of which is presented in the high-level prob-
lem in Section 4.1. Based on a dynamic model for the process and the current
state, an MPC controller predicts the optimal sequence of control actions that
optimizes an objectives function subject to constraints for a given prediction
horizon NP. According to the receding horizon principle, only the first entry
of the sequence of control actions is applied to the system, and the controller
moves to the next time step, solving a new optimization problem using an up-
dated state.
The generic deterioration process of a railway infrastructure contains both dis-
crete and continuous dynamics, as shown in Figure 3. MLD-MPC recasts the
hybrid dynamics model into an MLD system, and solves a mixed integer pro-
gramming problem to determine a sequence of discrete control inputs. TIO-
MPC, on the other hand, determines a sequence of continuous time instants at

3The natural degradation is only assumed to be exponential in this example for demon-
stration purpose. In general, it can be described by any monotonically increasing function.
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Figure 3: Deterioration process of a generic defect with an exponential deterioration. A higher
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which each maintenance intervention, e.g. corrective maintenance and renewal,
take place within the prediction period4. A nonlinear conversion to the original
discrete control inputs can be made by rounding the continuous time instants
to the nearest discrete time steps. Thus a continuous nonlinear optimization
problem must be solved at each time step of TIO-MPC. This nonlinear opti-
mization problem is intrinsically non-smooth because of the rounding. Although
non-smooth optimization problems are in general difficult to solve, the number
of decision variables in TIO-MPC is usually small, as the maximum number
of interventions is small even for a long prediction horizon, e.g. at most two
grindings per year. In this case, TIO-MPC is more promising than MLD-MPC
in terms of computational efficiency.
The original hybrid model and the converter that converts time instants to
control inputs form the TIO prediction model, which is stochastic in practice
due to the presence of various uncertainties. A chance-constrained optimization
problem is solved, where the expectation of the objective function is optimized,
and the satisfaction of each stochastic constraint is guaranteed with a probabil-
ity no less than a confidence level5. The expectation and probability are both
computed over the complete set of realizations of uncertainties over the entire
prediction period. This is difficult when the set of uncertainties is large, and no
assumption is made on the uncertainties. A scenario-based approach is usually
adopted, which will be explained in Section 4.1.2.

4TIO-MPC and MLD-MPC are not equivalent. The former has less degree of freedom,
when the maximum number of interventions is strictly less than the prediction horizon.

5We consider joint chance constraint, in which a common confidence level must be guar-
anteed for all stochastic constraints.
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3. Deterioration Model

In this section, we develop a discrete-time state space model to describe the
deterioration process of a generic defect of a railway infrastructure, e.g. ballast
defect or squat growth in a certain length of track in the railway network. The
infrastructure is composed of n components, e.g. n segments of track, with
independent condition deterioration dynamics. Let the vector

xj(k) =

[
xconj (k)
xauxj (k)

]
∈ Xj

denote the state of the j-th component of the infrastructure at time step k.
The state of the j-th component includes its condition xconj , as well as other
auxiliary variables collected in the vector xauxj . These auxiliary variables, e.g.
the condition after the last maintenance intervention, are necessary to model
the inefficiency of corrective maintenance.

Let U = {a0, . . . , aN} denote the set of all possible actions6 (including no
maintenance) that can be applied to a component, where N is the number of
possible interventions. The first action a0 represents no maintenance, and the
last action aN represents full renewal. Let uj(k) ∈ U denote the maintenance
action applied to the j-th component at time step k. Furthermore, we define
u(k) = [u1(k)

T . . . un(k)
T]T ∈ Un as the maintenance action performed on the

multi-component infrastructure at time step k.
The deterioration process is also affected by various uncertainties like measure-
ment error and model inaccuracies. We denote θj(k) ∈ Θj as the realization of
the uncertainties related to the deterioration of component j. Similarly, we de-
fine θ(k) = [θT1 (k) . . . θ

T
n (k)]

T ∈ Θ as the realization of the uncertainties for the
whole asset. The following generic model is proposed to describe the stochastic
deterioration process of the j-th component of the asset:

xj(k + 1) = fj(xj(k), uj(k), θj(k))

=


f0j (xj(k), θj(k)) if uj(k) = a0 (no maintenance)

fqj (xj(k), θj(k)) if uj(k) = aq ∀q ∈ {1, . . . , N − 1}
fNj (θj(k)) if uj(k) = aN (full renewal)

(1)

∀j ∈ {1, . . . , n}.

The natural degradation f0j only depends on the current condition and un-

certainties. Full renewal fNj restores the component to an “as good as new”
condition, regardless of the current condition or the history of maintenance in-
terventions. However, renewal is also stochastic, and the exact condition after a
renewal is uncertain. The effect of other interventions on a component depends
both on the current condition and the history of maintenance.
The deterioration dynamics of the whole asset can then be written as:

x(k + 1) = f(x(k), u(k), θ(k)) (2)

6For the sake of simplicity we consider the same set of available actions for each component
of the infrastructure.

9



where f = [fT1 . . . f
T
n ]T is a vector-valued function.

In practice, constraints must be considered for each individual component. We
call these constraints local constraints, as they are only dependent on the con-
dition, action, and uncertainties of the individual component. One crucial local
constraint is that the condition of each component should not exceed the main-
tenance limit. In addition to local constraints for individual components, we
also consider global constraints on the whole asset. Such global constraints
usually arise from limited resources available for maintenance and renewal of
the asset, e.g. budget and working time limits. To summarize, we define the
constraints that need to be considered at time step k for the whole system as:

g(x(k), u(k), θ(k)) ≤ 0 (3)

In summary, the deterioration process of the infrastructure can then be de-
scribed by the whole-system dynamics (2) subject to the constraint (3).

4. Multi-level Intervention Planning

A multi-level decision making scheme is developed for the optimal planning
of maintenance interventions. As explained in Section 1, the motivation to adopt
a multi-level scheme includes different time scales of the deterioration process
and traffic schedule, and computational tractability. A flow chart is presented in
Figure 4 to illustrate the proposed multi-level scheme. The condition of the rail-
way infrastructure is monitored at every time step. The current measurements
for each basic unit is collected and processed, then aggregated to represent the
condition of each component. Based on the current condition of each compo-
nent, the high-level MPC controller determines the maintenance plan for the
current time step that optimizes the trade-off between condition deterioration
and maintenance cost. If no intervention is suggested for any component for the
current time step, the MPC controller moves to the next time step. The condi-
tion of the infrastructure is updated by new measurements, or estimates if no
new measurements are available. The iterative procedure between the middle-
level and low-level problems is triggered when an intervention, e.g. grinding or
tamping, is suggested at the high level for at least one component for the cur-
rent time step. Let T̂Maint denote the estimated time to complete the suggested
intervention. The optimal maintenance slots are allocated at the middle level,
minimizing the trade-off between the total setup cost for the maintenance slots
and the cost of disruption to the railway traffic, guaranteeing that the result-
ing maintenance time is no less than the estimated maintenance time T̂Maint.
The resulting maintenance slots are then fed to the low level. Depending on
their location and condition, the basic units inside the components that require
the corresponding intervention are grouped into clusters, that must be treated
within the time slots determined at the middle level. If the resulting clusters
at the low level cannot cover all the basic units, depending on the number
and severities of the remaining basic units, an evaluation is made to determine
whether to solve the middle-level problem again with a larger estimated mainte-
nance time in order to cover the remaining basic units. A value νrem is calculated
for the remaining basic units, which is the ratio of the accumulated severities of
the remaining basic units and the accumulated severities of all the basic units
that needed to be treated. An additional maintenance time ∆T̂ is also esti-
mated, depending on the number of the remaining basic units. A factor µ is
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assigned to ∆T̂ to convert the additional maintenance time into a “cost”. The
detailed explanation on how to compute νrem and ∆T̂ is given in Section 4.3.
If νrem − µ∆T̂ ≤ 0, indicating that the benefit of covering the remaining basic
units does not justify the cost of the required additional maintenance time, the
iterative procedure terminates and the uncovered basic units remain uncovered.
If νrem − µ∆T̂ > 0, indicating that it is worthwhile to cover the remaining ba-
sic units with additional maintenance time, the middle-level problem is solved
again with a longer estimated maintenance time T̂Maint +∆T̂ .
The vector ξ contains the positions of all basic units. The conditions of all basic
units at time step k are collected in the vector w(k). In particular, let w(0)
denote the initial conditions of the basic units. Let tsl(k) and ϕ(k) denote the
solutions of the middle-level and the low-level problem, i.e. the resulting time
slots and clusters, at time step k, respectively. The multi-level framework can
be demonstrated by the pseudocode in Algorithm 1.

Function HighLevel MPC(w(0), ξ)
// Initialize the condition of the components

k ← 1;
w(k)← w(0);
x(k)←Aggregate(w(k), ξ);
while k ≤ kend do

// Solve the MPC optimization problem at time step k
u(k)←MPC Optimize(x(k));
/* Middle- and low-level problems are triggered whenever an

intervention is suggested */

for each intervention al do
if any uj(k) = al then

/* Solve the middle-level problem to determine the time

slots for intervention al */

tsl(k)←MiddleLevel(u(k), al, T̂Maint);
/* Solve the low-level problem to determine the clusters

for intervention al */

ϕ(k)←LowLevel(w(k), ξ, tsl(k), al);
while a basic unit outside ϕ(k) do

Compute νrem and ∆T̂ using (38) and (39);

if vrem − µ∆T̂ > 0 then

T̂Maint ← T̂Maint +∆T̂ ;

tsl(k)←MiddleLevel(u(k), al, T̂Maint);
ϕ(k)←LowLevel(w(k), ξ, tsl(k), al);

else
break

end
// Apply intervention l to the infrastructure

Intervention(ϕ(k), al);

// Update conditions of basic units

if New measurements available then
w(k + 1)←New measurements;

else
w(k + 1)←Simulate(w(k), ξ, ϕ(k));

end
x(k + 1)←Aggregate(w(k + 1), ξ);
k ← k + 1;

end

Algorithm 1: Procedure of the multi-level approach.
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4.1. High-Level Intervention Planning Problem

A scenario-based chance-constrained MPC controller is developed for the
deterioration process described by (2),(3) to determine the optimal maintenance
and renewal interventions for each component of the asset. A TIO approach is
applied to transform the MPC optimization problem with both continuous and
discrete decision variables to a continuous non-smooth optimization problem.
First, we recast the hybrid dynamic model (2),(3) into a TIO prediction model.
Then we select a set of representative scenarios from the entire set of realizations
of the uncertainties within the prediction period. Chance-constrained MPC is
then applied to the scenario-based TIO prediction model.

4.1.1. TIO Prediction Model

A TIO prediction model is developed based on the original hybrid deteriora-
tion model (2),(3), which contains both continuous and discrete dynamics. Let
NP and NC denote the length of the prediction and control horizons, respec-
tively. Denote x̂(k + l|k) as the estimated state at time step k + l based on the
information available at time step k. The sequence of estimated states, control
inputs and uncertainties within the prediction period can be defined as:

x̃(k) = [x̂T(k + 1|k) . . . x̂T(k +NP|k)]T

ũ(k) = [uT(k) . . . uT(k +NP − 1)]T

θ̃(k) = [θT(k) . . . θT(k +NP − 1)]T

The NP-step prediction model can then be formulated as:

x̃(k) = f̃(x(k), ũ(k), θ̃(k)) (4)

g̃(x(k), ũ(k), θ̃(k)) ≤ 0 (5)

where the function f̃ can be derived from recursive substitution of (2), as in
standard MPC. The function g̃ can be derived similarly.
Recall that u(k) ∈ U = {a0, . . . , aN}, where the option a0 indicates “no inter-
vention” and the last intervention aN is full renewal. TIO-MPC first fixes the
maximum number of times that each of the N interventions can be performed
within the prediction period, and optimizes the continuous time instants to
perform the interventions. Formally, let vj,q denote the maximum number of
occurrences of intervention q for component j with the prediction period. All
the relative time instants at which intervention q occurs in the prediction hori-
zon for component j at time step k are collected in the vector tj,q,k of length
vj,q. The sequence of time instants to be optimized at time step k can then be
written as:

t̃(k) = [tT1,1,k . . . t
T
1,N,k︸ ︷︷ ︸

tT1 (k)

. . . tTn,1,k . . . t
T
n,N,k︸ ︷︷ ︸

tTn(k)

]T (6)

The sequence of time instants t̃(k) can be converted into the sequence of control
inputs ũ(k) by rounding to the nearest discrete time steps. The rounding func-
tion is always non-smooth, so TIO-MPC must solve a non-smooth optimization
problem at each time step even for systems with linear dynamics.
For the situation of NC < NP, we have

uj(k + l) = a0 ∀l ∈ {NC . . . NP − 1}, ∀j ∈ {1, . . . , n}
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Figure 5: Example illustrating the time instants in TIO-MPC. In this example, we have
uj ∈ {a0, a1, a2}. Interventions a1 and a2 can be applied to component j at most twice and
once, respectively.

This means no intervention is applied beyond the control horizon.
An example to explain the sequence of continuous time instants t̃(k) and how it
is converted to the sequence of discrete control inputs ũ(k) is given in Figure 5.
In this example, the resulting sequence of time instants for component j at time
step k is tTj (k) = [tTj,1,k t

T
j,2,k]

T. Among the two time instants for intervention
a1, only (tj,1,k)1, which is located within the control period (indicated by the
dashed vertical line), is rounded to the nearest relative time step l, indicating
uj(k+ l) = a1. The second time instant (tj,1,k)2, is neglected as it is outside the
control period NCTs. Similarly, the first and only time instant for a2 is within
the control period, thus we have uj(k +m) = a2 as m is the time step closest
to (tj,2,k)1.

The following linear constraints should be considered for the time instants:

(tj,q,k)1 ≥ tmin
j,q (7)

(tj,q,k)vj,q ≤ tmax
j,q (8)

(tj,q,k)i+1 − (tj,q,k)i ≥ ∆tmin
j,q ∀i ∈ {1, . . . , vj,q − 1} (9)

tmax
j,q = NCTs + vj,q∆t

min
j,q (10)

∀j ∈ {1, . . . , n} ∀q ∈ {1, . . . , N}.

Constraints (7) and (8) specify the lower and upper bound of the time instants
for intervention q on component j. The lower bound tmin

j,q is especially useful
to address the issue on early planning. For example, if every maintenance
intervention must be planned six months ahead, then we can simply set tmin

j,q to
be equal to six months. The upper bound tmax

j,q is calculated in (10) to allow the
situation of no intervention planned within the control period, where Ts is the
sampling time (usually in months), and ∆tmin

j,q is the minimal interval between
two consecutive intervention of the same type, as specified in constraint (9).
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Scenario-based chance-
constrained optimization problem

Scenario-based
TIO model

Objective function
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Optimization
algorithm

x(k)

t̃(k)

h̃

x̃(k)
EH̃[J ]

PrH̃[g̃ ≤ 0]

Figure 6: Optimization scheme for scenario-based chance-constrained TIO-MPC. Unlike nom-
inal MPC, chance-constrained MPC optimizes the expectation of the objective function, while
guaranteeing a confidence level of probability of constraint satisfaction.

The constraints (7)-(10) must be included in the optimization problem at each
time step. Note that there is no stochasticity associated with these constraints,
and they can be treated as normal linear constraints.

4.1.2. Scenario-based Chance-Constrained MPC

An scenario-based chance-constrained MPC controller is developed based on
the TIO prediction model in Section 4.1.1. The optimization problem at each
time step is illustrated by the schematic plot in Figure 6.

In practice, the set Θ containing all possible realizations of the uncertainties
for a railway infrastructure might be very large. The set of all possible real-
izations of uncertainties over the whole prediction period, Θ̃ = ΘNP , might be
huge for a long prediction horizon. For tractability, a relatively small number
of representative scenarios is selected from the set Θ̃. Let H̃ ⊂ Θ̃ denote the set
of representative scenarios, the following scenario-based TIO prediction model
can then be derived for any h̃ ∈ H̃:

x̃(k) = f̃TIO(x(k), t̃(k), h̃) (11)

g̃TIO(x(k), t̃(k), h̃) ≤ 0. (12)

Define

J(k) = JDeg(k) + λµJMaint(k) (13)

as the objective function that needs to be minimized at each time step k. The
parameter µ is a scaling factor, and the parameter λ captures the trade-off
between the condition of the infrastructure and the maintenance cost.
The first part

JDeg(k) =

n∑
j=1

NP∑
l=1

|xconj (k + l)− xconj |q (14)

minimizes the magnitude of condition degradation, where the norm | · |q can be
the 1-norm, 2-norm, or infinity norm, for q = 1, 2, ∞, respectively.
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The second part in the objective function is the accumulated maintenance cost,
which can be formulated as:

JMaint(k) =

n∑
j=1

NP∑
l=1

p∑
q=1

γj,qIuj(k+l−1)=aq
(15)

where the binary indicator function IX takes value 1 if the statement X is true,
otherwise it takes value 0, and the parameter γj,q represents the required cost
if intervention aq is applied to component j.
As shown in (13)-(15), the objective function J(k) is a function of x̃(k) and
ũ(k). Using the TIO converting rule, the value of the objective function at time
step k can be rewritten as:

J(k) = fopt(x(k), t̃(k), h̃) (16)

Finally, the continuous, nonlinear optimization problem to be solved at each
time step by the scenario-based chance-constrained TIO-MPC controller can be
formulated as:

min
t̃(k)

EH̃[fopt(x(k), t̃(k), h̃)] (17)

Subject to: PrH̃[g̃TIO(x(k), t̃(k), h̃) ≤ 0] ≥ η (18)

gt̃(t̃(k)) ≤ 0 (19)

where constraint (19) is the compact expression of constraints (7)-(10), and
η ∈ (0, 1) is the confidence level of the chance constraints.
The goal is to minimize the expected value of the objective function fopt over

the set of all representative scenarios H̃. Note that the expected value of the
objective function fopt can be computed as

EH̃[fopt(x(k), t̃(k), h̃)] =
∑
h̃∈H̃

p(h̃)fopt(x(k), t̃(k), h̃), (20)

where p(h̃) is the probability of scenario h̃. In a similar way, the chance con-
straint (18) can be reformulated as∑

h̃∈H̃

p(h̃)Ig̃TIO(x(k), t̃(k), h̃)≤0 ≥ η. (21)

Because of the rounding procedure in the TIO prediction model, (17)-(19) is
a non-smooth optimization problem. Hence, derivative-free or direct search
algorithms Lewis et al. (2000) like a genetic algorithm or pattern search should
be considered. Pattern search with multi-start is used in the case study.

4.2. Middle-Level Slot Allocation Problem

The middle-level slot allocation problem is triggered at any time step at
which an intervention is recommended at the high level. This problem is solved
to determine the maintenance time slots for the corresponding intervention,
optimizing the trade-off between traffic disruption and the total setup costs to
complete the corresponding intervention, as stated in Section 1.2. The planning

16



1 j-1 j j+1 j+2 N +1

Track possession time (h)

0

c
jC

o
s
t 

o
f 

d
is

ru
p

ti
o

n

...

...

Figure 7: An example of the piecewise-constant function of disruption cost, where τ1 and
τNτ+1 coincide with the start of the current and next time steps, respectively. The cost of
disruption is cj if the j-th interval [τj , τj+1] is occupied for maintenance.

horizon of the slot allocation problem is from the current time step to the next
time step (e.g. from October to November), as each intervention suggested at
the high level should be completed within the sampling time (e.g. one month).
Let Nsl denote the number of time slots available at the current time step of
the high-level controller. Based on the corresponding train schedule, we can
evaluate the cost of traffic disruption as a piecewise-constant function of track
possession time. Traffic-free time interval is assigned a zero-cost, while other
non-traffic-free intervals are associated with different costs of disruption. Let
Nτ denote the number of intervals of this piecewise-constant function, and let
cj denote the cost of disruption of the j-th interval. An illustration of this
piecewise-constant function is given in Figure 7.

Similar to the TIO technique used in the high-level MPC controller, we de-
fine tstarti and tendi as the start and end time instants of the i-th maintenance slot
at the current time step, respectively. Let the positive parameter ∆τmin denote
the minimal length of a time slot. Recall that T̂Maint is the estimated main-
tenance time, and let csl denote the setup cost associated with a maintenance
slot. Moreover, a fixed setup time, denoted by Tset, is also associated with a
maintenance operation. This setup time includes the time to prepare and finish
a maintenance operation in a time slot. The middle-level optimization problem
can then be formulated as:

min
{(tstarti , tend

i )}Nsl
i=1

Nsl∑
i=1

Nτ∑
j=1

cj
(
max(min(τj+1, t

end
i ), τj)−min(max(τj , t

start
i ), τj+1)

)
+λsl

Nsl∑
i=1

cslItendi ≤τNτ+1
(22)
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subject to

tstart1 ≥ τ1 (23)

tendNsl
≤ τmax (24)

tendi − tstarti ≥ ∆τmin ∀i ∈ {1, . . . , Nsl} (25)

tendi + ϵ ≤ tstarti+1 ∀i ∈ {1, . . . , Nτ − 1} (26)

τmax = τNτ+1 + 2Nsl∆τmin (27)

tstarti ≤ τNτ+1 =⇒ tendi ≤ τNτ+1 (28)

Nsl∑
i=1

Itend
i ≤τNτ+1

·
(
tendi − tstarti − Tset

)
≥ T̂Maint. (29)

The first term in the objective function (22) is the total cost of disruption, while
the second term represents the number of active time slots, i.e. those located
within the planning period. Constraints (23) and (24) are the lower and up-
per bounds of the time slots, respectively. Similar to TIO, the upper bound
τmax is given in (27) to allow for the situation with no active time slots. Con-
straint (25) guarantees that each time slot is larger than the minimum length
∆τmin, while constraint (26) ensures that there is no overlap between the time
slots. Constraint (28) excludes the situation of fractional time slots, where the
starting instant is inside the planning period while the end instant is outside
the planning period. Finally, constraint (29) guarantees that the resulting time
slots are sufficient to perform all the maintenance interventions suggested at the
high level.
The optimization problem (22)-(29) is a nonsmooth nonlinear programming
problem. However, it can be converted into to an MILP problem by intro-
ducing new binary and auxiliary variables and linear constraints, following the
procedure described in Bemporad and Morari (1999) for MLD systems. The
detailed transformation procedure is described in Appendix C.1. The number
of binary variables in the transformed MILP problem is 2Nsl(Nτ + 1). As the
maximum number of time slots is in general small (say, less than 5) in practice,
the resulting MILP problem can be solved exactly when the number of intervals
in the piecewise-constant function of disruption cost is not too large (say, less
than 500).

4.3. Low-Level Clustering Problem

The low-level problem is triggered whenever an intervention is suggested
for any component by the high-level controller. A nonsmooth nonlinear pro-
gramming problem is solved to determine the optimal execution plan for each
active time slots determined at the middle level. The resulting execution plan
groups various basic units into different clusters depending on their location and
condition. Only the basic units located inside a cluster will be treated. The
low-level problem determines the optimal start and end position of each cluster,
trying to cover as many severe basic units as possible inside a cluster, subject
to the maintenance time slot. Similar to the middle-level problem, different
low-level problems must be solved if different interventions are suggested at the
high level. Moreover, for each intervention, we only consider the basic units
inside the components where the corresponding intervention is prescribed. This
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further reduces the size of the optimization problem.
Let Nbu denote the total number of basic units where the corresponding in-
tervention is suggested by the high-level controller, while the vectors ξ and w
contain the positions and conditions of these basic units respectively. Further-
more, let ξk and wj denote the position and condition of the j-th basic unit.
The basic units are all located inside the planning range [ξ, ξ]. Let T sl

s denote
the duration of the s-th resulting active time slot from the middle-level problem.
Let Is denote the set of indices of the basic units that need to be treated at
time slot s. In particular, we have I1 = {1, . . . , Nbu}, and Is contains all the
basic units not covered by any cluster in time slots 1 to s − 1. At each time
slot s, the basic units are grouped into N cl clusters to be treated by the given
considered maintenance intervention, where ϕstarti,s and ϕendi,s denote the start and
end position of the i-th cluster. Let ∆ϕmin and ∆ϕmax denote the minimum and
maximum size of a cluster, respectively. Only the basic units inside a cluster
are processed by a specific machine. Let von and voff represent the speed of
the machine in working mode (e.g. tamping or grinding) and non-working mode
(driving), respectively. Let Ton and Toff denote the switch-on and switch-off time
of the machine. The following nonlinear optimization problem is formulated to
determine the clusters within the s-th time slot:

max
{ϕstart

i,s , ϕend
i,s }Ncl

i=1

Ncl∑
i=1

∑
j∈Is

wjIϕstart
i,s ≤ξj≤ϕend

i,s
+ λ

Ncl∑
i=1

Iϕend
i,s >ξ (30)

subject to

ϕstart1,s ≥ ξ (31)

ϕendNcl,s
≤ ξmax (32)

∆ϕmin ≤ ϕendi,s − ϕstarti,s ≤ ∆ϕmax ∀i ∈ {1, . . . , Ncl} (33)

ϕstarti+1,s − ϕendi,s ≥ ϵ ∀i ∈ {1, . . . , Ncl − 1} (34)

ξmax = ξ + 2Ncl(∆ϕmin + ϵ) (35)

ϕstarti,s ≤ ξ ⇐⇒ ϕendi,s ≤ ξ ∀i ∈ {1, . . . , Ncl} (36)

Ncl∑
i=1

Iϕend
i,s ≤ξ ·

(
ϕendi,s − ϕstarti,s

von
+ Ton + Toff

)
(37)

+

Ncl−1∑
i=1

Iϕend
i,s ≤ξ ·

ϕstarti+1,s − ϕendi,s

voff
+ Tset ≤ T sl

s

The first term in the objective function (30) strives to assign the most severely-
deteriorated basic units to a cluster, while the second term minimizes the total
number of active clusters that are located within the planning range. Similar
to constraints (23)-(28) of the middle-level problem, a TIO approach is used
again to constraints (31)-(36). The first term in constraint (37) calculates the
time needed for the machine to treat the basic units inside all active clusters,
including the switching on/off time. The second time computes the time need
for the machine to drive between clusters. The summation of the two parts
gives the total maintenance time, which should be less than the duration T sl

s .
The low-level problem (30)-(37) can be transformed into an MILP problem
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following the procedure described in Bemporad and Morari (1999). The detailed
transformation procedure is provided in Appendix C.2. The number of binary
variables of the transformed MILP can be as large as 2NclN

bu + 2Ncl, which
can be huge for a long track line with a large number of basic units. However,
for a short track line (e.g. 25 km) with a moderate number of basic units (e.g.
less than 500 squats) and a small number of available clusters (e.g. less than 5),
the resulting MILP is still tractable.
The resulting optimal clusters might not cover all the required basic units due
to lack of maintenance time. Let Irem denote the set of the indices of all the
remaining squats not covered by any cluster in any active time slot. Define

νrem =

∑
j∈Irem

wj∑Nbu

j=1 wj

(38)

∆T̂ =
|Irem|
Nbu

·
ξ − ξ

von
, (39)

where νrem measures the ratio of the accumulated severities of the remaining
basic units over the total severities of all the basic units, while ∆T̂ is an estimate
of the additional maintenance time to cover the remaining basic units. The
values of νrem and ∆T̂ determine whether to leave the remaining basic units
uncovered, or treat them with additional maintenance time, as stated at the
beginning of Section 4.

5. Case Study

5.1. Settings

A case study on the optimal treatment of squats is performed for the Eindhoven-
Weert line in the Dutch railway network. This line is approximately 25 km long,
which is divided into five sections of equal length, as shown in Figure 8. The
rail of the Eindhoven-Weert line is considered as the infrastructure in this case
study, and the five sections of rail are treated as components with independent
deterioration dynamics. The basic units are the 454 individual squats located
on the entire rail. A squat is a typical rail contact fatigue, and its evolution
depends on the dynamic contact between wheels and rails. Squats are classified
into different categories depending on their visual length7, which can be de-
tected automatically using techniques like axle box acceleration (ABA) systems
(Li et al., 2015; Molodova et al., 2014), eddy current testing (Song et al., 2011),
and ultrasonic surface wave (Fan et al., 2007). In this paper, squats with a
visual length below 30 mm are considered as light squats, in which cracks have
not appeared yet. Squats with a visual length ranging from 30 to 50 mm are
considered to be at the medium stage of growth. The medium squats evolve into
severe squats when the network of cracks spreads further. Squats with a visual
length over 50 mm are considered as severe squats. They should be treated as
early as possible because they might lead to hazards like derailment.

The deterioration model of one individual squat is given in Appendix A. We
call this model the simulation model, which is a piecewise-affine function fitted

7The length noticeable at the surface of the rail.
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Figure 8: Eindhoven-Weert divided into five sections.

(a) Light squat. (b) Medium squat. (c) Severe squat.

Figure 9: Squats with different severities.
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with historical data in the Eindhoven-Weert line. The length of each individual
squat is updated by the simulation model at each time step. The condition of
one section is defined as the average length of all the squats within the section.
The condition of each section is updated by aggregating the simulated squat
lengths using the simulation model for each individual squat. The dynamics of
the condition of one section is described by the prediction model, which can be
obtained by piecewise-affine identification using simulated data obtained from
the simulation model. The prediction model is used for long-term maintenance
planning at the high level. The set U = {0, 1, 2} contains all possible main-
tenance actions that can be applied to one section, with 0, 1, 2 representing
“performing no maintenance”, “grinding”, and “replacing”, respectively. Note
that these maintenance actions are applied to each squat in the corresponding
section. The condition xcon,j is defined as the average length of squats in section
j, while the auxiliary variable xaux,j records the number of previous grinding
operations on section j since the last replacement. Grinding cannot be applied
an unlimited number of times, as it tries to remove a squat by reducing the
thickness of the rail. Three realizations of uncertainties are considered, which
are collected in the set Θj = {1, 2, 3}, with 1, 2, 3 representing fast, aver-
age, and slow deterioration. Following the notation of the generic deterioration
model described in Section 3, the dynamics of the condition of section j can be
described by the following scenario-based model:

xconj (k + 1) = f con(xconj (k), uj(k), θj(k))

=


fDeg(x

con
j (k), θj(k)) if uj(k) = 0 (no maintenance)

fGr(x
con
j (k), θj(k)) if uj(k) = 1 (grinding)

0 if uj(k) = 2 (replacing)

(40)

∀j ∈ {1, . . . , n}.

The natural degradation of one section is described by function fDeg, which is
a piecewise-affine function in the form

fDeg(x
con
j , θj) = aq,θjx

con
j + bq,θj if xconj ∈ X con

j,q ⊂ X con
j , (41)

where the condition space of section j is partitioned {Xj,q}3q=1. As discussed
in A. Jamshidi and Li, light (early-stage), medium (middle-stage), and severe
(late-stage) squats exhibit different deterioration dynamics, and a piecewise-
affine function is able to capture the deterioration dynamics of the squats.
Function fGr captures the effect of grinding, which becomes less effective when
the condition deteriorates more severely. It is also a piecewise-affine function of
the form

fGr(xj , θj) =

{
0 if xj ≤ xeffθj
ψθj (xj − xeffθj ) if xj > xeffθj

(42)

where xeffθj represents the effective condition for grinding if θj is realized.
The sampling time T in this case study is one month. The prediction horizon
NP and control horizon NC are both 6 months. The predicted condition of each
section must be kept below a maintenance limit within the prediction window
at every time step, which can be explained by the following constraint:

xconj (k + l) ≤ xmax ∀j ∈ {1, . . . , n}, ∀l ∈ {1, . . . , NP}. (43)
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The dynamics of the auxiliary variable xauxj , which is a counter for grinding,
can be formally expressed as:

xauxj (k + 1) = faux(xauxj (k), uj(k))

=


xauxj if uj(k) = 0 (no maintenance)

xauxj + 1 if uj(k) = 1 (grinding)

0 if uj(k) = 2 (replacing)

(44)

∀j ∈ {1, . . . , n}.

The number of grinding operations cannot exceed a maximum number NGr
max

within the prediction window, thus we have:

xauxj (k + l) ≤ NGr
max ∀j ∈ {1, . . . , n}, ∀l ∈ {1, . . . , NP}. (45)

In summary, equations (40),(44), together with constraints (43),(45) form the
stochastic deterioration model for this case study. A scenario-based approach
is applied to this stochastic model. Three representative scenarios are selected
from the set Θ̃ containing all possible realizations of uncertainties within the
prediction period. They are fast, average, slow deterioration for all sections at
every time step within the prediction period.
The initial conditions and parameters for the prediction model (40) and the
high-level objective function (17) are provided in Appendix B. The parameters
for the middle-level and low-level optimization problem are provided in Appen-
dices B.2 and B.3, respectively. For illustration purposes, both the middle-level
and low-level problems are only triggered for grinding.
The multi-level approach is implemented in Matlab R2016b, on a desktop com-
puter with an Intel Xeon E5-1620 eight-core CPU and 64 GB of RAM, running
a 64-bit version of SUSE Linux Enterprise Desktop 12. The nonlinear optimiza-
tion problem at each time step of the high-level MPC controller is solved using
the function patternsearch of the Matlab Global Optimization Toolbox, with
100 random starting points. CPLEX 12.5 (called via Tomlab 8.0) is used as the
MILP solver for the middle-level and low-level problems.

5.2. Discussions of Results

The multi-level, scenario-based, chance-constrained approach is demonstrated
by a representative run with a five-year planning horizon. The optimal main-
tenance interventions suggested by the high-level MPC controller are shown in
Figure 10b, and the simulated condition of each section is shown in Figure 10a.
Note that the state at each time step is computed from the individual squat
lengths simulated by the simulation model, and only the cluster-wise grinding
plan from the low level is applied to the simulation model. Grinding is suggested
when the condition is near its maintenance limit (40 mm), and the interval be-
tween two consecutive grinding turns out to be between 10 to 18 months for
a section. It is interesting to notice that the interval between two consecutive
grindings becomes shorter over time, as shown in the resulting intervention plan
of section 1, 3, and 4 in Figure 10b. When the maximum number of grinding (10
in the case study) is reached for any section, replacing is suggested. The mean
and maximum CPU time to solve the MPC optimization problem at each time
step is 47s and 68s, respectively, which is much faster than the sampling time
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(one month). Moreover, both the middle-level and the low-level problem can be
solved to global optimality within 10 s. Thus we can claim that the proposed
multi-level MPC approach is implementable in real-time.
The results of the middle-level and low-level problem are shown in Figure 11.
The middle-level and low-level problems are triggered whenever grinding is sug-
gested for any of the five sections. As shown in Table 5, a 5-hour traffic free
time slot (1:00-6:00) is available for workdays, and a 6-hour traffic free time slot
(1:00-7:00) is available for weekends. As shown in Figure 11, only one section
is to be ground at time step 9, 11, 12, 21, 25, 27, 28, 30, 35, 37, 42, according
to the high-level MPC controller, and all the squats inside the single section
can be covered in one cluster, using a 5-hour short time slot on a weekday (e.g.
Monday). Two non-consecutive sections are suggested at time step 10 at the
high level, and even with a 6-hour long time slot on weekends (e.g. Sunday),
there is still one squat not covered by the resulting two clusters. This is be-
cause the benefit of covering this single medium-stage squat is less than the cost
associated with the additional maintenance time to cover it.

5.3. Supplementary Run with Modified Parameters

In addition to the representative run with realistic parameters, another sup-
plementary run with a lower setup cost of one maintenance time slot and a lower
grinding speed is performed to demonstrate the how the iterative procedure of
the middle-level and low-level problem works in more “difficult” situations. The
results of the high-level MPC controller is given in Figure 12, and the resulting
time slots and clustering plans are provided in Figure 13 and Figure 14, respec-
tively.
As shown in Figure 12, at time step 13, 31, 51, 55, only one section are suggested
to be ground by the high-level controller. In this case, the short traffic-free time
slot on a weekday (Monday) is sufficient to cover all the squats in one cluster, as
shown in Figure 13 and Figure 14. Two non-consecutive sections are suggested
at time step 14, as shown in Figure 12, resulting in a 6.8-hour maintenance time
slot (see Figure 13), which incurs cost of disruption to train traffic. There are
still 6 uncovered light and medium squats, as shown in the clustering plan in
Figure 14. Section 2 and 3 are to be ground at time step 16, as shown in Figure
12. Because the setup cost of one maintenance time slot is much lower in the
supplementary run (10% of the value in the representative run), two different
time slots (on Saturday and Monday) are suggested at the middle level, without
incurring any disruption cost. Two clusters are used to cover the most severe
squats for the first long time slot on Saturday, while another cluster is used in
the second short time slot on Monday to cover all the remaining squats. Simi-
larly, at time step 25, two non-consecutive sections are to be ground, according
to the high-level intervention plan in Figure 12. The two long traffic-free time
slots on weekends are used to treat the squats in the two sections. Two clusters
are used in the Saturday maintenance slot to cover the most severe squats in
section 1 and 4, and three clusters are suggested in the Sunday maintenance
slot to cover the remaining squats.

5.4. Comparison with Alternative Approaches

Three alternative approaches for maintenance planning: the nominal MPC,
the cyclic approach, and the approach currently used in practice, are imple-
mented for comparison with the proposed approach. The nominal MPC can be
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(a) Average squat length per section calculated from the individual squat dy-
namics.
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(b) Interventions suggested by the high-level MPC controller. The number above
each grinding intervention indicates the number of previous grinding operations
applied to the section since the last replacement.

Figure 10: Simulated average squat length and interventions suggested by the high-level MPC
controller for each of the five sections of the entire track.
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Grinding plan at time step 12, slot 1

Figure 11: Results of the middle-level problem and the low-level problem at time step 9, 10,
11, and 12 of the high level. A squat (represented by a dot) is in a cluster if it is covered by
a circle (first cluster) or square (second cluster).
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Figure 11: Results of the middle-level problem and the low-level problem at time step 21, 25,
27, and 28 of the high level. A squat (represented by a dot) is in a cluster if it is covered by
a circle (first cluster) or square (second cluster).
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Figure 11: Results of the middle-level problem and the low-level problem at time step 30, 35,
and 37 of the high level. A squat (represented by a dot) is in a cluster if it is covered by a
circle (first cluster) and square (second cluster).
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Figure 11: Results of the middle-level problem and the low-level problem at time step 42 of
the high level. A squat (represented by a dot) is in a cluster if it is covered by a circle (first
cluster) and square (second cluster).
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(b) Interventions suggested by the high-level MPC controller. The number above
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Figure 12: Results of the high-level controller with reduced setup cost at the middle level and
reduced grinding speed at the low level.
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Figure 13: Results of the middle-level problem, when the setup cost of one maintenance slot
is reduced.
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Figure 13: Results of the middle-level slot allocation problem, when the setup cost of one
maintenance slot is reduced.

viewed as the deterministic counterpart of the scenario-based chance-constrained
MPC, as it considers only the average deterioration dynamics in the optimiza-
tion problem at each time step. The cyclic approach is a preventive maintenance
strategy that performs grinding and replacement at regular intervals. The for-
mulation of the offline optimization problem to obtain the optimal intervals for
grinding and replacement for the cyclic approach is presented in Appendix D.
We also implement the approach currently used in the Netherlands. We refer to
this approach as “current approach”, which is a cyclic preventive maintenance
approach that grinds the entire line every six months.
The four maintenance approaches are applied to ten test runs of a five-year
planning horizon with different pre-defined sequences of realizations of uncer-
tainties provided in Appendix B.1. We compare the constraint violation, the
value of the closed-loop objective function for the three approaches, and CPU
time of the two MPC controllers. The constraint violation is measured by:

v = max
j=1,...,n

k=1,...,kend

{
xconj (k)− xconmax

xcon

}
(46)

where xconmax = 40 mm is the maintenance limit, and xcon = 70 mm is the range
of the condition. Let vNom, vCC, vCyc and vcur denote the maximum constraint
violation of the nominal MPC controller, the scenario-based chance-constrained
MPC controller, the cyclic approach, and the current approach, respectively.
The maximum constraint violation measures the robustness of each approach.
Similarly, let JNom, JCC, JCyc, and Jcur denote the closed-loop objective function
value8 for the nominal MPC controller, the scenario-based chance-constrained
MPC controller, the cyclic approach, and the current approach, respectively.
The closed-loop objective function value measures the cost-efficiency of each
approach. A lower value indicates higher cost-efficiency. Moreover, let TNom

and TCC denote the CPU time9 for the nominal and chance-constrained MPC
controller, respectively. As our goal is a safe but non-conservative maintenance
strategy that is tractable, robustness and cost-efficiency are more important
evaluation criteria than CPU time. The performance and computational effort

8This is obtained by evaluating (17) over the entire planning horizon.
9We measure only the CPU time to solve all the optimization problems within the planning

horizon.
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Grinding plan at time step 14, slot 1
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Grinding plan at time step 16, slot 1

0 5 10 15 20 25

Location (km)

0

10

20

30

40

50

60

70

S
q
u
a
t 
L
e
n
g
th

 (
m

m
)

Grinding plan at time step 16, slot 2
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Grinding plan at time step 25, slot 1
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Grinding plan at time step 25, slot 2
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Grinding plan at time step 31, slot 1

Figure 14: Results of the low-level clustering problem, in which the grinding speed has been
reduced.
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Grinding plan at time step 39, slot 1
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Grinding plan at time step 41, slot 1
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Grinding plan at time step 51, slot 1
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Grinding plan at time step 55, slot 1

Figure 14: Results of the low-level clustering problem, in which the grinding speed has been
reduced.

of the four maintenance approaches are compared in Table 1.
The current approach, i.e. grinding every six months, is the most conservative
approach. Although it has no constraint violation for the ten test runs, the
closed-loop objective function value is almost three time as much as that of
the nominal MPC approach. The cyclic approach, which can be viewed as an
improvement on the over-conservative current approach by optimizing the inter-
vals for grinding and replacing, is more cost-efficient than the current approach,
as its closed-loop objective function value is only slightly higher than that of
the two MPC approaches, except in Run 4. The cyclic approach is not robust,
as it has constraint violations in seven out of the ten test runs. The advantage
of cyclic approach is that it is less computational demanding than MPC ap-
proaches, as only one optimization problem needs to be solved offline.
Theoretically, both MPC controllers can have constraint violations in the whole
planning period. Although more robust than the nominal MPC, scenario-based
chance-constrained MPC only guarantees that the constraints are satisfied with
a possibility higher than a given confidence level (90% in this case study). But
there is no constraint violation for the scenario-based chance-constrained MPC
in the ten runs of simulation, as shown in Table 1, while the constraints are
violated for nominal MPC in seven out of the ten runs. The largest constraint
violation for the nominal MPC approach is 0.78% for Run 3, which might lead
to hazards like derailment. The closed-loop objective function values of the
two MPC approaches are almost equal in every test run, and the two MPC ap-
proaches are the most cost-efficient among the four approaches. It is interesting
to notice that the closed-loop objective function values of the two MPC ap-
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Table 1: A comparison between the nominal MPC controller, scenario-based chance-
constrained MPC controller, the cyclic approach, and current strategy for ten runs with a
pre-defined sequence of uncertainties. The CPU time to solve the offline optimization prob-
lem for the cyclic approach is 7.5 minutes.

Run Constraint violation
Closed-loop
performance

CPU time (h)

vNom vCC vCyc vcur
JNom

Jcur

JCC

Jcur

JCyc

Jcur
Jcur TNom TCC

1 0.62% 0 0.26% 0 35.37% 35.33% 36.12% 344400 0.39 0.87
2 0 0 0 0 35.53% 35.45% 36.00% 344320 0.40 0.89
3 0.78% 0 0.08% 0 35.39% 35.10% 36.12% 344420 0.38 0.89
4 0.27% 0 0 0 17.46% 23.17% 35.86% 344260 0.37 0.85
5 0.51% 0 0 0 35.48% 35.39% 36.05% 344380 0.38 0.88
6 0 0 0.61% 0 35.38% 35.33% 36.11% 344370 0.40 0.90
7 0.69% 0 0.69% 0 35.37% 35.33% 36.107% 344370 0.40 0.88
8 0 0 0.55% 0 35.12% 35.08% 36.10% 344390 0.38 0.89
9 0.68% 0 0.68% 0 35.17% 35.33% 36.11% 344360 0.39 0.88
10 0.51% 0 1.47% 0 35.34% 35.07% 36.19% 344390 0.42 0.89

proaches in Run 4 are only half of those of the other runs, showing a significant
advantage over the cyclic approach and the current approach in terms of cost-
efficiency. This is because MPC is a flexible real-time decision making scheme,
that can adapt the intervention plan to the actual (or estimated) condition of
the infrastructure, while the cyclic and the current approaches are both offline
schemes that do not take the actual (or estimated) condition into consideration.
The greatest advantage of the nominal MPC approach over the chance-constrained
MPC approach is that it requires less than half of the CPU time of the chance-
constrained approach. Despite being the most computationally demanding ap-
proach, from Table 1 we can still conclude that the chance-constrained MPC
approach is the most promising one among the four alternative approaches, as
robustness and cost-efficiency are more important evaluation criteria than com-
putational efforts, since the time to compute an optimal maintenance plan is
abundant for infrastructures with a slow deterioration process. Indeed, despite
being the slowest one among the four approaches, the chance-constrained MPC
approach is not only tractable but also real-time implementable, as the sampling
time in the case study is one month, and the optimization problem at each time
step of the chance-constrained MPC approach takes approximately one minute
to solve.

6. Conclusions and Future Work

Amulti-level approach for the optimal planning of maintenance interventions
for railway infrastructures has been developed in this paper. A scenario-based,
chance-constrained TIO-MPC controller is implemented at the high level for
long-term, component-wise, condition-based planning of maintenance interven-
tions. Both the middle-level and low-level problems are triggered whenever an
intervention is suggested for any component by the high-level controller. When
triggered, the middle-level problem allocates the time slots for the corresponding
interventions by optimizing the trade-off between total setup costs of mainte-
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nance operations and the disruption to the train traffic. The low-level problem
then groups the basic units into clusters to execute the maintenance interven-
tions suggested at the high level. This cluster-wise work plan must be performed
within the time slot determined at the middle level. A case study on the optimal
treatment of squats in the Eindhoven-Weert line in the Dutch railway network
is performed. The simulation results of a representative run with a five-year
planning horizon show that the proposed multi-level approach is real-time im-
plementable and provides a suitable maintenance plan. A comparison with the
nominal approach further demonstrates the advantage of the proposed chance-
constrained approach in keeping the condition below the maintenance limit.
In the future, distributed MPC schemes can be considered for maintenance
planning of railway infrastructures of larger scales. Moreover, a more opti-
mal solution can be obtained by combining the middle-level slot allocation and
the low-level clustering problem into one single optimization problem. This is
tractable for small problems like the case study in Section 5. However, real-
world problems might involve a much longer track line (e.g. over 250 km) with
a large number of basic units (e.g. more than 4500 squats), and in this case the
combined approach might become intractable. In order to address such cases,
decomposition method seems to be a viable solution approach; this will be a
topic of future research. Other interesting practical issues, like speed limitations
caused by maintenance, can also be considered. Furthermore, maintenance plan-
ning for railway infrastructures containing heterogeneous components, e.g. rail
and switches, could also be considered.
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Appendices
A. Simulation Model

The simulation model describes the dynamics of one individual squat. The
model has the same form as the prediction model (40), but with different pa-
rameters. Three realizations of the uncertainties are considered. They are fast,
average, and slow growth, with a probability of occurrence of 0.3, 0.4, and
0.3, respectively. Let L denote the length of an individual squat; the natural
evolution (without any maintenance interventions) is given in Table 2, which
calculates the length of the squat after one month.

A squat can be treated effectively by grinding only when its length is less
than the effective grinding length (16 mm). The length a squat can be reduced
to by grinding is calculated using the formulas of Table 3.

We also consider the occurrence of new squats. At each time step (month),
the number of new squats in the entire track is the rounded value of a random
variable normally distributed with mean 3 and variance 1. The probability
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Table 2: Evolution of squats of different categories and with different uncertain growth rate.
The length that a squat has evolved into after one month is calculated from its current length
L.

Realization of
uncertainties

Light squat
(L < 30)

Medium squat
(30 ≤ L ≤ 50)

Severe squat
(L > 50)

Fast growth 1.016 · L+ 1.2809 1.1029 · L− 1.6725 L+ 4.5
Average growth 1.0017 · L+ 0.9959 1.0699 · L− 1.2165 1.0008 · L+ 2.6694
Slow growth 0.9915 · L+ 0.681 1.016 · L− 0.0801 0.9949 · L+ 1.0127

Table 3: Effect of grinding for squats of different categories and with different uncertain growth
rate. The length of a squat after grinding can be calculated from its current length L.

Realization of
uncertainties

L ≤ 16 L > 16

Fast 0 1.0028 · (L− 16)
Average 0 1.0009 · (L− 16)
Slow 0 0.9985 · (L− 16)

distribution of the location of a new squat is also a normal distribution with
mean 12.5 km and standard deviation 4 km. New squats should always be early-
stage squats when they first appear on the rail, and the initial length of a new
squat follows a normal distribution with mean 15 mm and standard deviation
5 mm.

B. Parameters for Case Study

B.1. High-Level Prediction Model

The prediction model describes the dynamics of each of the five section,
which deteriorate independently from each other. The same prediction model
with the same parameters are used for each section. The condition space X con

j =
[0, 70] for section j is partitioned into the following three intervals:

X con
j,1 = [0, 30), X con

j,2 = [30, 50), X con
j,3 = [50, 70).

The parameters for the piecewise-affine degradation function (41) are collected
in the following two matrices:

Aj = (aq,θj ) =

1.0037 1.0073 1.0120
1.0017 1.0053 1.0075
0.9992 1.0007 1.0008

 , Bj = (bq,θj ) =

0.1954 0.1484 0
0.1438 0.0732 0
0.1041 0.0701 0.0743


∀j ∈ {1, . . . , n}.

The parameters for the grinding model (42) are collected in the two matrices

Ψj = (ψθj ) =

0.99960.9996
0.9995

 , Xeff
j = (xeffθj ) =

11.827511.9586
11.9336


∀j ∈ {1, . . . , n}.
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Table 4: Sequences of the realizations of uncertainties, where 1, 2, 3 stands for fast, average,
slow growth for every squat, respectively.

Run Sequence of the realizations of uncertainties
1 1, 1, 1, 2, 2, 2, 2, 3, 3, 3
2 1, 2, 2, 2, 2, 2, 2, 3, 3, 3
3 1, 1, 1, 1, 2, 2, 3, 3, 3, 3
4 1, 1, 2, 2, 3, 3, 3, 3, 3, 3
5 1, 1, 1, 2, 2, 2, 3, 3, 3, 3
6 3, 1, 1, 3, 2, 3, 2, 1, 2, 2
7 2, 1, 3, 3, 2, 2, 1, 3, 2, 1
8 1, 2, 3, 1, 3, 2, 2, 1, 3, 2
9 1, 3, 2, 3, 2, 1, 2, 2, 3, 1
10 1, 3, 2, 1, 3, 1, 2, 2, 1, 3

The initial condition x(0) = [(xcon(0))T (xaux(0))T]T is given by

xcon(0) =


23.8757
24.356
27.7457
26.0526
26.0487

 , xaux(0) =


7
8
7
7
8

 .
The operational limit xmax is 40 mm, and a maximum of 10 grinding operations
since the last replacement is allowed for each section, i.e. NGr

max = 10.
The trade-off between the condition and the cost is λ = 10 in the high-level
objective function (17), and the scaling factor µ is 70. The 1-norm is taken for
JDeg in (14), and replacement is 30 times as expensive as grinding, i.e. γj,1 = 1
and γj,2 = 30 in (15). The maintenance limit is xconmax = 40 mm.
Ten sequences of the realization of uncertainties in the five-year planning period
are given here. Each sequence specifies the realization of uncertainties for each
individual squat at every time step in the planning period for one particular run.
For easy reproduction of our results, we assign a uniform realization of uncer-
tainties for all the squats at every time step, i.e. the realization of uncertainty is
the same for all the squat at one time step. Moreover, we make each of the ten
60-step sequences a six-times repetition of the 10-step sequences summarized in
Table 4.

B.2. Middle-Level Problem

The hourly cost of traffic disruption is determined by the number of pas-
senger trains10 from Eindhoven to Weert every hour. Only regular schedules
(excluding special schedules for holidays) are considered. The train schedule
is periodic with a period of one week. Moreover, all workdays (Monday-Fridy)
have the same schedule, while Saturdays and Sundays have different schedules.

10Freight trains are not considered, as there is at most one freight train from Eindhoven to
Weert every workday.
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Table 5: Hourly disruption cost for a week. Interval with no trains passing are assigned a zero
cost. Intervals with less than 2 trains per hour are assigned a low hourly cost cL . Intervals
with 2-3 trains per hour are assigned a medium hourly cost cM. Intervals with 4-6 trains per
hour are assigned a high hourly cost cH.

Workday Saturday Sunday

Interval
Number
of trains

disruption
cost

Number
of trains

Disruption
cost

Number
of trains

Disruption
cost

0:00 -1:00 1 cL 2 cL 2 cL
1:00 -6:00 0 0 0 0 0 0
6:00 -7:00 3 cM 0 0 0 0
7:00 -8:00 6 cH 4 cH 1 cL
8:00 -13:00 6 cH 6 cH 5 cH
13:00 - 14:00 5 cH 6 cH 5 cH
14:00 - 19:00 6 cH 6 cH 5 cH
19:00 - 20:00 5 cH 5 cH 4 cH
20:00 - 24:00 3 cM 3 cM 3 cM

Table 6: Parameters for the middle-level optimization problem

Parameter Explanation Value
Nsl Maximum number of time slots 2
csl Setup cost of one time slot 1

λsl Trade-off between disruption and setup cost
10 (representative run)
1 (supplementary run)

Tset Setup time for one time slot 1 h
∆τmin Minimum size of a time slot 5 h

Three levels of hourly disruption cost, high cost (cH = 10), medium cost
(cM = 3), and low cost (cL = 1) are considered, while a zero cost is assigned to
traffic-free intervals. The disruption function, which specifies the hourly disrup-
tion cost for any intervals in the planning horizon, can then be described by a
lookup-table presented in Table 5. The planning horizon is the sampling time of
the high-level controller (one month), and the parameters for the middle-level
problem (22)-(29) are given in Table 6. The estimated time for maintenance
T̂Maint is calculated from the interventions suggested by the high-level controller,
i.e.

T̂Maint = TSec

n∑
j=1

Iuj=1 (47)

where TSec = 2.5 is the estimated time (in hours) to grind one section.

B.3. Low-Level Problem

As only squats located in the section where grinding is suggested by the
high-level controller are considered in the low-level optimization problem, the
number (Nbu) and the locations (ξ) of the squats are not fixed. However, we
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Table 7: Parameters for the low-level optimization problem

Parameter Explanation Value
Ncl Maximum number of clusters 3
λcl Penalty on the number of active clusters 1

∆ϕmin Minimum cluster size 1 km
∆ϕmax Maximum cluster size 25 km
Ton Switch-on time of grinding machine 15 min
Toff Switch-off time of grinding machine 15 min

von Grinding speed
2.2 km/h (representative run)
1.6 km/h (supplementary run)

voff Driving speed of grinding machine 80 km/h

have Nbu ≤ 454 as there are 454 existing squats on the whole track. The vector
w containing the lengths of the considered squats also changes at each time
step. The parameters for the low-level problem (30)-(37) is given in Table 7.
Only one slot is used in the middle-level problem, thus s = 1. The setup time
Tset in constraint (37) is the same as in the middle-level problem, and the actual
length of the time slot T sl

s is the one obtained from the results of the middle-level
problem (22)-(29).

C. Transformation into an MILP Problem

C.1. MILP Formulation for the Slot Allocation Problem

In this section we explain how to transform the nonsmooth optimization
problem (22)-(29) into a standard MILP problem following the procedure de-
scribed in Bemporad and Morari (1999).
First we introduce the following binary variables:

δi,j = 1 ⇐⇒ tendi − τj ≤ 0 (48)

δi,j = 1 ⇐⇒ tstarti − τj ≤ 0 (49)

∀i ∈ {1, . . . , Nsl}, ∀j ∈ {1, . . . , Nτ + 1}.

Then we introduce the following continuous variables:

zi,j = δi,jt
start
i (50)

zi,j = δi,jt
end
i (51)

∀i ∈ {1, . . . , Nsl}, ∀j ∈ {1, . . . , Nτ + 1}.

The procedure to transform the new variables (48)-(51) to equivalent linear
constraints can be found in Section 2 of Bemporad and Morari (1999).
Define

δ = [δ1,1 . . . δNsl,Nτ+1︸ ︷︷ ︸
δ
T

δ1,1 . . . δNsl,Nτ+1︸ ︷︷ ︸
δT

]T

z = [z1,1 . . . zNsl,Nτ+1︸ ︷︷ ︸
zT

z1,1 . . . zNsl,Nτ+1︸ ︷︷ ︸
zT

]T.
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The equivalent MILP problem for (22)-(29) can then be expressed as:

min
t, δ, z

Nsl∑
i=1

Nτ∑
j=1

cj(τjδi,j − τj+1δi,j+1 + zi,j+1 − zi,j (52)

−τjδi,j + τj+1δi,j+1 − zi,j+1 + zi,j) + λsl

Nsl∑
i=1

cslδi,Nτ+1

subject to constraints (23)-(27) and

δi,Nτ+1 − δi,Nτ+1 = 0 ∀i ∈ {1, . . . , Nsl} (53)

Nsl∑
i=1

zi,Nτ+1 − zi,Nτ+1 − Tsetδi,Nτ+1 ≥ T̂Maint (54)

and the equivalent linear constraints (see Bemporad and Morari (1999)) for the
new variables δ and z.

C.2. MILP Formulation for the Clustering Problem

In this section we explain how to transform the nonsmooth optimization
problem (30)-(37) into a standard MILP problem following the procedure de-
scribed in Bemporad and Morari (1999).
First we introduce the following binary variables:

δendi,j = 1 ⇐⇒ ϕendi − ξj ≤ 0 (55)

δstarti,j = 1 ⇐⇒ ϕstarti − ξj ≤ 0 (56)

δi = 1 ⇐⇒ ϕendi − ξ ≤ 0 (57)

δi = 1 ⇐⇒ ϕstarti − ξ ≤ 0 (58)

∀i ∈ {1, . . . , N cl}, ∀j ∈ {1, . . . , |Is|}.

Then we introduce the following continuous variables:

z1,i = δiϕ
start
i (59)

z2,i = δiϕ
end
i (60)

z3,i = δiϕ
start
i+1 (61)

∀i ∈ {1, . . . , N cl}.

Define

δ = [δstart1,1 . . . δstartNcl,|Is|︸ ︷︷ ︸
(δstart)T

δend1,1 . . . δ
end
Ncl,|Is|︸ ︷︷ ︸

(δend)T

δ1 . . . δNcl︸ ︷︷ ︸
δT

δ1 . . . δNcl︸ ︷︷ ︸
δ
T

]T

z = [z1,1 . . . z1,Ncl︸ ︷︷ ︸
zT
1

z2,1 . . . z2,Ncl︸ ︷︷ ︸
zT
2

z3,1 . . . z3,Ncl︸ ︷︷ ︸
zT
3

]T

The equivalent MILP of (30)-(37) can be expressed as:

min
ϕ, δ, z

Ncl∑
i=1

Nbu∑
j=1

wj(δ
end
i,j − δstarti,j ) + λδi

 (62)
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subject to constraint (31)-(35) and

δi − δi = 0 ∀i ∈ {1, . . . , N cl} (63)

Ncl−1∑
i=1

(
(
1

von
− 1

voff
)z2,i −

1

von
z1,i +

1

voff
z3,i + (Ton + Toff)δi

)
(64)

+
1

von
(z2,Ncl − z1,Ncl) + (Ton + Toff)δNcl ≤ T sl − Tset

and the equivalent linear constraints for the new variables δ and z.

D. Cyclic Approach

In this section we briefly introduce the cyclic approach mentioned in Section
5.4. Let t0,j denote the time instants at which the first grinding is applied to the
j-th sections. Let TGr,j denote the period of grinding for section j. Replacing
is usually performed after a multiple of consecutive grindings, e.g. a section of
rail is replaced after 5 grindings. We denote this multiple by a scalar r, which is
the same for all sections. Define t0 = [t0,1 . . . t1,n]

T and TGr = [TGr,1 . . . TGr,n]
T,

the cyclic maintenance optimization problem can then be formulated as:

min
t0, TGr, r

kend∑
k=1

n∑
j=1

xconj (k) + λ(γj,1Iuj(k)=1 + γj,2Iuj(k)=2) (65)

subject to

xconj (k + 1) = f con(xconj (k), uj(k), 2) (66)

xconj (k) ≤ xmax (67)

uj(k) =


1, if k = t0,j or (k − t0,j)mod round(TGr,j) = 0

2, if (k − t0,j)mod round(rTGr,j) = 0

0, otherwise

(68)

tmin
0 ≤ t0 ≤ tmax

0 (69)

Tmin
Gr ≤ TGr ≤ Tmax

Gr (70)

2 ≤ r ≤ rmax (71)

for all j ∈ {1, . . . , n} and k ∈ {1, . . . , kend}.
The objective (65) corresponds to minimizing the accumulated condition degra-
dation and intervention cost for the entire track over the five-year planning
horizon. Only the average (nominal) deterioration rate (θ(k) = 2 for all k)
is considered, as shown in (66). Constraint (67) guarantees that the nominal
condition will not exceed the maintenance limit for the whole planning horizon.
Equation (68) converts the grinding and replacing periods into interventions.
Constraints (69) and (71) are upper and lower bounds for the decision variables.
The offline cyclic maintenance optimization problem (65)-(71) is a nonsmooth
optimization problem, which is solved using multi-start pattern search in the
case study.

41



References
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Su, Z., Núñez, A., Jamshidi, A., Baldi, S., Li, Z., Dollevoet, R., De Schutter,
B., 2015. Model predictive control for maintenance operations planning of
railway infrastructures, in: Computational Logistics (Proceedings of the 6th
International Conference on Computational Logistics (ICCL’15), Delft, The
Netherlands, Sept. 2015), pp. 673–688.

Wen, M., Li, R., Salling, K., 2016. Optimization of preventive condition-based
tamping for railway tracks. European Journal of Operational Research 252,
455–465.

Zafra-Cabeza, A., Maestre, J., Ridao, M., Camacho, E., Sánchez, L., 2011. Hier-
archical distributed model predictive control for risk mitigation: An irrigation
canal case study. Journal of Process Control , 787–799.

Zafra-Cabeza, A., Ridao, M., Camacho, E., 2008. Using a risk-based approach
to project scheduling: A case illustration from semiconductor manufacturing.
European Journal of Operational Research 190, 708–723.

Zhang, T., Andrews, J., Wang, R., 2013. Optimal scheduling of track mainte-
nance on a railway network. Quality and Reliability Engineering International
29, 285–297.

Zilko, A., Kurowicka, D., Goverde, R., 2016. Modeling railway disruption
lengths with Copula Bayesian Networks. Transportation Research Part C:
Emerging Technologies 68, 350–368.

Zoeteman, A., 2001. Life cycle cost analysis for managing rail infrastructure.
European Journal of Transport and Infrastructure Research EJTIR, 1 (4) .

45


	Introduction
	Maintenance for Infrastructures
	Maintenance Intervention Planning
	State-of-the-Art
	Contributions and Structure of the Paper

	Preliminaries
	Railway Defects and Maintenance Interventions
	MPC

	Deterioration Model
	Multi-level Intervention Planning
	High-Level Intervention Planning Problem
	TIO Prediction Model
	Scenario-based Chance-Constrained MPC

	Middle-Level Slot Allocation Problem
	Low-Level Clustering Problem

	Case Study
	Settings
	Discussions of Results 
	Supplementary Run with Modified Parameters
	Comparison with Alternative Approaches

	Conclusions and Future Work
	Appendices
	Simulation Model
	Parameters for Case Study
	High-Level Prediction Model
	Middle-Level Problem
	Low-Level Problem

	Transformation into an MILP Problem
	MILP Formulation for the Slot Allocation Problem
	MILP Formulation for the Clustering Problem

	Cyclic Approach

