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Abstract

In this paper, a methodology for the identification of distributed-parameter systems is proposed, based on

finite-difference discretization on a grid in space and time. It is considered the case when the partial

differential equation describing the system is not known. The sensor locations are given and fixed, but not

all grid points contain sensors. Per grid point, a model is constructed by means of lumped-parameter

system identification, using measurements at neighboring grid points as inputs. As the resulting model

might become overly complex due to the involvement of neighboring measurements along with their time

lags, the Lasso method is used to select the most relevant measurements and so to simplify the model.

Two examples are reported to illustrate the effectiveness of the methodology, a simulated two-dimensional

heat conduction process and the construction of a greenhouse climate model from real measurements.

Keywords: system identification, finite-difference method, input selection, indoor climate modeling,

greenhouse climate model

1. Introduction

Many real-life processes are distributed-parameter systems. Examples include chip manufacturing plants

[1]; process control systems such as: packed-bed reactors [2], reverse flow reactors [3], and waste water

treatment plants [4]; flexible structures in atomic force microscopes [5], ultraviolet disinfection installations

in food industry [6], electrochemical process [7], or drying installations [8].

Distributed-parameter systems are typically modeled using partial differential equations. However,

developing such models from first principles is a tedious and time-consuming process [9]. If input-output

measurements are available, a model can be constructed by using system identification methods. However,

due to the large number of spatially interdependent state variables, the identification of

distributed-parameter systems is considerably more complex than the identification of lumped-parameter
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systems, and known as ill-posed inverse problems [10] because the solution is not unique [11]. There are

three main approaches to the identification of distributed-parameter systems [12]: (i) direct identification,

(ii) reduction to a lumped-parameter system, and (iii) reduction to an algebraic equation. While the direct

identification approach uses the infinite-dimensional system model, the reduction-based approaches involve

spatial discretization to create a set of ordinary differential equations in time to which identification

methods for lumped-parameter systems can be applied. This approach, also called time-space separation

[9], is the subject of this paper.

Two recent books related to the modeling of partial differential equations, and consequently to the

proposed method, namely [13] by Cressie and Wikle and [14] by Billings. Cressie and Wikle [13]

extensively treat statistical modeling and analysis of spatial, temporal, and spatio-temporal data. The

spatio-temporal data are in the form of time series of discrete-time and spatially distributed

measurements. The text covers methods to interpolate values at locations that are not measured, as well

as model simplification via spectral decomposition. Billings [14] addresses identification problems for

nonlinear systems, including those based on spatio-temporal discretized partial differential equations with

cellular automata and coupled map lattice structures. The models use polynomial basis function and are

simplified by using orthogonal forward regression.

In this paper, a methodology for the identification of finite-dimensional models for distributed-parameter

systems with a small number of fixed sensors is proposed. Compared to other finite-difference

identification methods in the literature [15, 16, 17, 18, 19, 20, 14], this methodology:

• does not assume a dense set of measurement locations in space,

• uses an input selection method to reduce the complexity of the model.

The methodology also allows the use of external inputs in the model, a problem not addressed by Cressie

and Wikle [13]. In addition, an application that, to our knowledge, has not yet been described in the

literature is presented, namely the identification of a model for temperature dynamics in a greenhouse.

The remainder of the paper is organized as follows: Section 2 presents the problem formulation for which

the methodology is proposed. Section 3 gives the details of the methodology. In Section 4, two examples

are presented to show the effectiveness of the methodology: identification using data from a simulation of a

2D heat conduction equation and identification using temperature measurements of a real-life greenhouse

setup. Section 5 concludes the paper.

2. Problem Formulation

Consider a distributed-parameter system described by a partial differential equation, with the associated

boundary and initial conditions. For the ease of notation and without loss of generality, a system that is
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first-order in time and second-order in a two-dimensional space is presented:

∂g(z, t)
∂t

= f
(

z, t, g(z, t),
∂g(z, t)

∂z1
,

∂g(z, t)
∂z2

,
∂g(z, t)
∂z1z2

,

∂2g(z, t)
∂z2

1
,

∂2g(z, t)
∂z2

2
, u(z, t), w(z, t)

)
, ∀z ∈ Z \ Zb, ∀t (1a)

0 = h
(

z, t, g(z, t),
∂g(z, t)

∂z1
,

∂g(z, t)
∂z2

, u(z, t), w(z, t)
)

, ∀z ∈ Zb, ∀t (1b)

g(z, t0) = g0(z), ∀z ∈ Z (1c)

Here g(·, ·) is the variable of interest, f(·) is the system function, h(·) is the boundary value function,

z = (z1, z2) ∈ Z ⊂ R2 is the spatial coordinate,1 t ∈ R+ ∪ {0} is the continuous-time variable, u(·, ·) is the

input function, w(·, ·) is the process noise, and Zb is the set of spatial boundaries of the system.

Higher-order and multi-variable systems can be defined analogously.

Assume that a set of input-output measurements are available from the distributed-parameter system (1)

with unknown functions f(·) and h(·). The sensors are located at specified points to measure g(·, ·), and

there are also actuators that generate inputs u(·, ·) to the system. Since the actuators and the sensors are

placed at known and fixed locations, the space is discretized with a set of grid points Mg such that the

actuator locations Mu and the sensor locations Ms are in Mg, i.e., Mu ⊂Mg and Ms ⊂Mg. Assume that

the measurements, concatenated in a vector y(·), are affected by additive Gaussian noise

v(zi, t) ∼ N(0, σ2
vi

). The input and measurement vectors are defined as:

u(t) =
[
u(zu,1, t) . . . u(zu,Nu , t)

]⊤
(2a)

y(t) =
[
g(zg,1, t) + v(zg,1, t) . . . g(zg,Ns , t) + v(zg,Ns , t)

]⊤
(2b)

where Nu is the number of actuators, Ns the number of sensors, the coordinates of the inputs are denoted

by zu,j ∈ Mu, the measurement coordinates by zg,i ∈ Mg, and the superscript ⊤ denotes the transpose of

a matrix or vector. Note that not every grid point is associated with a sensor or actuator.

The measurements are collected at discrete time steps tk = k · Ts with k ∈ N ∪ {0}, where Ts is the sampling

period. To simplify the notation, the discrete time instant tk is subsequently written as k. The notation is

further simplified by using an integer subscript assigned to the given sensor or actuator location:

uj(k) = u(zu,j , t)
∣∣
t=k·Ts

, j = 1, . . . , Nu (3)

for the inputs and

yi(k) =
(

g(zg,i, t) + v(zg,i, t)
)∣∣∣

t=k·Ts
, i = 1, . . . , Ns (4)

for the outputs. The input and output data (3) and (4) are the only available information to construct a

distributed finite-order model of (1).

1Vectors are denoted by boldface symbols.
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3. Identification Methodology for Distributed-Parameter Systems

The main idea of the methodology proposed in this paper is to identify at each sensor location a

lumped-parameter system, described by a dynamic model. To take into account the spatial dynamics of

the system, measurements from the neighboring locations are included as inputs.

Given the set of input-output measurements from an unknown distributed-parameter system, the

identification procedure is the following:

1. Create a spatial grid for the system so that each sensor and each actuator is associated with a grid

point. The grid may have a uniform or a nonuniform spacing, depending on the actuator and sensor

locations. Recall that not all grid points are occupied by sensors or actuators. The sensors and

actuators are numbered consecutively: i = 1, . . . , Ns for the sensors and j = 1, . . . , Nu for the

actuators. An illustration of a 2D system, with spatial grid points and labels for the sensors and

actuators, is shown in Figure 1.
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Figure 1: An illustration of a 2D system with a nonuniform spatial grid. Sensors and actuators are indicated by solid and

dashed circles, respectively.

2. For each sensor i in the grid:

(a) Determine the dynamic model structure, using one of the available structures for

lumped-parameter systems, such as auto-regressive with exogenous input (ARX), output error

(OE), Box-Jenkins (BJ), etc.

(b) Define the set of neighboring sensors and actuators, i.e., those that are located in a defined

neighborhood (details on the notion of neighborhood are given in the next section). The

neighboring measurements and inputs from neighboring actuators become inputs to the dynamic

model of sensor i. Determine the (temporal) system order and construct the regressors.

(c) When the number of regressors is large, optimize the model structure in order to simplify the

model.

(d) Estimate the parameters of the dynamic model for sensor i.
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(e) Validate the dynamic model. If the model is rejected, return to step 2a to use a different system

structure or to 2b to change the set of neighbors.

The sequence of the steps and decisions of the methodology is shown in Figure 2 and the steps are detailed

next. More specifically, it is discussed:

• How to construct coupled discrete-time dynamic models in Section 3.1.

• How to identify and estimate the parameters of the models in Section 3.2.

• How to simplify the identified models to obtain simpler models in Section 3.3.

• Sensor placement and interpolation for locations where measurements are not available in Section 3.4.

START

END

Measurements from Ns sensor nodes

External inputs from Nu actuators

Create grid points

Determine model structure

Too many
regressors?

Optimize number of regressors 

Estimate model parameters

Is the model
acceptable?

For each
sensor node

N

N

Y

Y

Determine:

-- neighboring external inputs

-- neighboring sensor nodes

-- (temporal) system order

Model validation

Step 1

Step 2a

Step 2b

Step 2c

Step 2d

Step 2e

Figure 2: Flow chart of the proposed methodology.
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Remarks:

• The proposed framework performs off-line identification for distributed-parameter systems, however,

the method can be extended directly to recursive identification for the ARX structure.

• For structures that require the predicted output to compute the parameter, extension to recursive

parameter estimation is possible in condition that the measurements are updated synchronously.

• The convergence analysis for the recursive implementation of the framework follows [21].

3.1. Construction of coupled discrete-time dynamic models

The discretization of a partial differential equation in space by using the finite-difference method results in

a set of coupled ordinary differential equations. At time instant t, the coupling spatially relates the value

of the variable of interest at node i, gi(t), to values of the same variable at the neighboring nodes. The

influence of more distant neighbors may be delayed due to the finite speed of spatial propagation of the

quantity of interest. As an example, consider the following simplification of (1a) to an autonomous

one-dimensional case:
∂g(z, t)

∂t
= m

(
∂2g(z, t)

∂z2

)
(5)

where g(z, t) ∈ R is the variable of interest, z ∈ R is the spatial coordinate, and m(·) is a nonlinear

function. The system is spatially discretized using the finite-difference method by creating grid points,

which, for the sake of simplicity, are uniformly spaced at distance ∆z. Denote gi(t) for g(z, t) at grid point

z = i · ∆z, called node i for short. The central approximation [22] of the second-order derivative in space is:

∂2g(z, t)
∂z22

∣∣∣∣
z=i

≈
gi+1(t) − 2gi(t) + gi−1(t)

(∆z)2 (6)

which results in:
dgi(t)

dt
= m

(
gi+1(t) − 2gi(t) + gi−1(t)

(∆z)2

)
(7)

Then, by using the forward-difference approximation of the time derivative:

dgi(t)
dt

∣∣∣∣
t=k

≈
gi(k + 1) − gi(k)

Ts

to discretize the left-hand side of (7), which gives:

gi(k + 1) = gi(k) + Ts · m
(

gi+1(k) − 2gi(k) + gi−1(k)
(∆z)2

)
(8)

or in a slightly more general form:

gi(k + 1) = q
(

gi(k), gi−1(k), gi+1(k), Ts, ∆z

)
(9)

Note that in this example gi(k) is influenced only by its immediate neighbors. For systems with a higher

spatial order and with exogenous inputs (9) can be written as:

gi(k + 1) = q(gNs,i(k), uNu,i(k), Ts, ∆z) (10)
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where gNs,i(k) = {gj(k)|j ∈ Ns,i} is the set of neighboring variables of interest, including gi(k) itself and

uNu,i(k) = {ul(k)|l ∈ Nu,i} is the set of neighboring inputs including ui(k) itself.

In the system identification setting, ∆z and Ts are known and fixed and instead of gi(k) the measurement

yi(k) is used (which includes the effect of measurement noise vi(k)). Thus the following model is obtained:

yi(k + 1) = w(yNs,i(k), uNu,i(k), vNs,i(k)) (11)

where yNs,i(k) is the set of neighboring measurements at node i, including yi(k). The neighbors of node i

can be simply the nodes that are within a specified distance ̺, i.e.,

yNs,i(k) =
{

y(z, k)| ‖z − zi‖ ≤ ̺, z ∈ Mu ∪ Ms
}

for measurements and

uNs,i(k) =
{

u(z, k)| ‖z − zi‖ ≤ ̺, z ∈ Mu ∪ Ms
}

for inputs, see Figure 3. A priori knowledge can be used

to obtain a suitable value of ̺.
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Figure 3: An illustration of the neighboring measurements and inputs set with two possible neighborhoods of sensor 7 using

a Euclidean distance criterion. The first set of neighbors is defined using distance ̺1 from sensor 7 and the second set using

distance ̺2.

An inappropriate choice of ̺ may, however, yield a large number of neighbors that are included in the

model. In order to reduce the model complexity, an input or regressor selection method is applied. This

topic is discussed later on in Section 3.3.

When w(·) in (11) is not known, an approximation can be designed using the available input-output data

and linear or nonlinear system identification. Assuming that the system can be approximated by a linear

model, linear system identification methods can be applied (11), as described in the following section.

3.2. System identification and parameter estimation

Identification methods for linear systems (including linear-in-parameters nonlinear systems) use the

following model representation:

ŷi(k + 1) = φi(k)θT
i (12)

where ŷi(k) is the predicted yi(k), φi(k) is the regressor vector at time step k, and θi is the vector of

parameters. Note that the subscript index i corresponds to sensor i as in the previous section. The

regressor vector contains lagged input-output measurements, including those of neighboring sensors and
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inputs. The parameter vector θ̂i can be estimated by using least-squares methods [23], so that the

following prediction error is minimized:

θ̂i = arg min
θi

N∑

k=1

∥∥∥yi(k + 1) − φi(k)θT
i

∥∥∥
2

2

= arg min
θi

N∑

k=1

‖ǫi(k)‖2
2

with ǫi(k) = yi(k) − ŷi(k) the prediction error. The use of neighboring measurements as inputs to the

model may lead a situation where the regressors are corrupted by noise. This requires an error-in-variables

identification approach, solved, e.g., by using total least squares [24]. For a thorough discussion of the

total-least squares method refer to [25]. When noiseless input variables to the actuators are among the

regressors, a mixed ordinary-total least-squares method must be used [25].

In nonlinear system identification, the problem is more difficult as there is no unique way to represent the

nonlinear relation between the regressors and the output, and different methods are available to represent

the nonlinearity. For instance, Wiener systems [26] and Hammerstein systems [27] use nonlinear functions

cascaded with a linear system, Takagi-Sugeno fuzzy models combine local linear models by weighting them

via membership functions [28], while neural networks use global nonlinear basis functions [29].

3.3. Model reduction by using regressor selection

Including neighboring measurements as inputs will increase the size of the regressor vector φi(k). This size

is determined by the number of neighboring inputs and the number of components of each neighboring

regressor vector. For several reasons, it is desired to have a simpler model by removing inputs that do not

contribute to the output to reduce computational load, especially when the models are used in on-line

control design.

Three methods are commonly used in standard linear regression [30]: stepwise regression, backward

elimination, and exhaustive search. With these methods, the inclusion or exclusion of a regressor is

decided based on statistical tests, such as the F -test. One of more recent methods is Lasso [31], which

stands for the least absolute shrinkage and selection operator. Assumed is the following regression model:

ŷ(k) = θ0 + φ⊤θ(k)

with θ =
[
θ1 . . . θnr

]⊤
and θ0 the parameters of the model and φ the vector of regressors. Lasso

computes the parameters so that the parameters of regressors that have the least importance are made

zero by using a regularization parameter. Lasso solves the following optimization problem [31]:

[
θ̂0 θ̂

⊤
]⊤

= arg min
θ0,θ

N∑

i=1

(
yi − θ0 − φ⊤

i θ
)2

, s.t.
nr∑

j=1

|θj | ≤ τ (13)
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where τ is the tuning parameter, and for the sake of simplicity the scalar case is considered (extension to

the vector case is straightforward). This problem can also be written as:

[
θ̂0 θ̂

⊤
]⊤

= arg min
θ0,θ



 1
2N

N∑

i=1

(
yi − θ0 − φ⊤

i θ
)2

+ λ
nr∑

j=1

|θj |



 (14)

where λ is the nonnegative regularization parameter. Note that the two formulations are equivalent in the

sense that for any τ ≥ 0 in (13), there exists a λ ∈ [0, ∞) in (14) such that the both formulations have the

same solution, and vice versa.

As for nonlinear systems there is no unique representation, regressor selection is more complex. The

simplest method, but computationally inefficient, is by directly searching the most optimal set of

regressors using exhaustive search. Regarding model-specific methods, forward regression has been used

for polynomial models [32, 33], neural networks [34], and for adaptive network fuzzy inference systems [35].

For an example of model-independent regressor selection method, one may refer to, e.g., [36], which uses

fuzzy clustering.

3.4. Sensor and actuator locations and interpolation

Measurements and actuations in distributed-parameter systems are commonly performed at spatially

sampled locations. This practice raises two related problems in control and estimation of

distributed-parameter systems:

1. How many sensors and/or actuators are required and where they should be placed to obtain good

output observations? For the identification of distributed-parameter systems, the problem is about

using the smallest number sensors possible and placing them in certain locations such that the

experiment data can be used to obtain a valid model. A short introduction to this topic is given in a

survey by Kubrusly and Malebranche [37] and a more recent and thorough treatment on the optimal

sensor placement is given by Ucińsky [38]. In case the underlying partial differential model is known,

the locations of the sensors will influence the identifiability of the distributed-parameter system [38].

In this paper the underlying partial differential model is unknown and the sensor and actuator

locations are assumed fixed and given; therefore, the sensor and actuator location problem is not

considered further here.

Beside the actuator and sensor locations, the input signals applied to the system are also crucial to

get a useful model. A general requirement for the excitation is that the signals should be persistently

exciting so that the measurement data contain the important dynamics of the system, from which

the system can be identified. The pseudo-random binary signal is a commonly used input signal for

system identification because it has the desired properties [21].
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2. How to interpolate outputs at locations that are not measured? This problem naturally arises

because the sensors give information only at their locations [13].

For the interpolation problem, kriging and splines are commonly used methods [13]. However, only

kriging, more specifically ordinary kriging, is used and briefly presented in this paper following [13].

Kriging was initially developed to solve estimation-related problems in geology and it able to

interpolate in time and space. Because temporal interpolation is not required in our setting, only

spatial kriging is given in this section.

Given a spatial random process, also called random field:

Y (z) = G(z) + V (z), z ∈ Z

where Y (·), G(·), and V (·), are respectively the measured random field, the true but unknown random

field, and the random measurement noise, z is the spatial coordinate, and Z is the spatial domain. As the

spatial domain Z has been discretized using the finite-difference method, the measurements of the random

field realizations can be written as yi = gi + vi, where the subscript i is defined similarly to that of (7),

from which the measurement vector yz is defined as the stacked measurements from Nyz
sensor locations.

Remarks:

1. Depending on the purpose, a spatio-temporal random process

Y (z, t) = G(z, t) + V (z, t), ∀z ∈ Z, ∀t (15)

for a certain fixed time t can be viewed as a random field Y (z) or as a dynamic random process Y (t)

[39, 40]:

Y (z) = G(z) + V (z), ∀z ∈ Z (16a)

Y (t) = G(t) + V (t), ∀t (16b)

2. In the case of the proposed methodology, (2b) is the discrete-time realization of (16b) at sensor

location zi ∈ Ms.

Kriging [13] a linear estimation method to obtain the optimal spatial estimate of the second order

stationary process G(z) at a coordinate location that is not measured zo /∈ Ms, such that the mean square

estimation error (MSE):

MSE = E
{(

gzo − Ĝ(yz)
)2

}
(17)

is minimized, where gzo is the true but unknown value of the process G(z), Ĝ(yz) is the estimator, and

E{·} is the expectation operator.
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In ordinary kriging, the mean of G(z) is assumed constant, i.e., E{G(z)} = µG, z ∈ Z, the covariance

function Cov(gi, gj) and the zero mean measurement error variance σ2
V are assumed to be known. The

estimator has the following form:

ĜO(yz) = γ⊤yz (18)

for the column vector γ ∈ RNyz is the estimator parameter and ⊤ denotes the transpose operation of a

vector and a matrix. The problem of kriging is to find γ to minimize (17). To impose unbiasedness,

γ⊤1 = 1 has to be fulfilled, where 1 is a column vector with 1 as the elements. By using the Lagrange

multiplier ζ, the parameter vector γ is computed by solving the following optimization problem:

arg min
γ

(
E

{(
gzo − γ⊤yz

)2
}

− 2ζ · (γ⊤1 − 1)
)

(19)

The solution of the above optimization problem is:

γ∗ = C−1
yz

(
Cov

(
gzoyz

)
+ ζ∗1

)
(20)

ζ∗ =
1 − 1⊤C−1

yz
Cov

(
gzoyz

)

1⊤C−1
yz

1
(21)

where γ∗ and ζ∗ are respectively the optimal parameter vector and Lagrange multiplier, Var(·) is the

variance function, and Cyz
is the covariance matrix of measurement vector yz defined as:

Cyz
=






Var(yi) + σ2
V i = j

Cov(yi, yj) i 6= j

Substituting ζ∗ in (20) and γ∗ into (18) gives:

ĜO(yz) =

(

Cov(gzoyz) + 1
1 − 1⊤C−1

yz
Cov(gzoyz)

1⊤C−1
yz

1

)⊤

C−1
yz

yz (22)

with the corresponding mean square error:

MSE = Var(gzo) − Cov(gzoyz)⊤C−1
yz

Cov(gzoyz) +
1 − 1⊤C−1

yz
Cov(gzoyz)

1⊤C−1
yz

1
(23)

Equation (22) can be rewritten as:

ĜO(yz) = µ̂G + Var(gzo)⊤C−1
yz

· (yz − µ̂G1) (24)

with µ̂G the generalized least-squares estimator of µG [41]:

µ̂G =
1⊤C−1

yz
yz

1⊤C−1
yz

1
(25)

Another variant of kriging is universal kriging, which assumes µG(z) to be a linear model instead of a

constant as in ordinary kriging. An interesting application of this kriging variant is the Kalman filter

method for distributed motion coordination strategy of mobile robot positioning at critical locations [42].
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4. Simulations and Applications

To illustrate the effectiveness of the proposed identification approach, two examples are considered, based

on synthetic and real data, respectively. The synthetic data are generated from a linear two-dimensional

heat conduction equation. The real-life data are temperature measurements from a small-scale real

greenhouse.

4.1. Heat conduction process

Consider the following two-dimensional heated plate conduction process:

∂T (z, t)
∂t

=
κ

ρCp

[
∂2T (z, t)

∂z2
1

+
∂2T (z, t)

∂z2
2

]
, ∀z ∈ Z \ Zb, ∀t (26a)

T (z, t) = Tb(t), ∀z ∈ Zb, ∀t (26b)

T (z, 0) = T0, ∀z ∈ Z (26c)

where T (z, t) is the temperature of the plate at location z and at time t, ρ the density of the plate

material, T0 the initial temperature, Cp the heat capacity, κ the thermal conductivity, and z = (z1, z2) the

spatial coordinate on the plate. Equations (26b) and (26c) are the boundary and initial conditions,

respectively. The plate’s parameters are listed in Table 1. The values of the material properties are

adopted from [43] and modified to speed up the simulation.

Table 1: The plate parameters for the 2D heat conduction equation example

Parameter Symbol Value Unit

Material density ρ 4700 kg m−3

Thermal conductivity κ 700 W m−1 K−1

Heat capacity Cp 383 J kg−1 K−1

Plate length L 0.7 m

Plate width W 0.5 m

Initial temperature T0 35 ◦C

Sampling period Ts 1 s

Grid size ∆z1 , ∆z2 0.05 m

For this example, a set of identification data is obtained by simulating the discretized (26). The central

approximation of the finite-difference method is used to discretized the space to create a grid of 14 by 10

cells and the zero-order hold method is used to discretize the time. The resulting discretized equation is

simulated by letting the boundary values Tb(·) follow pseudo-random binary signals with levels of 25 ◦C

and 80 ◦C where each boundary B-1 through B-4 (as defined in Figure 4) is excited by a different signal u1

through u4. It is assumed that the excitation is uniformly distributed along the boundary. The duration of
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the steps is randomly selected from the set {80, 120, . . . , 200} seconds. The maximum value of the step

duration was determined based on the largest time constant of the nodes responses, i.e., 180 s.
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Figure 4: Illustration of sensor node locations for the 2D heat conduction example.

Ten sensor nodes are placed to measure the temperature of the plate as illustrated in Figure 4, with the

exact sensor locations given in Table 2. The measurements are sampled with the period Ts = 1 s and

Gaussian noise with zero mean and variance 0.1 ◦C2 is added to the measurements. The data set is divided

into an identification set and a validation set, consisting of 1500 and 740 samples, respectively.

Table 2: Coordinates of the sensor node locations for the 2D heat conduction equation example

Sensor # (z1, z2) Sensor # (z1, z2)

Sensor 1 (0.10, 0.10) Sensor 6 (0.40, 0.30)

Sensor 2 (0.10, 0.25) Sensor 7 (0.55, 0.10)

Sensor 3 (0.20, 0.40) Sensor 8 (0.55, 0.40)

Sensor 4 (0.35, 0.40) Sensor 9 (0.65, 0.10)

Sensor 5 (0.40, 0.25) Sensor 10 (0.65, 0.30)

The neighboring nodes are defined to be the nodes that lie within the distance ̺ = 0.35 m from a given

node. The value of this neighborhood radius is set sufficiently large compared to the physical dimensions

so that there are sufficient neighboring sensors included in the model. Typically, prior knowledge about

the process can be used to determine a suitable value for the radius ̺.

Results from two representative sensors are presented: 1 and 5. Sensor 1 is relatively close to the

boundaries; it has three neighboring sensors. Since boundaries B-1 and B-4 are inside the radius ̺, the

values at boundaries B-1 and B-4 are included as inputs to the model of sensor 1. Sensor 5 is near the

middle of the plate; it has 9 neighboring sensors and it also uses the values of boundaries B-2, B-3, and

B-4 as inputs. The boundary inputs are assumed spatially continuous and each of them is spatially

constant for each discrete-time k. In case a sensor node has a boundary in the neighborhood, it is taken as

one input to the model.

Subsequently, it is necessary to determine the order of the system. Considering that the system is slow,
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10th-order systems are used with an ARX structure for the models. Thus, sensor 1 has initially 61

regressors for the model and sensor 5 has 131 regressors including the bias. Lasso is applied to reduce the

number of parameters in the model, using the lasso function in the Statistics Toolbox of Matlab. The

function requires the maximum number of parameters in the model as additional input and returns a set of

models with the number of parameters varying from one to the maximum number specified. The function

returns a set of reduced models for different values of regularization parameter λ and the corresponding

MSE values. Then, one of those models is selected, based on the smallest MSE obtained from the

validation data set.

After input selection, a model with 11 parameters is obtained for sensor 1 and a model with 26 parameters

for sensor 5. The reduced models are the following:

y1(k + 1) = 0.0155 y1(k − 1) + 0.0540 y3(k − 1) + 0.0467 y5(k − 1)+

+ 0.4118 u1(k − 1) + 0.0173 u1(k − 2) + 0.0026 u1(k − 3)

+ 0.4134 u4(k − 1) + 0.0244 u4(k − 2) + 0.0034 u4(k − 3)

− 0.5318

y5(k + 1) = 0.0089 y5(k − 1) + 0.0093 y8(k − 1) + 0.0037 y10(k − 2)

+ 0.0145 y2(k − 1) + 0.0050 y2(k − 2) + 0.0035 y2(k − 3)

+ 0.1352 y1(k − 1) + 0.0241 y1(k − 2) + 0.0073 y1(k − 3)

+ 0.1640 u2(k − 1) + 0.1074 u2(k − 2) + 0.0350 u2(k − 3)

+ 0.0131 u2(k − 4) + 0.0016 u2(k − 5) + 0.0002 u2(k − 6)

+ 0.0831 u3(k − 1) + 0.0627 u3(k − 2) + 0.0221 u3(k − 3)

+ 0.0063 u3(k − 4) + 0.0006 u3(k − 5) + 0.1646 u4(k − 1)

+ 0.0588 u4(k − 2) + 0.0245 u4(k − 3) + 0.0094 u4(k − 4)

+ 0.0039u4(k − 5) − 0.8707

where yi(k) is the measurement from sensor i, and uj(k) is the input from boundary j. From the above

models, it can be seen that the model for sensor 5 uses more parameters with larger lags of inputs and

neighboring measurements; this indicates that more time is needed to propagate those inputs and

neighboring measurements to influence sensor 5. This is different in the case of sensor 1, which is closer to

the boundaries and for which the resulting model is mainly influenced by the inputs, which yields a

simpler model. The models also have constant/bias terms which can be interpreted as heat transferred

between the adjacent nodes.

Figure 5 and 6 show the one-step ahead predictions, the free-run2 simulation predictions and their

2Free-run simulations mean that the model outputs are predicted based on the inputs and the past predicted outputs.
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(b) Sensor 5: measurements and pre-
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(c) Sensor 1: prediction error
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(d) Sensor 5: prediction error

Figure 5: Measurements (blue, invisible due to the overlap) and one-step ahead prediction for the models with full inputs (black

curves) and the ones with reduced inputs (red curves) using the validation data set for the two-dimensional heat conduction

example. Note that the prediction error of the full and the reduced input models are overlapping.

corresponding errors in comparison with validation part of the data. As one can expect, for the validation

data set the one-step-ahead prediction error is much lower than the error from the free-run simulation. In

addition, it can also be seen that the free-run prediction errors are smaller for the reduced input models

than those of the full input models. This is more obvious for the model of sensor 5. As one expects that

the full models would deliver smaller errors, this means the full models are overfit. In general, the

proposed identification approach works well in this case and delivers sufficiently good models.

The figures also show that the output error of the model using measurements from sensor 1 is generally

smaller than that of sensor 5. This can be explained as follows: Figure 4 shows that sensor 5 has more

neighboring sensors than sensor 1. This means the identification for measurements of sensor 5 involves

more noise from measurements of neighboring sensors than in the case of sensor 1.

Figure 7 shows contour plots of the temperature distribution based on the validation data and their

one-step-ahead and free-run simulation predictions at discrete-time step k = 90; the time step value is

picked without any preference. The sensor locations are marked with black square boxes where sensor

numbers are placed at the left-hand side of the markers. It can be seen the contour of the one-step ahead

prediction is very similar to that from the validation data. This is confirmed by the error contour, which is

Output measurements are not used to generate the predictions. This is a very stringent test of the model prediction accuracy.
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(b) Sensor 5: measurements and

simulations
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(c) Sensor 1: simulation error
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(d) Sensor 5: simulation error

Figure 6: Measurements (blue) and free-run simulation predictions for the models with full inputs (black) and the ones with

reduced inputs (red) using the validation data set for the two-dimensional heat conduction example. Note that the output

error of the full and the reduced input models are overlapping.

almost uniformly colored around the zero value. Note that the contours look relatively coarse because they

are plotted based on sparse measurement locations using the ordinary kriging, implemented in the

ooDACE toolbox [44, 45], to interpolate temperature at locations that are not measured.

The R2 fit for the full models and reduced models of sensor 1 and sensor 5 is shown in Table 3. The table

shows that the R2 fit of the identified models is accurate. It can also be seen for the free-run simulation

prediction, the reduced input models have a better R2 fit that the full ones. This shows that in this case

the full models are over-parameterized and that an input reduction results in better models.

Table 3: The R2 fit of the full and reduced models for one-step ahead and free-run simulation predictions of the heat equation

example.

One-step ahead Free-run simulation

Sensor # Full model Reduced model Full model Reduced model

1 99.9807% 99.9784% 94.9872% 99.0116%

5 99.9168% 99.8016% -15.5446% 93.2703%

Figure 8 shows the change of the mean squared one-step-ahead prediction error. It can be seen that the

decrease of the signal-to-noise (SNR) ratio increases the prediction error. The figures also show that the
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(c) Reduced identified models
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(d) One-step-ahead prediction error
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(e) Reduced models error

Figure 7: Contours of the heated plate model at discrete-time step k = 90 of the validation data. The black square markers

are the sensor locations with their corresponding sensor numbers left of the markers.

full models have better prediction performance than the reduced ones, but the difference decreases the

SNR decreases (increase of the noise level). For the full models, the error increases exponentially while for

the reduced models it is relatively constant for larger SNR values and almost linearly increases for smaller

ones. It can also be seen that for a relatively narrow range of low noise level, the reduced models have

better robustness than the full ones.
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(a) Sensor 1: increasing noise

102030405060
0

5

10

15

SNR [dB]

M
SE

 P
re

di
ct

io
n

(b) Sensor 5: increasing noise

Figure 8: One-step ahead prediction error of sensors 1 and 5 for the increasing noise variance. The solid lines are the full model

and the dashed lines the reduced models.

4.2. Greenhouse temperature model identification

The proposed approach is also used to identify a model based on data from a small-scale greenhouse setup

shown in Figure 9. The setup was built at TNO in the Netherlands. Its length is 4.6 m, its width 2.4 m,
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while the height of the wall and the roof are 2.4 m and 2.9 m, respectively. Six 400 W convection heaters,

each of 0.6×0.6 m, are placed on the floor of the setup. This gives an average of 200 W m−2 irradiance.

The heaters are meant to mimic the convective effect as the absorption of solar energy by the floor during

the day [46]. The coordinates of the centers of the heaters are shown in Table 4.
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Figure 9: A schematic of the greenhouse with its physical dimensions.
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Figure 10: A schematic of the sensor locations in the greenhouse.

The temperature measurements are collected using wireless sensors, which is a promising technology, with

some applications in production greenhouses already reported [47]. For the experiments, a total of 68

sensor nodes have been installed to measure the temperature inside the greenhouse. Out of these, 45

sensor nodes are arranged on a grid with the spacing in z1, z2, and z3 equal to 0.3000 m, 0.7667 m, and

0.5500 m, respectively. Additional 5 sensor nodes are placed below the roof, 6 sensor nodes are right at the

center of the heaters, and 12 sensors are attached on the four walls of the greenhouse. The schematic of

the sensor locations is given in Figure 10 and the photo of the setup is in Figure 11.

Throughout the identification experiments, the heaters were turned on and off in pairs: heater 1 paired

with heater 4, heater 2 with heater 5, and heater 3 with heater 6 so that there are three different input
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Figure 11: A photograph of the greenhouse setup used in the case study.

Table 4: The center coordinates of the convection heaters in the greenhouse

Heater # (z1, z2, z3) Heater # (z1, z2, z3)

Heater 1 (0.90, 3.45, 0.00) Heater 4 (1.50, 3.45, 0.00)

Heater 2 (0.90, 2.30, 0.00) Heater 5 (1.50, 2.30, 0.00)

Heater 3 (0.90, 1.15, 0.00) Heater 6 (1.50, 1.15, 0.00)
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Table 5: Mean square error and variance of error of the full and reduced models for the greenhouse data example

MSE R2 fit

Sensor # Full model Reduced model Full model Reduced model

215 0.0310 0.0261 99.8772% 98.9155%

257 0.0229 0.0243 99.6821% 99.6515%

signals. In total 3179 data samples have been acquired of which 2149 samples are used for identification

and 1030 samples for validation. The data sets are centered by subtracting their means before the

identification and model reduction with lasso are applied.

Among all sensors, identification results from two sensor nodes are presented: sensor node 215, located at

position (1.80, 3.83, 1.10) and sensor node 257 located at (0.00, 0.00, 2.20). The neighborhood radius

selected is ̺ = 1.25 m, which gives 19 neighbors for sensor node 215 and 7 neighbors for sensor node 257.
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Figure 12: Greenhouse setup measurements (blue) and one-step-ahead predictions (red) for the model with full set of inputs

and reduced inputs using the centered validation data set and their corresponding estimation error, i.e., error from the full

model ( black ) and from the reduced model (red).

A 30th-order linear ARX structure is selected for the model so that initially there are 570 parameters and

280 parameters for respectively sensor node 215 and 257. The measurements, full input model, and reduced

input model simulation output, and the corresponding one-step estimation errors of the validation data are
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shown in Figure 12. Setting the maximum number of parameters to 10, the following models are obtained:

y215(k + 1) = 0.8241 y215(k − 1) + 0.1332 y215(k − 2) + 0.0065 y215(k − 3)

+ 0.0037 y215(k − 5) + 0.0041 y215(k − 7) + 0.0043 y215(k − 8)

+ 0.0113 y206(k − 1) + 0.0048 y218(k − 1) + 0.0027 y218(k − 2)

+ 0.0043 y218(k − 3)

y257(k + 1) = 0.6206 y257(k − 1) + 0.2410 y257(k − 2) + 0.0093 y257(k − 3)

+ 0.0368 y257(k − 4) + 0.0092 y8(k − 1) + 0.0480 y220(k − 1)

+ 0.0064 y234(k − 1) + 0.0198 y264(k − 1) + 0.0003 y20(k − 1)

+ 0.0036 y20(k − 2)

where the same as the example above, yi(k) is the measurement at sensor node i. It can be seen that the

neighboring measurements contribute to the identified model. The MSE and the R2 fit for the validation

data are shown in Table 5. For sensor 215, it can be seen that the MSE is smaller and the R2 fit is larger

for the reduced input model compared to the full model; while for sensor 257, the MSE increases slightly

and the R2 fit decreases slightly. For the case of sensor 215, the reduction of the R2 fit suggests the full

model is over-parameterized. Generally, it can be said that reducing the number of inputs in the models

does not significantly decrease the performance of the models. This also indicates that the proposed

identification framework works well in this example.

A set of simulations were performed to see how good the performance, in term of the one-step ahead

prediction MSE, the models for different number of neighbors for sensor 238. This sensor is located about

the middle of the setup and has 8 neighbors with the same height z3. For neighbor visualization ease, the

labeled sensors are shown in Figure 13. The identification is performed for 2, 4, 6, and 8 neighbors

excluding sensor 238 itself. The performance of the full and the reduced models are compared for the

validation data. The neighbors and the performance comparison are shown in Table 6. From the table, it

can be seen that the one-step ahead prediction errors differ insignificantly for different number of

neighbors. This shows the proposed framework does not sensitive to the number of neighboring sensors.

An experiment to estimate values at locations that are not measured is also performed for sensors shown

in Figure 13. In this experiment, data from sensor 217, 238, and 241 are not identified and their estimates

for the validation data are obtained by using the ordinary kriging. The experiment is performed for both

full and reduced models. The kriging models are developed by using the estimates of the validation data of

the rest of the sensors. The results are shown in Figure 14 for the estimates and their corresponding error

respectively. The experiment is repeated by omitting sensor 216, 217, 218, 240, 241, and 242. The

estimates are shown in Figure 15 and their corresponding error in Figure 16.

The figures show that the ordinary kriging estimates the values at locations that are not measured
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Figure 13: Sensors at z3 = 1.1 with sensor id labels.

Table 6: The coordinates of sensor 238, its neighbors, and its performance for different numbers of neighboring sensors. The

X symbol means the sensor is used as neighbors

Number of neighbors

Sensor # 2 4 6 8

213 X X X X

214 X X X X

215 X X X

216 X

217 X X X

218 X X

237 X

239 X

240 X X X X

241 X X X X X X

242 X X X

243 X X X

244 X X X

245 X X

MSE full 0.0215 0.0215 0.0216 0.0211 0.0220 0.0208 0.0220 0.0222

MSE red 0.0236 0.0230 0.0238 0.0233 0.0235 0.0239 0.0235 0.0239
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sufficiently well. Furthermore, estimate differences between the full and the reduced models are not

significant. For the second experiment, it can be seen that the kriging estimates for sensor 216, 217, and

218 look similar; and so are those for sensor 240, 241, and 242. This is can be explained by looking at the

validation data from sensor 216, 217, and 218 plotted as a group in Figure 17a and those from sensor 249,

241, and 242 as the other group in Section 4.2. From the figure, it can be seen that the temperature

difference within a group is small and this creates kriging estimates with insignificant difference among

them.
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(b) Sensor 238 estimates
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(c) Sensor 241 estimates
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(d) Sensor 217 estimation error

200 400 600 800 1000
−0.5

0

0.5

1

Discrete time step k

U
nm

ea
su

re
d 

va
lu

e 
es

tim
at

es

(e) Sensor 238 estimation error
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(f) Sensor 241 estimation error

Figure 14: Validation data estimates for sensor 216, 238, and 241 by using the ordinary kriging and their corresponding error.

For (a), (b), and (c), black plots are the validation data, magenta plots are estimates from the full models, and blue plots are

estimates from the reduced models. For (d), (e), and (f), magenta plots are errors from the full models and blue plots are

errors from the reduced models.

Contour plots of the greenhouse temperature for 0.6 ≥ z1 ≥ 1.8, 0.767 ≥ z2 ≥ 3.833, and fixed z3 = 1.1 are

shown in Figure 18. The plots are in 2D because the ooDACE toolbox is only able to build kriging model

from 2D data. The same as in the heated plate example, the plots show the contour of the validation data,

the one-step ahead prediction of the full and reduced models. It can be seen that the interpolation is larger

with the reduced models than that of the full model.
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(b) Sensor 217 estimates
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(c) Sensor 218 estimates
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(d) Sensor 240 estimates
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(e) Sensor 241 estimates
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(f) Sensor 242 estimates

Figure 15: Validation data estimates for sensor 216, 217, 218, 240, 241, and 242 by using the ordinary kriging. Black plots are

the validation data, magenta plots are estimates from the full models, and blue plots are estimates from the reduced models.
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(a) Sensor 216 estimation error
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(b) Sensor 217 estimation error
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(c) Sensor 218 estimation error
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(d) Sensor 240 estimation error
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(e) Sensor 241 estimation error
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(f) Sensor 242 estimation error

Figure 16: Validation data estimation error for sensor 216, 217, 218, 240, 241, and 242 by using the ordinary kriging. Magenta

plots are errors from the full models and blue plots are errors from the reduced models.
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(b) Sensor 240, 241, and 232

Figure 17: Validation data plot from sensor: (a) 216 in black, 217 in blue), 218 in magenta (b) 240 in black, 241 in blue, and

243 in magenta
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(c) Reduced identified models
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Figure 18: Contours of the greenhouse temperature model at discrete-time step k = 400 of the validation data for 0.6 ≥ z1 ≥

1.8, 0.767 ≥ z2 ≥ 3.833 and fixed z3 = 1.1. The black square markers are the sensor locations and the labeled sensors are used

to build the kriging model.
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5. Conclusions and future research

In this paper, a methodology for the identification of distributed-parameter systems was presented. The

methodology is a finite-difference based method that takes into account inputs from neighboring

measurements and actuators into the model. The methodology assumes that the underlying partial

differential equation is not known. Although a finite-difference based method is proposed, the methodology

does not require dense measurement locations in the system. This feature allows the applicability of the

methodology to real-life systems, which generally have a limited number of measurements. Model

reduction methods may be applied to reduce the complexity of the model in case a large number of inputs

are involved in the model. The effectiveness of the methodology has been shown with the help of two

examples, a simulated heated plate and a real greenhouse.

There are several open problems related to the proposed methodology. The first one is how to use the

identified model to design a controller or an observer. Models from each sensor can be stacked to form a

state space representation, where the measurements at sensor locations represent the states of the system.

From the fact that the states are coupled across different measurement locations, the question is how

straightforward it is to apply the available control design methods for the identified model. The second

open problem is about optimal sensor location. In the literature, techniques have been proposed to place

sensors for a distributed-parameter system given a certain partial differential model [38]. An extension to

handle an unknown or partially known model structure may increase the applicability of the proposed

methodology. The third open problem is the choice of the neighbors. Selecting the right neighbors helps to

reduce the computational effort to solve the identification problem. For example, for the greenhouse the

neighbor selection is important in case the influence of air flow dynamics inside the modeled chamber

cannot be neglected. This leads to the fourth open problem, namely, how to apply the methodology online

in case dynamic neighbor selection is required to handle the air flow dynamics. Finally, further research

will be focused on the extension of the methodology to nonlinear distributed-parameter systems.
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