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Model Predictive Control for Stochastic Max-Plus

Linear Systems with Chance Constraints
Jia Xu, Ton van den Boom, and Bart De Schutter

Abstract—The topic of this paper is model predictive control
(MPC) for max-plus linear systems with stochastic uncertainties
the distribution of which is supposed to be known. We consider
linear constraints on the inputs and the outputs. Due to the
uncertainties, these linear constraints are formulated as proba-
bilistic or chance constraints, i.e., the constraints are required
to be satisfied with a predefined probability level. The proposed
chance constraints can be equivalently rewritten into a max-
affine (i.e., the maximum of affine terms) form if the linear
constraints are monotonically nondecreasing as a function of the
outputs. Based on the resulting max-affine form, two methods
are developed for solving the chance-constrained MPC problem
for stochastic max-plus linear systems. Method 1 uses Boole’s
inequality to convert the multivariate chance constraint into
univariate chance constraints for which the probability can
be computed more efficiently. Method 2 employs Chebyshev’s
inequality and transforms the chance constraint into linear
constraints on the inputs. The simulation results for a production
system example show that the two proposed methods are faster
than the Monte Carlo simulation method and yield lower closed-
loop costs than the nominal MPC method.

I. INTRODUCTION

Model predictive control (MPC) [1] is an advanced control

strategy for the control of multivariate systems in the presence

of input and state/output constraints towards achieving a

high performance. At every sampling instant, an open-loop

constrained optimal control problem over a finite horizon is

solved to compute a sequence of control inputs. The first

element of the resulting optimal control sequence is applied

to the system and the optimization problem is repeated at the

next sampling instant based on new measurements.

Due to model mismatch or disturbances, uncertainties are

often considered in the prediction model of MPC. Many results

have been achieved in the area of robust MPC dealing with the

situation that the uncertainties are assumed to be deterministic

and bounded, e.g., [2, 3] and the references therein. On

the other hand, for the situation that the uncertainties are

characterized as random variables, stochastic MPC [4, 5] has

emerged as a useful control design method where usually the

expected value of a cost criterion is optimized subject to input,

state, or output constraints. Due to the probabilistic nature

of uncertainties, those constraints are usually formulated as

chance constraints, i.e., the probability of constraint violation

is limited to a predefined probability level. Stochastic MPC

takes advantage of the probability distributions of the uncer-

tainties and is based on stochastic programming and chance-

constrained programming [6–9].
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ter for Systems and Control, Delft University of Technology, Mekel-
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b.deschutter}@tudelft.nl).

Max-plus linear (MPL) systems are a subclass of discrete-

event systems. Maximization and addition are the basic op-

erations in the models of MPL systems [10]. In contrast to

conventional linear systems, where uncertainties are usually

modeled by adding an extra term in the system equations, un-

certainties in MPL systems are included in the system matrices

[10]. The MPC framework has been extended to stochastic

max-plus linear (SMPL) systems in [11]. The expected value

of the outputs is used in the objective criterion and in the

constraint. Some results about MPC for SMPL systems can

be found in [12–15]. To the authors’ best knowledge currently

[15] is the only paper in literature that has considered the

chance-constrained MPC problem for SMPL systems. In [15],

the chance constraints are approximated and substituted with

a finite number of pointwise constraints at independently

generated scenarios of the uncertainties. The approach in [15]

is different from the methods developed in this paper as we

transform the chance constraints into reduced forms based on

some probabilistic inequalities.

In particular, in this paper we develop two approaches for

solving the chance-constrained MPC problem based on prob-

abilistic inequalities and natural properties of SMPL systems.

More specifically, if the chance constraints are monotonically

nondecreasing as a function of the outputs (i.e., the coefficients

of the outputs in the linear constraints are nonnegative),

we rewrite the chance constraints into an equivalent max-

affine form, namely, the maximum of some correlated ran-

dom variables. Those correlated random variables are affine

functions of the uncertainties of the SMPL system. Based on

the resulting max-affine form, we develop two methods for

transforming the chance constraints into reduced forms. In the

first method, based on Boole’s inequality, the probability of the

maximum of correlated random variables is decomposed into

the sum of probabilities of a single random variable. In the

second method, we provide sufficient conditions for applying

the multidimensional Chebyshev inequality to transform the

chance constraints into constraints that are linear in the control

inputs. The approaches developed in this paper are assessed

with a production system example and compared with the

Monte Carlo (MC) simulation method and the nominal MPC

method. The results show that the two methods proposed

in this paper generally take less computation time than the

MC simulation method to achieve a similar performance. The

nominal MPC method is faster than the other methods, but it

yields a worse performance.

This paper is organized as follows. Section II provides

preliminaries about p-norms, probabilistic inequalities, and

max-plus algebra. A brief introduction for SMPL systems

is given in Section III. The MPC problem formulation with
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chance constraints for SMPL systems is presented in Section

IV. Two approaches for solving the proposed problem are

developed in Section V and illustrated with a production

system example in Section VI. Finally, Section VII concludes

the paper.

II. PRELIMINARIES

A. Norms

For any x ∈ R
n and for p ≥ 1, the p-norm of x is defined

as: ‖x‖p = (|x1|
p+ · · ·+ |xn|

p)1/p. More specifically, ‖x‖1 =
|x1| + · · · + |xn|, ‖x‖2 = (|x1|

2 + · · · + |xn|
2)1/2, ‖x‖∞ =

max(|x1|, . . . , |xn|). Some important norm properties are

‖x‖∞ ≤ ‖x‖p+1 ≤ ‖x‖p for p ≥ 1 . (1)

B. Probabilistic Inequalities

This section is based on [16].

Theorem 1 (Jensen’s inequality): Let ϕ be an integrable,

concave function of a random variable v. Then E[ϕ(v)] ≤
ϕ(E[v]).

Theorem 2 (Multidimensional Chebyshev inequality): Let

X = [X1, . . . , Xn]
T be a random vector with mean µX =

E[X] and covariance matrix ΣX = E[(X − µ)(X − µ)T ]. If

ΣX is positive definite, then for any a > 0 we have

Pr
{

(X − µX)TΣ−1
X (X − µX) ≤ a

}

≥ 1−
n

a
. (2)

Theorem 3: [17] Let X be a random vector with mean µX

and covariance matrix ΣX . Let B ∈ R
m×n be a real matrix.

Then the linear combination Y = BX satisfies µY = E[Y ] =
E[BX] = BµX , ΣY = Cov(Y ) = Cov(BX) = BΣXBT .

C. Max-Plus Algebra

Define ε = −∞ and Rε = R∪{ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as [10]: x⊕y =
max(x, y), x⊗y = x+y for any x, y ∈ Rε. The corresponding

max-plus matrix operations are defined as
[

A⊕B
]

ij
= aij ⊕ bij = max(aij , bij),

[

A⊗ C
]

ij
=

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×l
ε .

Definition 4 (Max-affine function): A max-affine func-

tion f of x ∈ R
n
ε is a function of the form f(x) =

maxi=1,...,n(α
T
i x + ξi) with constant coefficients αi ∈ R

n

and ξi ∈ R.

III. STOCHASTIC MAX-PLUS LINEAR SYSTEMS

Consider a stochastic max-plus linear (SMPL) system [11]

of the form

x(k) = A(w(k))⊗ x(k − 1)⊕B(w(k))⊗ u(k), (3)

y(k) = C(w(k))⊗ x(k) (4)

where k is the event counter, u(k) ∈ R
nu

ε and y(k) ∈ R
ny

ε

are the input and output of the system consisting of the time

instants at which the input and output events occur for the k-th

u(k) M1 M2 y(k)t1 = 0 t2 = 1 t3 = 0

d1(k) = 5 + w(k) d2(k) = 1

Fig. 1. A production system

cycle, and x(k) ∈ R
nx

ε is the state of the system representing

the time instants at which the internal processes of the system

start for the k-th cycle. The random vector w(k) ∈ R
nw

collects uncertainties at event step k caused by disturbances

or model mismatch. Just as in [11] we adopt the following

assumption in this paper:

Assumption 5: At any event step k, the components of w(k)
are independent and identically distributed random variables

with a given probability distribution. In addition, the uncertain-

ties at different event steps are independent, i.e., w(0), w(1) . . .
are statistically independent.

Typically, the entries of the uncertain system matrices

A(w(k)), B(w(k)), C(w(k)) consist of sums or maximization

of internal process times and transportation times [10]. In

general, the components of w(k) correspond to perturbations

in these duration times. So instead of modeling uncertainties

by adding an extra max-plus-algebraic term in the system (3)

and (4), uncertainties should rather be modeled as an additive

term to the system matrices. Then, the entries of the uncertain

system matrices are max-affine functions of w(k).
As an example, we consider the production system pre-

sented in [11] (see Figure 1). This system consists of two

machines M1 and M2 where raw materials are fed into M1,

afterwards intermediate products are fed into M2, and finally

the finished goods leave the production system. Just as in

[11] we assume that the transportation times are constant (i.e.,

t1 = t3 = 0, t2 = 1) and so is the processing time of M2 (i.e.,

d2(k) = 1). Here xi(k) represents the time instant at which

machine i starts for the k-th time. The system matrices of the

corresponding SMPL model are given as follows:

A =

[

d1(k − 1) ε
d1(k − 1) + d1(k) + t2(k) d2(k − 1)

]

,

B =

[

t1(k)
d1(k) + t1(k) + t2(k)

]

, C =
[

ε d2(k) + t3(k)
]

.

IV. MPC FOR SMPL SYSTEMS

In this section, we formulate the MPC problem for SMPL

systems of [11] using chance constraints instead of using

expected value of the outputs in the constraints.

A. Cost Criterion

Define a cost criterion J that reflects the input and output

cost functions from event step k to k +Np − 1:

J(k) = Jout(k) + λJin(k)

with the scalar λ ≥ 0 the trade-off between Jout and Jin.

In MPC, one aims to design an optimal control sequence

u(k), . . . , u(k + Np − 1) that minimizes J(k) subject to

constraints on the inputs and the outputs. MPC uses a receding
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horizon scheme, i.e., only the first control input u(k) of the

computed optimal control sequence is applied to the system;

subsequently the horizon is shifted one event step and the

optimization is restarted based on new measurements of the

states. Different choices for Jout and Jin are given in [18]. In

the current paper Jout and Jin are chosen as

Jout(k) =

Np−1
∑

j=0

ny
∑

i=1

ηi(k + j),

Jin(k) = −

Np−1
∑

j=0

nu
∑

l=1

ul(k + j)

where ηi(k) = max(yi(k) − ri(k), 0) reflects the delay

between the completion time y and the due-date signal r. The

selected Jin corresponds to the just-in-time rule. Note that the

results in this paper can be easily extended to other cases such

as 1-norm and ∞-norm cost criteria used in [18].

Note that Jout is random. To obtain a deterministic cost cri-

terion, we use the expected value of J(k) as the cost criterion

in our MPC optimization problem. Moreover, J is actually

the maximum of some correlated random variables and it

is difficult to get an analytic expression for the distribution

of J . So the expected value E[J(k)] cannot be computed

analytically. In this paper, E[J(k)] will be approximated or

computed by different methods, namely, MC simulation and

MC integration. We will combine each method for E[J(k)]
with the methods for chance constraints developed in the next

section and compare the efficiency and performance of every

combination for a production system example (see Section VI).

B. Chance Constraints

Define ũ(k) =
[

uT (k) · · · uT (k +Np − 1)
]T

where

Np is the prediction horizon (ỹ(k), w̃(k), r̃(k) are defined in

the same way). From [11], the components of ỹ(k) are max-

affine functions of w̃(k) and ũ(k). So the following linear

constraints

Gũ(k) +Hỹ(k) ≤ h(k) (5)

are also random, where G ∈ R
c×Npnu and H ∈ R

c×Npny are

constant matrices and h(k) ∈ R
c is a vector depending on the

known information at event step k, i.e., x(k − 1) and r̃(k).
Note that w̃(k) is uncertain and only its distribution is

supposed to be known. To reformulate the random constraints

(5), we require that (5) are satisfied for sufficiently many

realizations of w̃(k), namely,

Pr{Gũ(k) +Hỹ(k) ≤ h(k)} ≥ 1− ǫ (6)

where ǫ ∈ (0, 1) is the probability of possible violation of (5).

In other words, we require that (5) is satisfied at least with

a probability 1− ǫ. The probabilistic constraint (6) is usually

called chance constraints.

C. Problem Formulation

Now we combine the material of previous subsections. At

event step k, the chance-constrained MPC problem for SMPL

systems is then defined as follows:

min
ũ(k)

E[J(k)] (7)

subject to (3)-(4), (8)

u(k + j) ≥ u(k + j − 1), j = 0, . . . , Np − 1, (9)

Pr{Gũ(k) +Hỹ(k) ≤ h(k)} ≥ 1− ǫ . (10)

The constraint (9) is added since the u(k), . . . , u(k+Np− 1)
correspond to consecutive event occurrence times.

In general, problem (7)-(10) is a nonlinear nonconvex op-

timization problem. For decreasing the computational burden,

we aim to transform the problem into reduced forms. In

this paper, E[J(k)] will be approximated by MC simulation

[19] and MC integration [20] respectively. Moreover, MC

simulation will also be used to deal with the chance constraint

and compared with the two approaches developed in the next

section.

V. CHANCE-CONSTRAINED MPC FOR SMPL SYSTEMS

In this section, we develop two approaches for the chance-

constrained MPC problem (7)-(10).

A. Max-Affine Form of Chance Constraints

In this subsection, we rewrite the chance constraint (10) into

a max-affine form. We have

Pr{Gũ(k) +Hỹ(k) ≤ h(k)}

= Pr{Gũ(k) +Hỹ(k)− h(k) ≤ 0}

= Pr
{

max
i=1,...,c

(Gũ(k) +Hỹ(k)− h(k))i ≤ 0
}

.

Note that the vector Gũ(k) + Hỹ(k) − h(k) only contains

affine operations on the components of ũ(k) and ỹ(k). Recall

that the components of ỹ(k) are max-affine functions of w̃(k)
and ũ(k). Assume that H has nonnegative entries. Therefore,

each component of Gũ(k)+Hỹ(k)−h(k) is also a max-affine

function of w̃(k) and ũ(k). Let m =
∑c

i=1 ni where ni is the

number of affine expressions appearing in the maximization

for the i-th component of Gũ(k) +Hỹ(k)− h(k). Hence,

Pr
{

max
i=1,...,c

(Gũ(k) +Hỹ(k)− h(k))i ≤ 0
}

= Pr
{

max
i=1,...,m

(zi(k)) ≤ 0
}

with

z(k) = Λ
[

w(k − 1) w̃(k)
]T

+ Γũ(k) + Ξ(k) (11)

for some appropriately defined matrices and vectors

Λ ∈ R
m×(Np+1)nw , Γ ∈ R

m×Npnu , Ξ(k) ∈ R
m.

Therefore, the chance constraint (10) is equivalent to

Pr
{

max
i=1,...,m

(zi(k)) ≤ 0
}

≥ 1− ǫ (12)

if H has nonnegative elements.

According to (11), the components of z(k) are generally not

independent and it is difficult to get an analytic expression for

the distribution of their maximum. Although the probability

in (12) can be computed by numerical integration based on

MC [20], the computational load is usually heavy. When

using MC simulation, the probability in the chance constraint
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is estimated by the number of random vectors satisfying

maxi=1,...,m(zi(k)) ≤ 0 among all random vectors generated

based on the given distribution. In the following subsections

we will introduce two methods to transform (12) into reduced

forms that can be evaluated efficiently.

B. Method 1: Based on Boole’s Inequality

In this subsection, we apply Boole’s inequality to convert

the multivariate constraint (12) into several univariate con-

straints that can be evaluated efficiently.

Proposition 6: If

m
∑

i=1

Pr{zi(k) > 0} ≤ ǫ , (13)

then Pr
{

maxi=1,...,m(zi(k)) ≤ 0
}

≥ 1− ǫ .

Proof: We have

Pr
{

max
i=1,...,m

(zi(k)) ≤ 0
}

= 1− Pr
{

max
i=1,...,m

(zi(k)) > 0
}

.

According to the Boole’s inequality, we have

Pr
{

max
i=1,...,m

(zi(k)) > 0
}

≤
m
∑

i=1

Pr{zi(k) > 0}.

So if
∑m

i=1 Pr{zi(k) > 0} ≤ ǫ, then

Pr
{

max
i=1,...,m

(zi(k)) ≤ 0
}

≥ 1− ǫ .

Based on Proposition 6, the optimal control sequence at step

k can be calculated by solving the optimization problem (7)-

(9) and (13), which can be solved more efficiently than the

original optimization problem (7)-(10).

C. Method 2: Based on Chebyshev’s Inequality

Now we introduce an alternative method applying the mul-

tidimensional Chebyshev inequality to transform the chance

constraint (12) into linear constraints on control inputs and

we propose a sufficient condition for applying such method.

According to Assumption 5, the components of w̃(k) ∈
R

(Np+1)nw are independent and identically distributed random

variables. Let µw and Σw be the mean vector and covariance

matrix of w̃(k). Define

µz(k) = Λµw + Γũ(k) + Ξ(k), (14)

Σz = ΛΣwΛ
T . (15)

From Theorem 3, µz(k) and Σz are the mean vector and

covariance matrix of z(k).
Proposition 7: If Σz is a positive definite matrix1, let

λmin(Σ
−1
z ) > 0 be the smallest eigenvalue of the matrix Σ−1

z .

Let µ̄z(k) = maxi=1,...,m µz,i(k). If µ̄z(k) < 0 and

m

−µ̄z(k)λmin(Σ
−1
z )

≤ ǫ ,

then

Pr{ max
i=1,...,m

(zi(k)) ≤ 0} ≥ 1− ǫ .

1Note that every covariance matrix is symmetric and positive semi-definite.

Proof: For the sake of simplicity, in this proof, we will

write z, µz instead of z(k), µz(k). Consider

max(z1, . . . , zm)

= max(z1 − µ̄z, . . . , zm − µ̄z) + µ̄z

≤ max(z1 − µz,1, . . . , zm − µz,m) + µ̄z

≤ max(|z1 − µz,1|, . . . , |zm − µz,m|) + µ̄z

=: ‖z − µz‖∞ + µ̄z

(1)

≤ ‖z − µz‖2 + µ̄z . (16)

For a symmetric matrix A ∈ R
n×n, the smallest eigenvalue

λmin(A) has a property that λmin(A)x
Tx ≤ xTAx for all

x ∈ R
n. If Σz is positive definite, so is Σ−1

z ; then we have

λmin(Σ
−1
z ) > 0 and

λmin(Σ
−1
z )‖z − µz‖2 ≤ (z − µz)

TΣ−1
z (z − µz). (17)

Combining (16) and (17), we have

Pr{max(z1, . . . , zm) ≤ 0}

≥ Pr{‖z − µz‖2 ≤ −µ̄z}

≥ Pr{λmin(Σ
−1
z )‖z − µz‖2 ≤ −λmin(Σ

−1
z )µ̄z}

≥ Pr{(z − µz)
TΣ−1

z (z − µz) ≤ −λmin(Σ
−1
z )µ̄z} (18)

From the multidimensional Chebyshev inequality (2), we have

Pr{(z − µz)
TΣ−1

z (z − µz) ≤ −λmin(Σ
−1
z )µ̄z}

≥ 1−
m

−µ̄zλmin(Σ
−1
z )

. (19)

If m
−µ̄zλmin(Σ

−1
z )

≤ ǫ, therefore, from (18) and (19), we have

Pr{max(z1, . . . , zm) ≤ 0} ≥ 1− ǫ.
Based on Proposition 7, the chance constraint (12) can be

transformed into the following constraint:

µz(k) ≤ −
m

ǫλmin(Σ
−1
z )

.

By substituting (14), we have

Γũ(k) ≤ −Λµw − Ξ(k)−
m

ǫλmin(Σ
−1
z )

. (20)

Note that this constraint is linear in ũ(k). Thus the optimal

control sequence at step k can be calculated by solving the

optimization problem (7)-(9) with the linear constraint (20).

Remark 8: It is important to know that the sufficient

condition for this transformation into linear constraints is

Σz > 0 (i.e., Σz is positive definite). From Assumption 5,

Σw is positive definite. So from (15), Σz is positive definite if

and only if Λ is a full-row rank matrix. However, in practice,

Λ is not always full-row rank and it can even have zero

rows. In that case, an alternative procedure is to separate

the zero rows from Λ and to divide the remaining part of

Λ into several block matrices along the row dimension , i.e.,

Λ =
[

0 Λ1 · · · Λs

]T
such that every block matrix Λl is

full-row rank. Then we have

z(k) =











z0(k)
z1(k)

...

zs(k)











=











0

Λ1

...

Λs











w̃(k) +











Γ0

Γ1

...

Γs











ũ(k) +











Ξ0(k)
Ξ1(k)

...

Ξs(k)











.
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On the one hand, if Γ0ũ(k) + Ξ0(k) > 0, then

Pr
{

maxi=1,...,m(zi(k)) ≤ 0
}

= 0. On the other hand, if

Γ0ũ(k) + Ξ0(k) ≤ 0, then

Pr
{

max
i=1,...,m

(zi(k)) ≤ 0
}

= Pr

















Λ1

...

Λs






w̃(k) +







Γ1

...

Γs






ũ(k) +







Ξ1(k)
...

Ξs(k)






≤ 0











and the linear constraint (20) becomes

Γ0ũ(k) ≤ −Ξ0(k)
Γ1ũ(k) ≤ −Λ1µw − Ξ1(k)−

ms
ǫλmin(Σ

−1
z,1)

...

Γsũ(k) ≤ −Λsµw − Ξs(k)−
ms

ǫλmin(Σ
−1
z,s)

(21)

with Σz,l = ΛlΣwΛl, l = 1, . . . , s.

The linear constraints (21) guarantee that

Pr{z0(k) > 0} = 0
Pr{z1(k) > 0} ≤ ǫ/s
...

Pr{zs(k) > 0} ≤ ǫ/s.

(22)

Consequently,
s

∑

l=1

Pr{zl(k) > 0} ≤ ǫ. (23)

Similarly to the proof of Proposition 6, according to Boole’s

inequality, then we have

Pr
{

max
i=1,...,m

(zi(k)) ≤ 0
}

= 1− Pr
{

max
i=1,...,m

(zi(k)) > 0
}

≥ 1−

s
∑

l=1

Pr{zl(k) > 0}
(23)

≥ 1− ǫ .

D. Discussion

For Method 1, we need to know the respective distribu-

tions of z1(k), . . . , zm(k) instead of the distribution of their

maximum; and for Method 2, we need to know the mean

vector and covariance matrix of z(k). Based on (11), z(k) is an

affine function of w̃(k). Therefore, to apply the two methods

in this paper, we require w̃(k) to be random variables the

distribution of which is preserved or known under summation

and multiplication by a scalar, such as the normal distribution,

the Poisson distribution, and the gamma distribution [21].

VI. EXAMPLE

In this section, we consider the production system presented

in [11] (see Figure 1 in Section III). The initial state is

x(0) =
[

0 10
]T

, u(0) = 0, the prediction horizon is

chosen as Np = 3, and the trade-off between the output

and input costs is selected as λ = 10−5. We assume that

the processing time of M1 is perturbed by a random variable

w(k): d1(k) = 5+w(k) where w(k) has a normal distribution

with expected value 0 and variance 2. We consider the chance

constraint

Pr{y(k + j)− r(k + j) ≤ h, j = 0, . . . , Np − 1} ≥ 1− ǫ

which is equivalent to

Pr
{

max
i=1,...,19

(zi(k)) ≤ 0
}

≥ 1− ǫ .

We consider two different cases: (i) r(k) = 10 + 30 · k,

ǫ = 0.5, h = 20; (ii) r(k) = 10 + 65 · k, ǫ = 0.2, h = 50.

The Boole method (Method 1) and the Chebyshev method

(Method 2) developed in Section V are applied to deal with

the chance constraint and compared with two other methods:

the MC simulation method and the nominal MPC method. For

each case, we solve the chance-constrained MPC problem (7)-

(10) in closed loop for k = 1, . . . , 50 and run the experiment

10 times, each time with a different realization of w. For each

round, the same realization is used for all methods. Table I lists

the mean computation time and the mean closed-loop costs

over the 10 realizations. The closed-loop costs are computed

as Jclp =
∑50

k=1

(

max(y(k)− r(k), 0)− λu(k)
)

.

The nominal MPC method consists in computing the opti-

mal control sequence by using the deterministic MPL model as

the prediction model and considering deterministic linear con-

straints. The MC simulation method consists in approximating

E[J(k)] and the chance constraint on the basis of a large

number of random samples. When using the Boole method or

the Chebyshev method to deal with the chance constraint, we

consider two different ways to compute the value of E[J(k)],
namely, MC integration and MC simulation.

From Table I, we can see that for both cases, although the

nominal MPC method is faster than the other methods, it yields

higher closed-loop costs. The MC simulation method generally

achieves the lowest closed-loop costs, but it takes a longer

computation time,

When using the Boole method or the Chebyshev method

to deal with the chance constraint, using MC simulation for

computing E[J(k)] is better than using MC integration in

terms of computation time. Moreover, given the same number

of samples, compared with only using MC simulation, the

computation time of the combination of the Boole method and

MC simulation decreases by about 30% and the computation

time of the combination of the Chebyshev method and MC

simulation decreases by about 70%.

VII. CONCLUSIONS

We have considered the chance-constrained MPC problem

for stochastic max-plus linear systems and developed two

methods to deal with the chance constraints. Method 1 con-

verts the chance constraint into several univariate constraints

by applying Boole’s inequality. Method 2 uses Chebyshev’s

inequality and transforms the chance constraint into linear

constraints on the control inputs. The two methods are as-

sessed with a production system and compared with two other

methods: Monte Carlo simulation and nominal MPC. The

results show that the two methods are faster than Monte Carlo

simulation to achieve a similar performance and yield a better

performance than nominal MPC.

In the future, one possible improvement of Method 2 is to

find some optimal way to allocate the probability level ǫ of

constraint violation to each inequalities in (21) (note that in

the current paper ǫ is allocated uniformly).
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TABLE I

The computation time and closed-loop costs Jclp using different methods
(The number following MC simulation (MCsim) and MC integration
(MCint) indicates the number of random samples used)

Case (i): r(k) = 10 + 30 · k, ǫ = 0.5, h = 20

Methods
Time [s] Jclp

Constraint E[J(k)]

Nominal MPC Nominal MPC 1.3 29.6440

MCsim

103

MCsim

103 447 -0.3196

5 · 103 5 · 103 2117 -0.3817

104 104 4245 -0.3816

Boole

MCint

6 · 105 897 0.8237

106 1399 -0.3667

2 · 106 2781 -0.3807

MCsim

103 310 -0.3196

5 · 103 1342 -0.3817

104 2829 -0.3816

Chebyshev

MCint

6 · 105 1212 -0.3614

106 1646 -0.3813

2 · 106 3328 -0.3809

MCsim

103 146 -0.3195

5 · 103 639 -0.3817

104 1228 -0.3816

Case (ii): r(k) = 10 + 75 · k, ǫ = 0.2, h = 50

Methods
Time [s] Jclp

Constraint E[J(k)]

Nominal MPC Nominal MPC 1.3 29.6440

MCsim

103

MCsim

103 456 -0.8933

5 · 103 5 · 103 2288 -0.9554

104 104 4222 -0.9553

Boole

MCint

6 · 105 939 -0.1153

106 1513 -0.4710

2 · 106 3087 -0.9539

MCsim

103 313 -0.8933

5 · 103 1380 -0.9554

104 2761 -0.9553

Chebyshev

MCint

6 · 105 1199 -0.4124

106 1789 -0.9480

2 · 106 3821 -0.9542

MCsim

103 151 -0.8933

5 · 103 686 -0.9554

104 1205 -0.9553
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