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Abstract

In this paper, a novel modeling framework for forecasting electricity prices is proposed. While many predictive models
have been already proposed to perform this task, the area of deep learning algorithms remains yet unexplored. To fill
this scientific gap, we propose four different deep learning models for predicting electricity prices and we show how they
lead to improvements in predictive accuracy. In addition, we also consider that, despite the large number of proposed
methods for predicting electricity prices, an extensive benchmark is still missing. To tackle that, we compare and analyze
the accuracy of 27 common approaches for electricity price forecasting. Based on the benchmark results, we show how
the proposed deep learning models outperform the state-of-the-art methods and obtain results that are statistically
significant. Finally, using the same results, we also show that: (i) machine learning methods yield, in general, a better
accuracy than statistical models; (ii) moving average terms do not improve the predictive accuracy; (iii) hybrid models

do not outperform their simpler counterparts.
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1. Introduction

Because of the liberalization of the electricity markets
in the past decades, the dynamics of electricity prices have
become a complex phenomenon with rare characteristics
and important consequences. In particular, when com-
pared with other commodities, electricity trade displays a
set of attributes that are quite uncommon: constant bal-
ance between production and consumption [1]; dependence
of the consumption on the time, e.g. hour of the day, day
of the week, and time of the year; load and generation
that are influenced by external weather conditions [2]; and
influence of neighboring markets [3]. Due to these char-
acteristics, the dynamics of electricity prices have become
very complex, e.g. highly volatile prices with sudden and
unexpected price peaks [2].

In recent years, with the increasing penetration of re-
newable energy sources (RES), the described behavior has
aggravated. In particular, while there are no questions
regarding the contribution of RES to build a more sus-
tainable world, several concerns have been raised regarding
their influence on electricity prices and grid stability. More
specifically, as the penetration of RES increases, so does
the dependence of electricity production w.r.t. to weather
conditions and, in turn, the volatility in electricity prices.
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This relation has been largely identified in the literature:
[4] studied the effect of wind power penetration on the
New England electricity market and concluded that price
volatility increases with increasing wind penetration. Sim-
ilarly, [5] carried out a similar study for the Texas market
and also concluded that price volatility increased with in-
creasing wind penetration. Looking at the penetration of
solar power, [6] indicated that price spikes are expected
to occur more frequently as the share of PV increases in
the California system. Likewise, looking at the effect of
increasing wind penetration in UK for the year 2020, [7]
reported that prices are expected to be more volatile than
at present.

Due to this effect, as the increasing integration of RES
increases the volatility of prices, the behavior of mar-
ket agents becomes naturally more unpredictable, sudden
drops in generation and consumption are more likely to oc-
cur, the imbalances between production and consumption
increase, and the electrical grid becomes more unstable.

In order to tackle the problems mentioned above, elec-
tricity markets together with electricity price forecasting
have become a central point of research in the energy sec-
tor. In particular, by improving the forecasting accuracy,
the negative effects of price uncertainty can be mitigated,
the grid can be stabilized, and economic profits can be
made.



1.1. FElectricity Price Forecasting

The electricity price forecasting literature is typically
divided into five areas: (i) game theory models, (ii) fun-
damental methods, (iii) reduced-form models, (iv) statis-
tical models, and (v) machine learning methods [2]. Since
statistical and machine learning methods have showed to
yield the best results [2], they are the focus of this review,
and in turn, of the benchmarking experiment that will be
performed in this paper.

Common statistical methods are: autoregressive (AR)
and autoregressive with exogenous inputs (ARX) mod-
els [8], double seasonal Holt-Winter (DSHW) models
[9], threshold ARX (TARX) models [10], autoregressive
integrated moving average (ARIMA) models [11, 12],
semi/non-parametric models [8, 13], generalized autore-
gressive conditional heteroscedasticity (GARCH) based
models [14-16], or dynamic regression (DR) and transfer
function (TF) models [17]. In addition, hybrid versions of
the previous models are also common, e.g. wavelet-based
models [12, 18, 19].

A pitfall of statistical models is that they are usually lin-
ear forecasters, and as such, they might not perform good
in data where the frequency is high, i.e. hourly data with
rapid variations and high frequency changes. In particu-
lar, while they show a good performance if the data fre-
quency is low, e.g. weekly patterns, the nonlinear behavior
of hourly prices might become too complicated to predict
[20]. To address this issue and predict the nonlinear behav-
iors of hourly prices, different machine learning methods
have been proposed. Among them, multilayer perceptrons
(MLPs) [21-24], support vector regressors (SVRs) [25, 26]
and radial basis function (RBF) networks [27] are the most
commonly used.

While the academic literature comprises a much larger
collection of approaches, e.g. see [2, 28], a complete review
falls outside of the scope of this paper.

1.2. Deep Learning

In the last decade, the field of neural networks has ex-
perienced several innovations that have lead to what is
known as deep learning (DL). In particular, one of the
traditional issues of neural networks had always been the
large computational cost of training large models. How-
ever, that changed completely when [29] showed that a
deep belief network could be trained efficiently using an
algorithm called greedy layer-wise pretraining. As related
developments followed, researchers started to be able to
efficiently train complex neural networks whose depth was
not just limited to a single hidden layer (as in the tradi-
tional MLP). As these new structures systemically showed
better results and generalization capabilities, the field was
renamed as deep learning to stress the importance of the
depth in the achieved improvements [30, Section 1.2.1].

While this success of DL models initiated in computer
science applications, e.g. image recognition [31], speech
recognition [32], or machine translation [33], the bene-
fits of DL have also spread in the last years to several

energy-related applications [34-39]. Among these areas,
wind power forecasting is arguably the field that has ben-
efited the most: [34] shows how, using a deep belief net-
work and quantile regression, probabilistic forecasting of
wind speed can be improved. Similar to [34], [39] proposes
a deep feature selection algorithm that, in combination
with a multi-model framework, improves the wind speed
forecasting accuracy by 30%. In the same area of research,
[37] proposes an ensemble of convolutional neural networks
(CNNs) to obtain more accurate probability forecasts of
wind power.

In addition to wind power applications, DL has also
shown success in other energy-related fields. In the con-
text of load forecasting, [36] proposes a deep autoencoder
in combination with an extreme gradient boosting (XGB)
model and shows how they forecast building cooling load
more accurately than alternative techniques; within the
same research paper, a deep neural network (DNN) to ac-
curately forecast building cooling load is also proposed.
For a different application, [38] proposes a DL model to
detect islanding and to distinguish this effect from grid dis-
turbances; based on the obtained simulation results, [38]
indicates that the DL model can detect islanding with a
very high accuracy. In addition, [35] proposes a DL strat-
egy for time series forecasting and shows how it can be used
successfully to forecast electricity consumption in house-
holds.

1.3. Motivation and Contributions

Despite the success of DL in all these energy-related
areas and time series forecasting applications, there has
not yet been, to the best of our knowledge, an attempt
to bring its ideas and models to the field of electricity
price forecasting. In particular, while neural networks have
been proposed, they have been traditionally limited to one-
hidden-layer networks, e.g. MLPs [21, 22, 40, 41] and RBF
networks [27, 42], or to simple versions of recurrent neu-
ral networks (RNNs), e.g. Elman networks [43, 44]. While
these simpler models are sometimes suitable, there are at
least three arguments suggesting that using deeper struc-
tures could potentially benefit predictive accuracy:

1. Advanced RNN structures, e.g. long-short term mem-
ory (LSTM) [45] or gated recurrent unit (GRU) [46]
networks, have shown to be a much better alternative
to accurately model complex nonlinear time sequences
[47-49], e.g. electricity prices.

2. While a single layer network can in theory model any
nonlinear continuous function, a network with more
than one hidden layer might be able to model the same
function with a reduced number of neurons. There-
fore, deep networks might actually be less complex
and still generalize better than a simple MLP.

3. Considering the excellent results obtained in forecast-
ing time series in other energy-related applications
[34-39], it is possible that forecasting electricity prices
might also benefit from using DL architectures.



Based on these arguments, the focus and main contribu-
tion of this paper is to propose a collection of different DL
models that can be successfully used for forecasting day-
ahead electricity prices. In particular, the paper develops
a DL modeling framework comprising four models:

1. A DNN as an extension to the traditional MLP.
2. A hybrid LSTM-DNN structure.

3. A hybrid GRU-DNN structure.

4. A CNN model.

Then, considering a large benchmark comparison and a
case study, it shows that the proposed DL modeling frame-
work leads to improvements in predictive accuracy that are
statistically significant.

In addition, as a second contribution, the paper also
tries to establish an extensive benchmark of commonly
used forecasters for predicting electricity prices. In par-
ticular, since even the largest benchmarks in the literature
[8, 9, 50, 51] have been limited to 4-10 different forecasters,
the paper considers that a conclusion on the relatively ac-
curacy of the different forecasters cannot be drawn. With
that motivation, we aim at providing a large empirical
evaluation of 27 common forecasters for day-ahead elec-
tricity prices to bring new insights on the capabilities of
the various models.

The paper is organized as follows: Section 2 introduces
the theoretical concepts and state-of-the-art methods that
are used in the research. Next, Section 3 presents the pro-
posed DL framework. Section 4 defines the base forecast-
ers that are collected from the literature and considered in
the benchmark. Next, Section 5 evaluates the base and DL
models in a case study, compares the obtained predictive
accuracy by means of hypothesis testing, and discusses the
results. Finally, Section 6 concludes the paper and outlines
the main results.

2. Preliminaries

In this section, the theoretical concepts and algorithms
that are used in the research are introduced.

2.1. Day-Ahead Forecasting

A type of power exchange that is widely used in many
parts of the world is the day-ahead electricity market. In
its most general format, bids are submitted for the 24
hours of day d before some deadline on day d — 1. These
bids are usually defined per hour, i.e. every market player
has to submit 24 bids. After the deadline has passed, the
market operator uses the submitted bids to compute the
market clearing price for each of the 24 hours. Then, all
the market agents get an energy allocation that depends
on the market clearing price and the bids submitted by
the market agent.

Considering this market format, a useful forecaster
should predict the 24 market clearing prices of day d based
on the information available before the deadline on day
d—1.

2.2. Deep Learning

In this section, we give a brief description of the DL
structures considered in the modeling framework. For the
sake of conciseness, we provide a large explanation of the
DL models in Appendix A.

The basic DL model is the DNN [30], the natural ex-
tension of the traditional MLP that uses multiple hidden
layers. When compared with a standard MLP, a DNN
requires specific model changes to be efficiently trained,
e.g. activation functions different from the standard sig-
moid.

Slightly more complex than DNNs are RNNs [30], a type
of network that builds additional mappings to hold rele-
vant information from past inputs and that are suitable
for modeling time series data, e.g. electricity prices. The
two state-of-the-art recurrent networks are LSTM [45] and
GRU networks [48]; unlike standard RNNs, they are able
to model a selective forget-remember behavior. While
both structures are very similar, GRUs have a simpler
structure and they are faster to train.

A different type of DL structure are CNNs, a type of
network that are modeled using three building blocks: a
convolution operation, a pooling operation, and a fully
connected layer. Given an array of data, the convolution
operation slides a filter across the data array and com-
putes local element-wise cross product between the filter
and the data. As different filters capture different prop-
erties, CNNs typically use various filters to obtain differ-
ent data arrays known as feature maps. In a subsequent
step, the pooling operation reduces the size of these feature
maps by reducing large areas into single values. Finally,
after several convolutions and pooling operations are done,
the values of the last feature maps are used as inputs for
a fully connected layer.

2.3. Hyperparameter Optimization

Hyperparameters are model parameters that have to be
selected before the estimation process, e.g the number of
neurons in a neural network or the lag order in an ARIMA
model. In the case of our benchmark study, to objec-
tively analyze and compare the accuracy of each bench-
mark model, we optimize this selection following the same
automated procedure for each individual model. In par-
ticular, we employ the tree-structured Parzen estimator
[52], a sequential model-based optimization algorithm [53]
within the family of Bayesian optimization [54] methods.

2.4. Performance Metrics

A performance metric is needed to evaluate and compare
the accuracy of the forecasters. In this paper, we consider
the symmetric mean absolute percentage error (sMAPE)
[55] metric:
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where [y1,...,yn]" are the real outputs to be predicted
and [J1,...,9n]" the predicted values.

As in [3], sSMAPE is selected instead of the more tra-
ditional mean absolute percentage error (MAPE) metric

because of the issues that affect MAPE [55].

2.5. Diebold-Mariano Test

The sMAPE is a metric that can be used to compare
which model has a better accuracy. However, the fact
that the accuracy of a model is higher, is not enough to
guarantee that the model is better. In particular, to have
a minimum assurance that a model is better, the difference
in accuracy should be statistically significant. To evaluate
this, the Diebold-Mariano (DM) test [56] is the statistical
test that is typically used.

Given a time series vector [y1,...,yn]' to be forecast,
two prediction models M; and Ms, and the associated
forecasting errors [e}', ..., eN]T and [e}2,...,eN?]T
the DM test builds a covariance stationary loss function
L(&Q/Ii) and the associated loss differential:

)

di" M = Liey™) = L), (2)

Then, in its one-sided version, the DM test evaluates the
null hypothesis Hy of M7 having an accuracy equal to or
worse than Mo, i.e. equal or larger expected loss, against
the alternative hypothesis H; of M7 having a better accu-
racy, i.e.:

One-sided [ Ho : E[d,*"?] > 0, .
DM test | H, : E[d,"""] <o0. ®)

If Hy is rejected, the test concludes that the accuracy of
the forecast of M is statistically significantly better.

3. DL Modeling Framework

As indicated in the introduction, the main goal of this
paper is to propose a DL modeling framework as a fore-
casting tool for day-ahead electricity prices. As a first step
to achieve that, this section develops the four DL models
comprising the framework.

3.1. Market Integration

Before describing each model separately, it is important
to note that a common feature to all DL models is market
integration. In particular, to improve the predictive ac-
curacy, all the DL models simultaneously predict electric-
ity prices of various day-ahead markets. The idea behind
is that, as shown in [3], due to market integration and
by multitasking, i.e. predicting prices in different markets,
the models can learn more general features and integrate
relations across neighboring markets.

In detail, regarding a local market L that is subject to
study and a set of ¢ neighboring markets N1, ..., N¢, each
DL model predicts the following output:

P= Lleu“prmapth"7pN024]T? (4)

where pr, = [pL,,...,PL,,)  is the vector of day-ahead
prices in the local market, and pn; = [PNi,, - - - » PNiss) | 18
the vector of day-ahead prices in the neighboring market

1.

3.2. DNN Model

As a simple extension of the traditional MLP, the first
DL model for predicting day-ahead prices is a deep neural
network with two hidden layers. In particular, defining as
X = [21,...,2,]" the input of the model, as n; and nsy the
respective number of neurons of the first and the second
hidden layer, and by p = [pL,, - - > PLass PN1ys - - - » PNegs) |
the vector of day-ahead prices that we intend to forecast,
the corresponding model is represented in Figure 1.

Hidden
layer

Hidden
layer Output

layer

Input
layer

Figure 1: Deep neural network to simultaneously forecast day-ahead
prices in several countries.

8.8. LSTM-DNN Model

The second DL model for predicting day-ahead prices
is a hybrid forecaster combining an LSTM and a DNN
network. The motivation behind this hybrid structure is
to include a recurrent layer that can learn and model the
sequential relations in the time series data as well as a
regular layer that can learn relations that depend on non-
sequential data.

In detail, for this new model, the inputs are divided be-
tween those that model sequential time data, e.g. past elec-
tricity prices, and those that model regular data, e.g. day
of the week or day-ahead forecasting of the grid load. This
division is necessary because the LSTM network requires
a sequence of time series values as an input. However,
considering all the possible regressors for electricity price
forecasting, it is clear that some of them do not have that

property.



In general, for the case of electricity prices, the dis-
tinction between these two types of data can be done
by considering the time information represented in the
data. Specifically, if the data represents a collection of
past values, it can normally be modeled as time sequential
data and used as an LSTM regressor. By contrast, if the
data represents some specific property associated with the
day ahead, i.e. it represents direct information of a future
event, it cannot be modeled as a time sequence. Examples
of the first could be past day-ahead prices or the measured
grid load; examples of the second could be the day-ahead
forecast of the weather or whether tomorrow (day-ahead)
is a holiday. Using this distinction, the inputs of the model
are divided between two groups:

e Input vector Xp = [TF1,...,2F,] | € R" representing

future information.

e A collection {Xé};lzl of ¢ input sequences, where
XL = [zL,,...,25y]T € RY is a vector representing
past information.

Using this separation, the model uses a DNN to process
the inputs X and an LSTM to process the time sequences
{Xis};]:y Then, the outputs of these two networks are
concatenated into one vector and this vector is fed into a
regular output layer.

Defining the number of neurons of the DNN and LSTM
layers respectively by ng and ng, and by zr, and [zs,, ¢s,] T
the internal state of their neuron i, an example of the
proposed model is represented by Figure 2.

3.4. GRU-DNN Model

The third DL model for predicting day-ahead prices is
a hybrid model combining a GRU and a DNN network.
As with the LSTM-DNN hybrid structure, the motivation
behind this model is to include a layer that is tailored to
sequential data. However, to reduce the computational
burden of the LSTM layer, a GRU layer is used instead to
model the time data sequences {Xg};l:l. Specifically, if in
Figure 2 the LSTM cell states [zs,,cs,| T are replaced by
the corresponding GRU cell state zg,, the modified figure
would represent an example of the new proposed model.

3.5. CNN Model

The fourth DL model for predicting day-ahead prices is
a CNN network. As in the previous two cases, the inputs
are divided between those that model sequential past data
and those that model information regarding the day ahead.
For the hybrid models, the division was necessary because
the recurrent layers needed sequential data. In this new
case, the separation is required in order to group data
with the same dimensions as inputs for the same CNN. In
particular, the data is separated into two parts:

e The same collection {XzS ;1:1 of ¢ input sequences
used for the hybrid models. As before, Xé =
[z&q, ... ,xZSN]T € RY is a vector representing some
sequential past information.
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Figure 2: Hybrid DNN-LSTM network to simultaneously forecast
day-ahead prices in several countries.

e A new collection {X%}::l of r input vectors, where

cach vector Xf, = [z} ..., 2} |7 € R** represents
some future information of the 24 hours of the day
ahead. These data are equivalent to the day-ahead
inputs Xg = [TF1,...,2F,] | of the hybrid models. In
particular, the values in Xy representing hourly day-
ahead values, e.g. forecast of the grid load, are directly
mapped into the corresponding 24-values sequence.
By contrast, the values in Xy representing some day-
ahead property, e.g. holidays, are repeated 24 times
to build the equivalent vector.

Given this separation, the model uses 2 parallel CNNs to
model the electricity price dynamics. In particular, a first
CNN considers the r input sequences {X%}::l as r input
channels. Then, a parallel CNN regards the remaining ¢
input sequences {Xis}g:l as ¢ input channels. Next, both
networks perform a series of convolution and pooling oper-
ations. Finally, the feature maps at the end of both CNNs
are connected into a fully connected layer that models the
day—ahead prices p= [pL17 -+ 3y PLayy PN1y5 - - - ,chz4]T' As
with the hybrid networks, the motivation behind using this
structure is to have a network with layers tailored to se-
quential past data as well as with layers tailored to non-
sequential data. -

Defining the internal states of both networks by 2’ and

zéi , with 4 representing the layer of the network, j the
specific feature map in layer 7, and k the state within the



feature map j of layer i, Figure 3 depicts an example of this
type of structure. For the sake of simplicity, the example
illustrates both CNNs performing just a single convolution
and pooling operation and using only two filters.

3.6. Selection of the Network Structure

To complete the modeling framework, the details of the
models have to be selected; in particular, for each of the
proposed forecasters, there are many hyperparameters to
be selected, e.g. the number of neurons, the type of acti-
vation function, etc. However, while the structure of the
proposed models is general for any electricity market, the
specific architecture and implementation details might be
not. Specifically, hyperparameters such as the number of
neurons might depend on the market under study, and
thus, they should be optimized accordingly. As a result,
in this section, we limit the explanation to which hyperpa-
rameters are optimized. Next, in later sections, we indicate
the specific optimal selection for the case study.

3.6.1. Common Hyperparameters
While some hyperparameters are model-specific, three
of them are common to the four models:

1. Activation function: Except for the output layer
that does not use any, all the layers within a network
use, for the sake of simplicity, the same activation
function. This function is chosen with a single hy-
perparameter, and in the case of the hybrid models,
i.e. GRU-DNN and LSTM-DNN, two hyperparame-
ters are used so that each network type can employ a
different activation function.

2. Dropout: Dropout [57] is included as a possible reg-
ularization technique to reduce overfitting and to im-
prove the training performance. To do so, at each it-
eration, dropout selects a fraction of the neurons and
prevents them from training. This fraction of neurons
is defined as a real hyperparameter between 0 and 1.

3. L1-norm penalization: In addition to dropout, the
models can add an L1-norm penalization to the net-
work parameters as a different way of regularizing.
Defining the network weights by W and using an-
other binary hyperparameter, the models can choose
whether to add to the cost function the following
term:

MW (5)

If regularization is selected, A\ becomes a real hyper-
parameter.

3.6.2. DNN Hyperparameters
The DNN model uses two additional model-specific hy-
perparameters:

e n1/ny: number of neurons in the first/second hidden
layer.

3.6.3. LSTM-DNN / GRU-DNN Hyperparameters
For the two hybrid models, there are three additional
model-specific hyperparameters:

1. npsTMm/neru: number of neurons in the recursive
layer.

2. npNN: number of neurons in the DNN layer.

3. Sequence length: For the LSTM structure, each
input is modeled as a sequence of past values. Con-
sidering that values too far in the past do not cause
any effect in the day-ahead prices, selecting the right
length for the input sequences might remove unneces-
sary complexities. Therefore, a third hyperparameter
is used to select the length of the input sequences.

8.6.4. CNN Hyperparameters

Depending on which of the two CNN structures they
affect, the specific hyperparameters of the CNN model can
be divided into three groups:

1. The hyperparameters that are common and equal to
the two CNN structures:

(a) Pooling frequency: The pooling operation
does not have to be always performed right af-
ter every convolution. Therefore, an integer hy-
perparameter is used to select how frequently,
i.e. after how many convolutional layers, pooling

is performed.
(b) Pooling type: To enlarge the number of pos-

sible architectures, a binary hyperparameter se-
lects whether the model uses the average pooling
or the maximum pooling operation.
2. The hyperparameters that only apply to one of the
two CNN structures:

(c) Channel length: For the CNN with past se-
quences, the length of the input channels is se-
lected as an integer hyperparameter. In the case
of the other CNN, the input channels have a
length of 24 that correspond with the 24 hours
of the day ahead.

3. The integer hyperparameters that, while employed in
both networks, their value can be different.

(d) Filter size: the size of the filter of the convolu-

tion operation.
(e) Number of convolutions: the number of con-

volutional layers in each CNN.
(f) Feature maps in first layer: The number of

feature maps in every layer is determined by se-
lecting the number of feature maps in the first
layer. In particular, the number of feature maps
in successive layers is simply doubled every two
convolutional layers. This choice is used to re-
duce the total number of hyperparameters. In
particular, a more general approach could be
to select the number of convolution layers, and
then, to model the number of features maps in
each of these layers with a different hyperparam-
eter. However, this approach is avoided as it re-
quires a much larger computational cost.
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Figure 3: Hybrid DNN-LSTM network to simultaneously forecast day-ahead prices in several countries.

3.7. Model Estimation

In the proposed framework, all the neural networks are
trained by minimizing the mean absolute error. In par-
ticular, given the training set S; = {(Xk,pk)}:]:l with
N data points, the networks are trained via the following
optimization problem:

N
minjmize 2 Pk — F (X, w) |1, (6)

where w represents the vector of all network weights and
F : R* — R?4(¢+D) the neural network map. The selec-
tion of the mean absolute error instead of the more tradi-
tional root mean square error is done for a simple reason:
as the electricity prices have large spikes, the Euclidean
norm would put too much importance on the spiky prices.
The optimization problem is solved using Adam [58], a
stochastic gradient descent method [59] that uses adap-
tive learning rates. The advantage of using this optimiza-
tion method is that the learning rate does not need to be
tuned online. Together with Adam, the proposed models
also considers early stopping [60] to avoid overfitting.

4. Benchmark Models for Electricity Price Fore-
casting

In order to have a large benchmark study, we consider,
in addition to the 4 proposed DL forecasters, a set of 23
different models that have been proposed in the literature
of electricity prices forecasting. In addition, to further en-
large the benchmark, we consider different versions of each
of the 27 individual models in order to have a benchmark
of 98 models.

As the 23 models from the literature will be used to
evaluate the proposed DL models, they are referred to as
base forecasters. Moreover, as the aim of this study is not
only the evaluation of the DL models but also to estab-
lish a large benchmark within the community of electric-
ity price forecasting, we try to consider a fair selection of
base models by including the most common and known
forecasters from the literature. In particular, we use the
excellent literature review of [2] and the newest advances
in the field to make the selection as complete as possible.
It is important to note that, while the main principles of
each base model are defined below, the model equations
are not provided. Instead, we refer to the original papers



for full documentation.

Based on the model separation of [2], the 23 base fore-
casters are divided into three different classes: statisti-
cal methods without exogenous inputs, statistical methods
with exogenous inputs, and machine learning methods.

4.1. Statistical Methods Without Exogenous Inputs

The first class of models comprises statistical methods
that only use past prices as input features. Among them,
we make the distinction between AR models, GARCH
models, and exponential smoothing methods.

4.1.1. AR-Type Models

The first subclass of forecasters assumes homoskedas-
ticity, i.e. constant variance and covariance functions, and
models time correlation in the time series using a linear
model. Within this subclass, we have selected four mod-
els:

1. The well-known Wavelet-ARIMA model [18], a
method that has been regularly used in other em-
pirical evaluations [42, 61-63]. This model will be
denoted as wavelet-ARIMA (WARIMA).

2. The double seasonal ARIMA (DSARIMA) model [9],
an ARIMA model that considers the double seasonal-
ity, i.e. weekly and daily, of electricity prices.

3. The AR model of [64], an autoregressive model with
lags of 24, 48, and 168 hours, that also models differ-
ences among days of the week.

4. The Wavelet-ARIMA-RBF model [42], a forecaster
that considers the traditional Wavelet-ARIMA struc-
ture but adds an RBF network to model the residuals.
This model will be denoted as WARIMA-RBF.

4.1.2. GARCH-Based Models

Unlike the AR-type models, GARCH-based models do
not require homoskedasticity in the time series. However,
unlike the former, GARCH models are not accurate in fore-
casting spot electricity prices in standalone applications;
particularly, they need to be coupled with AR-type models
to boost their predictive accuracy [2, Section 3.8.6]. As a
result, within this subclass, we regard the following hybrid
model:

5. The ARIMA-GARCH model [15], a forecaster that
considers a standard ARIMA model with GARCH
residuals.

4.1.8. Ezponential Smoothing Methods

The last subclass is exponential smoothing, a family of
algorithms that make a prediction using an exponentially
weighted average of past observations. Among these meth-
ods, we have selected two different forecasters:

6. The DSHW [65] model, an algorithm that was suc-
cessfully used by [9] for forecasting spot electricity
prices.

7. The exponential smoothing state space model with
Box-Coz transformation, ARMA errors, trend and
seasonal components (TBATS) [66], a forecaster that
is able to model multiple seasonality. While this
method has never been used before for electricity price
forecasting, it is a generalization of the DSHW model
[66]. Therefore, it is an interesting method to con-
sider.

4.2. Statistical Methods with Exogenous Inputs

The second class of models are statistical methods that
consider regressors to enhance the predictive accuracy.
Typical regressors for forecasting electricity prices are the
grid load, the available capacity, or the ambient temper-
ature. Among these models, we can distinguish four sub-
classes: ARX-type models, regime-switching models, semi-
parametric models, and models with automated input se-
lection.

4.2.1. ARX-Type Models

The first subclass is the natural generalization of adding
exogenous inputs to the AR-based models of Section 4.1.1.
Like the AR models, they also assume homoskedasticity
of the data. For the benchmark, we consider four ARX
models:

8. The DR model [17], an ARX model that uses the grid
load as a regressor and that has been used in other
empirical evaluations [51].

9. The TF model [17], an ARX model with moving av-
erage terms that, like the DR model, it uses the grid
load as a regressor and it has also been used in other
comparisons [51].

10. The ARX model proposed in [64], an extension of the
AR method defined in Section 4.1.1 that uses the grid
load as a regressor. We will refer to this model as
ARX.

11. The fulllARX (fARX) model [67], an ARX model
that is an extension of the previous ARX.

4.2.2. Regime-Switching Models

The second subclass, i.e. regime-switching models, con-
siders that the time series can be modeled by different
regimes, that each regime has an independent model, and
that switches between regimes can be modeled by the value
of some variable. We consider a single regime switching
model:

12. The TARX model defined in [10], a model with two
regimes that separate normal prices from spiky dy-
namics. As decision variable, the model uses the dif-
ference between the mean price of one day and of eight
days before. Then, each of the regimes is modeled
with an ARX model that uses the grid load as an
exogenous input.



4.2.8. Semiparametric Models

Semiparametric models are based on the premise that,
given some empirical data, a nonparametric kernel density
estimator might lead to a better fit than any parametric
distribution. To benefit from this hypothesis, they relax
the assumption about the probability distribution that is
typically needed when estimating their parametric coun-
terparts. An example of semiparametric models are the
semiparametric ARX models, which have the same func-
tional form as the equivalent ARX models, but they relax
the normality assumption needed for the maximum like-
lihood estimation [8, 68]. For the benchmark, we regard
two different semiparametric models:

13. The Hsieh-Manski ARX (IHMARX) estimator, an al-
gorithm originally analyzed in [68] and studied in the
context of electricity price forecasting in [8].

14. The smoothed nonparametric ARX (SNARX) estima-
tor, a semiparametric model that was also originally
analyzed in [68] and applied to electricity price fore-
casting in [8].

4.2.4. Models with Automated Input Selection

In the last subclass, we consider a set of models that au-
tomatically select the important exogenous inputs. While
this type of models are instantiations of the previous three
subclasses, we separate them in a fourth subclass due to
their special structure. For the benchmark, we consider
two of them:

15. The fARX regularized with Lasso (fARX-Lasso) [67]
model, the fARX model defined in the subclass of
ARX models that uses Lasso [69] as a regularization
tool to automatically reduce the contribution of unim-
portant inputs.

16. The fARX-EN [67] model, the same model but using
elastic nets [70] as a regularization tool.

4.8. Artificial Intelligence Models

The last class of models comprises the machine learning
models, a family of algorithms that, while also including
exogenous inputs, are able to model more complex nonlin-
ear relations than the previously defined models. Within
this class, we can distinguish three subclasses: models
based on neural networks, SVR-based models, and ensem-
ble methods.

4.3.1. Neural network based models

This subclass can be seen as a family of simpler DL
algorithms. For the benchmark, we regard two different
models:

17. The traditional MLP model, a standard neural net-
work with a single hidden layer widely used by many
authors [9, 21, 22].

18. The RBF network, a model introduced in Section
4.1.1 as part of a hybrid forecaster that has also had
standalone applications [27].

4.8.2. SVR Based Models

Support vector regressors perform a nonlinear mapping
of the data to a higher-dimensional space where linear
functions are used to perform regression. For the bench-
mark, we include the following three models:

19. The plain SVR model as used in [71].

20. The SOM-SVR [25, 72] model, a forecaster that first
clusters data via self-organizing maps (SOM) and
then predicts prices using a different SVR model per
cluster.

21. The SVR-ARIMA [26] model, a hybrid forecaster that
uses a SVR model to capture the nonlinearity of prices
and an ARIMA model for the linearities.

4.3.8. Ensemble Models

Within this final subclass, we include algorithms based
on ensemble methods. Particularly, we consider the two
well-known algorithms based on regression trees [73]:

22. The random forest (RF) [74] model, a forecaster that
predicts data by combining several regression trees. It
is based on the principle of bagging [73, Chapter 8],
i.e. combining models with low bias and high variance
error in order to reduce the variance while keeping a
low bias.

23. The XGB [75] model, which also forecasts data by
combining regression trees, but it is based on the prin-
ciple of boosting [73, Chapter 10], i.e. combining mod-
els with high bias and low variance in order to reduce
the bias while keeping a low variance.

It is important to note that, while to the best of our
knowledge, these models have never been used for electric-
ity price forecasting, we include them in the benchmark as
they display reasonable results.

4.4. Modeling Options

To have a more fair comparison, the mentioned models
are not only considered in their traditional form; particu-
larly, for each model, three modeling options with two al-
ternatives per modeling option are considered, i.e. a model
that could use the 3 modeling options would have 23 = 8
model alternatives.

4.4.1. Modeling Option 1: Spikes Preprocessing

Due to the fact that the dynamics of electricity prices
are characterized by large, but infrequent, spikes [2], better
models might be obtained if spikes are disregarded during
the estimation process. As a result, when estimating the
model parameters, we consider two model alternatives:

1. MO1A1: A first alternative that limits the spike am-
plitude to the mean plus/minus three times the stan-
dard deviation.

2. MO1A2: A second one that uses raw prices.



4.4.2. Modeling Option 2: Feature Selection
For all the models that include exogenous inputs, there
are two additional model alternatives:

1. MO2A1: A first alternative that uses the features
from the original paper. For all the base models, the
original input is the day-ahead grid load forecast given
by the transmission system operator.

2. MO2A2: A second alternative where the features are
optimally selected considering all the available data in
the market under study. This step is done following
the feature selection method described in [3], where
the features are optimally selected by minimizing the
sMAPE of the model in a validation set.

4.4.83. Modeling Option 3: Market Integration

As explained in Section 3, all the DL models simulta-
neously predict electricity prices in various spot markets.
This was done because, as shown in [3], the accuracy of
forecasting electricity prices can be enhanced by includ-
ing market integration. Therefore, for all the forecasters
that model the day-ahead prices in a single model, i.e. that
do not need 24 independent models, two additional model
alternatives are considered:

1. MO3A1: A first alternative where the models only
predict the prices in the local market.

2. MO3A2: A second alternative where the models con-
sider market integration and simultaneously predict
the prices in various markets.

It is important to note that, while this modeling option
is only possible for some models, considering market inte-
gration is available for many more. In particular, for any
of the models with exogenous inputs, market integration
could be modeled using features from connected markets
as model inputs. Therefore, when evaluating the second
alternative of modeling option 2, i.e. MO2A2, market inte-
gration is implicitly considered if features from connected
markets are part of the optimal set of inputs.

4.5. Hyperparameter Optimization

In order to have a fair comparison, not only different
modeling options should be considered, but also the hy-
perparameters of the models should be optimized. In par-
ticular, considering that the hyperparameters of the DL
models are tuned, the configuration of the base models
should also be tuned. As motivated in Section 2.3, this
optimization step is performed using Bayesian optimiza-
tion. Examples of hyperparameters in the base models
are: the size of the lags in all the AR-based models, the
penalty coefficient in the SVR model, or the number of
trees in the random forest.

4.6. Summary

We summarized in Table 1 all the considered benchmark
methods with their properties and modeling options. In
particular, the first column denotes whether a model is
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nonlinear, the second one whether it considers exogenous
inputs, and the last three whether the model can make
use respectively of modeling options 1, 2, and 3. It nec-
essary to remark that these three columns do not indicate
which alternative is the best; more specifically, they sim-
ply show whether a model can consider the alternatives of
each modeling option.

Properties
Non-

linear

Options

Exog.

Model MO1 | MO2 | MO3

Inputs

AR
DSARIMA
WARIMA
WARIMA-
RBF
ARIMA-
GARCH
DSHW
TBATS
DR
TF
ARX
TARX
THMARX
SNARX
fARX
fARX-Lasso
fARX-EN
MLP
RBF
SVR
SOM-SVR
SVR-ARIMA
RF
XGB
DNN
LSTM
GRU
CNN
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PP PR PR o | R R A | e
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Table 1: Compilation of methods considered in the benchmark. The
first two columns denote possible properties of the model. The last
three columns respectively denote whether a model can make use of
the 2 alternatives of modeling option 1, the 2 alternatives of modeling
option 2, and the 2 alternatives of modeling option 3.

It is important to note that, while 27 individual bench-
mark models have been defined, a total of 98 models are
in fact included in the benchmark. In particular, consid-
ering the three modeling options, a total of 27 -2 (MO1) 4+
14 -2(MO2) 4 8 - 2(MO3) = 98 forecasters are included.
However, as a comparison of 98 models would be too vast,
the results in the case study are directly given in base of



the best alternative for each of the 27 individual models.
A description of which alternative performs the best for
each model is listed in 5.3.

5. Case Study

In this section, we perform the empirical study to evalu-
ate the proposed DL models and to analyze the predictive
accuracy of the various base models. To do so, we consider
the day-ahead market in Belgium, i.e. Furopean power ez-
change (EPEX)-Belgium, in the period from 01/01/2010
to 31/11/2016. In particular, as a first step to analyze the
models, we motivate the data that is considered. Then, we
perform the required hyperparameter optimization so that
all the forecasters employ an optimized structure. Next,
after the hyperparameters are optimized, we compare the
predictive accuracy of the various forecasters using a year
of out-of-sample data. From this comparison, we are able
to establish a first evaluation of the DL models as well as
to rank the benchmark models according to their perfor-
mance. Finally, the differences in performance are ana-
lyzed via statistical testing.

5.1. Data

In general, when looking at the day-ahead forecasting
literature, several inputs have been proposed as meaning-
ful explanatory variables, e.g. temperature, gas and coal
prices, grid load, available generation, or weather [2].

5.1.1. Data Selection

For this research, in addition to the past prices pg in the
EPEX-Belgium, we consider several exogenous inputs. As
defined by the second modeling alternative MO2 in Section
4.4.2, the specific subset of inputs is given as either one of
the following alternatives:

1. A first subset that considers as exogenous input the
day-ahead grid load forecast given by the transmission
system operator. This selection is done as this vari-
able has been widely used in the literature [8, 10, 67],
and for all the base models, it is the exogenous input
used in the original papers.

2. A second subset that is obtained by regarding all the
available information for the market under study and
performing feature selection. This step is done follow-
ing the feature selection method described in [3]. The
available input features are:

(a) The day-ahead forecast Ig of the grid load in the

EPEX-Belgium.

The day-ahead forecast gg of the available gen-

eration in the EPEX-Belgium.

Past prices pg in the neighboring EPEX-France

market.

The day-ahead forecast Iy of the grid load in the

EPEX-France.

The day-ahead forecast gr of the available gen-

eration in the EPEX-France.
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We make the distinction between these two alternatives
because, while it is necessary to optimize each model for
our case study, it is also important to evaluate them in
their original format, i.e. as they were originally proposed
in the literature.

It is important to note that, while we optimize the in-
put features for every model, discussing the results of the
feature selection would be too large to include within the
manuscript (we evaluate 27 models, each model predicts
24 hours, and there are available more than 750 individ-
ual input features that can be selected per hour and per
model). As a consequence, the main results of the fea-
ture selection, i.e. which features are in general relevant
to predict the different hours of the day, are provided as
supplementary material in Appendix B.

5.1.2. Data Division
To perform the different experiments, we divide the data
into three sets:

1. Training set (01/01/2010 to 30/11/2014): these data
are used for training and estimating the different mod-
els.

2. Validation set (01/12/2014 to 30/11/2015): a year of
data is used to select the optimal hyperparameters.

3. Test set (01/12/2015 to 30/11/2016): a year of data
that is not used at any step during the model estima-
tion process, is employed as the out-of-sample data to
compare the models.

Considering that there are 24 electricity prices per day,
the training dataset comprises 43536 data points. Like-
wise, both validation and test datasets comprise 8760 data
points each.

5.1.3. Data Processing

In order to obtain time series that are easier to fore-
cast, the data used for the statistical models are processed
using a Box-Cox transformation [76]. This preprocessing
step, which includes the log-transformation as a special
case, is a standard one in the literature of electricity price
forecasting [9-11, 19, 51]. For the machine learning and
DL models, the data is respectively normalized to the in-
tervals [0,1] and [—1,1]. This transformation is done be-
cause, based on experimental results using the validation
set, these two preprocessing steps help to obtain more ac-
curate models.

It is important to note that these transformations are
only applied when estimating the parameters, not for com-
puting metrics or statistical significance.

5.1.4. Data Access

For the sake of reproducibility, we have only considered
data that are publicly available. Particularly, the elec-
tricity prices can be obtained from the ENTSO-E trans-
parency platform [77]. Similarly, the load and generation
day-ahead forecasts are available on the webpages of RTE



[78] and Elia [79], the respective TSOs in France and Bel-
gium.

5.2. Modeling Implementation: Frameworks and Libraries

In order to implement the proposed DL framework, we
use the Keras [80] DL library in combination with the
mathematical language Theano [81]. The full framework
is developed in python.

For the base models, the libraries employed differ more.
In general, most of the forecasters are also modeled in
python. The only exception are the DSHW and the
TBATS forecasters, both of which are modeled using the
R language and its forecast library [82]. For the remaining
17 models, we can distinguish several groups according to
the library/framework used:

1. For the RF, the AR, the DR, the ARX, the TARX,
the RBF, the three fARX-based models, and the
three SVR-based models, the scikit-learn library [83]
is used.

2. The XGB model is built using the xGBoost library
[75] which is developed by the same authors that pro-
posed the algorithm.

3. The MLP is modeled using the same frameworks as
the other DL models.
4. The remaining models, i.e. the THMARX, the

SNARX, the TF, and the 4 ARIMA-based models,
are estimated by solving the corresponding maximum
likelihood estimation problem. In particular, to solve
the various nonlinear optimization problems that arise
from the maximum likelihood technique, we employ
CasADi [84], a symbolic framework for automatic dif-
ferentiation and numerical optimization. Within this
group, we also model the ARIMA part of the SVR-
ARIMA model.

In addition, to solve the optimization problems that esti-
mate the models’ parameters, we distinguish between two
different stopping criteria:

1. Except for the neural network models, the stopping
criterion is given by the moment that a (local) mini-
mum is reached. We assume that a local minimum is
reached when the gradient of the objective function
is lower than some tolerance; in our study, that was
1076.

2. For the neural network models, we monitor the per-
formance of a validation set and we stop the training
when the improvements on this validation set cease
(we assume that the improvement ceases if the accu-
racy in the validation set worsens for ten consecutive
epochs). This criterion is called early stopping [60],
and it is done because neural networks would overfit
to the training data and would not generalize well if
a (local) minimum is reached.

It is important to note that, for all non-convex models,
the described stopping criteria cannot ensure that the best
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model is found, i.e. the optimal solutions are in local min-
ima or in their vicinity. To improve this situation, we have
added multi-start optimization to the hyperparameter se-
lection; by doing so, when optimizing the hyperparame-
ters, larger regions of the parameter space are explored
and the quality of the obtained local solution can be im-
proved.

5.8. Best Alternative per Modeling Option

In Section 4.4, we have described the three modeling
options that are available for each benchmark model. In
this section, we present and explain the best alternative
for each of the options when considering the case study.
It is important to note that all the results listed here are
based on the validation dataset.

The obtained results are listed in Table 2 where, for each
benchmark model and each modeling option, i.e. MO1,
MO2, and MO3, the best model alternative is shown. In
particular, the optimal alternative is given by one of the
following labels:

e Al (A2) to respectively denote that alternative 1 (2)
performs the best.

e NI (non-important) to denote that the modeling op-
tion has no effect, i.e. both alternatives perform sim-
ilarly.

e No label if the model cannot use the modeling option.

Based on the results of Table 2 we can draw the following
conclusions:

1. Considering the results of modeling option MO1, pre-
processing price spikes (Alternative Al) seems to be
helpful for all statistical models. In contrast, pre-
processing seems to be irrelevant or decrease the per-
formance in the case of machine learning models. A
possible explanation for this effect is the fact that
price spikes are nonlinear effects, and as such, they
can compromise the prediction quality of statistical
models since they are largely linear [20]. In contrast,
as machine learning models are able to model more
complex nonlinear relations, it is possible that they
can predict up to certain degree some of the nonlin-
ear price spikes.

2. Observing the results of modeling option MO2, it

is clear that, except for the non-parametric models,

when the input features are optimally selected (Al-
ternative A2) the accuracy of the models improves.

In particular, the models obtain better performance

when, instead of simply considering the load in the lo-

cal market (Alternative Al), the model also includes
input features like the load or generation in a neigh-
boring market.

Analyzing the results of modeling option MO3, we can

observe how the accuracy improvements by predicting

multiple markets at the same time (Alternative A2)



MO1 | MO2 | MO3

AR Al
DSARIMA Al
WARIMA Al
WARIMA- Al

RBF
ARIMA- Al
GARCH
DSHW Al
TBATS Al
DR Al NI
TF Al NI
ARX Al NI
TARX Al NI
THMARX Al Al
SNARX Al Al
fARX Al A2
fARX-Lasso Al A2
fARX-EN Al A2
MLP NI A2 NI
RBF Al A2 Al
SVR NI A2
SOM-SVR NI A2
SVR-ARIMA | NI A2
RF A2 Al
XGB A2 Al
DNN A2 A2
LSTM A2 A2
GRU A2 A2
CNN A2 A2

Table 2: Summary of which alternatives of the three modeling op-
tions perform the best for each of the 27 individual models. The
labels A1|A2 respectively denote the case where alternative 1|2 per-
forms the best. NI denotes the case where the modeling option has no
effect. An empty cell means that the model cannot use the modeling
option.

are restricted to the deep learning models. As origi-
nally argued in [3], this result is due to multi-tasking,
a technique that can be successfully used to improve
the predictive accuracy of deep neural networks but
that might not be helpful for other models. In partic-
ular, when multi-tasking, deep neural networks solve
auxiliary and related tasks, e.g. predicting neighbor-
ing markets, in order to generalize better and avoid
overfitting.

5.4. Hyperparameter Optimization

In Section 3.6, we have described the hyperparameters
that should be optimized for each DL model. In this sec-
tion, we present the obtained optimal configurations for
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the case study. For the base models, while their hyperpa-
rameters are also optimized, including here the optimiza-
tion results and hyperparameter definitions would require
a huge amount of space. As a result, for the sake of con-
ciseness, the results and definitions are listed in Appendix
C.

When analyzing the results, it is important to keep in
mind that all the hyperparameter solutions (and in turn
the model sizes) depend on the current amount of data. In
particular, as deep learning models employ a large number
of parameters, they also require large amounts of data to
accurately estimate their parameters. As a result, if the
amount of data is not enough to obtain the best model
in terms of prediction performance, the hyperparameter
optimization could select a smaller model that performs
better with the current amount of data but that is not the
best model overall. As we argued in Section 5.7, this effect
might explain the lower empirical performance observed
for the most complex model, i.e. the CNN.

5.4.1. DNN Model

For the DNN, the optimal structure consists of a first
and second hidden layers with respectively 239 and 162
neurons, the rectifier linear unit (ReLU) as the activation
function, and no regularization nor dropout. The obtained
optimal hyperparameters are summarized in Table 3.

Hyperparameter | Value
Activation Function | ReLU
Dropout No
Regularization No
ni 239
na 162

Table 3: Optimal Hyperparameters for the DNN model.

5.4.2. LSTM Model

For the second proposed model, the optimal structure is
an LSTM layer with 83 neurons and a regular layer with
184 neurons. Moreover, for the LSTM layer, the activation
function is a hyperbolic tangent (tanh) function and the se-
quence length of input values is 2 weeks of past data. For
the regular layer, the optimal activation is a ReLU func-
tion. In addition, none of the two layers require regulariza-
tion nor dropout. The obtained optimal hyperparameters
are represented in Table 4.

5.4.8. GRU Model

Similar to the LSTM-DNN model, the optimal hyper-
parameters for the GRU-DNN model are summarized in
Table 5.



Hyperparameter Value
Activation Function - DNN ReLU
Activation Function - LSTM Tanh
Dropout No
Regularization No
NDNN 184
NLSTM 83
Sequence Length 2 weeks

Table 4: Optimal Hyperparameters for the LSTM model.

Hyperparameter Value
Activation Function - DNN ReLU
Activation Function - LSTM Tanh
Dropout 0.32
Regularization No
NDNN 166
NGRU 132
Sequence Length 3 weeks

Table 5: Optimal Hyperparameters for the GRU model.

5.4.4. CNN Model

Finally, for the CNN model, the network that processes
past data consists of three convolutional layers with re-
spectively 64, 128, and 256 feature maps, each of them
with a filter of size 3. After each of these layers, a
max pooling operation and a batch normalization are per-
formed. For the network that processes day-ahead data,
the optimal structure is exactly the same. Both networks
use the ReLLU as activation function, a dropout factor of
0.31, and no regularization. The obtained optimal hyper-
parameters are summarized in Table 6.

5.4.5. General Observations

When analyzing the optimal hyperparameter results for
the DL models, we can observe two interesting results that
are common to the four models:

1. Except for the recurrent layers that require a tanh ac-
tivation function, the optimal activation function for
all the other deep learning layers is the ReLU function.
This result agrees with the general observations in the
field of DL, see e.g. [30], where ReLU is the default rec-
ommended activation function for any modern neural
network with the exception of the LSTM and GRU
cells, which by default require a tanh activation func-
tion.

2. Traditional regularization, i.e. performing dropout or
penalizing with a L; norm the parameters of the neu-
ral network to impose sparsity on the network pa-
rameters, is in general not helpful (the only excep-
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Hyperparameter Value
Activation Function ReLU
Dropout 0.31
Regularization No
Pooling frequency 1

Pooling type Max pooling

Filter size - Past 3
Filter size - D.A. 3
Number of convolutions - Past 3
Number of convolutions - D.A. 3
Initial feature maps - Past 64
Initial feature maps - D.A. 64
Channel length 1 week

Table 6: Optimal hyperparameters for the CNN model. The label
D.A. refers to the network that processes day-ahead data. The label
Past refers to the network for past data.

tion is the CNN model that does requires dropout).
While this result might seem surprising (considering
the small size of the datasets and the large number of
parameters of the DL networks), it can be explained
due to the combination of two effects:

(a) While the proposed models are deep struc-
tures, they are less deep than DL networks used
for more traditional applications, e.g. image or
speech recognition. As a result, the number of
parameters is smaller, and thus, the regulariza-
tion step is less critical.

The models are trained using early stopping.
While this is not a regularization technique by
itself, it prevents overfitting. As a result, the
regularization step becomes less critical.

5.5. Comparing Predictive Accuracy

After describing the experimental setup and obtaining
the optimal model structures, we can compute and com-
pare the predictive accuracy of the various models. How-
ever, to have a meaningful and complete assessment, not
only the accuracy of the models should be computed, but
also the statistical significance of the results should be es-
tablished. In this section, we perform the first step of this
analysis, i.e. we compute the accuracy of the models. Next,
in the following section, the statistical tests are performed.

5.5.1. Main Results

To compare and analyze the predictive accuracy of the
various forecasters, we compute their sSMAPE on the test
set. In addition, to guarantee that the assessment is simi-
lar to real conditions, i.e. that the forecaster is re-estimated
when new data is available, the models are re-estimated on
daily basis. The obtained results are listed in Table 7.



Model sMAPE [%] | Class
DNN 12.34

GRU 13.04

LSTM 13.06

MLP 13.27 ML
SVR 13.29

SOM-SVR 13.36
SVR-ARIMA 13.39

XGB 13.74

fARX-EN 13.76 SM
CNN 13.91 ML
fARX-Lasso 13.92 SM
RBF 14.77 ML
fARX 14.79 ST
RF 15.39 ML
THMARX 16.72

DR 16.99

TARX 17.08

ARX 17.34

SNARX 17.58

TBATS 17.9
ARIMA-GARCH 19.3 ST
AR 19.31

DSHW 19.4
WARIMA-RBF 22.82

WARIMA 22.84

DSARIMA 23.40

TF 23.57

Table 7: Comparison of the predictive accuracy of the various fore-
casters by means of sSMAPE. The labels ML and SM respectively
refer to machine learning and statistical methods.

5.5.2. Observations
From the results displayed in Table 7, we can make var-
ious observations:

i. The DNN, GRU, and LSTM models, i.e. 3 of the 4
proposed DL forecasters, seem to outperform all the
considered literature models.
A line can be drawn between statistical models and
machine learning methods. In particular, except for
the fARX-based models, the other statistical methods
perform worse than any artificially intelligence model.
According to their performance, the models seem to
be divided in eight clusters:

(1) The DNN model with a 12.3% sMAPE.

(2) The DL models with a recurrent layer, i.e. LSTM

and GRU, with a 13% sMAPE.

(3) The three SVR-based models and the MLP with

a 13.3-13.4% sMAPE.

ii.

iii.
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(4) The CNN, the XGB, and the statistical models
with automatic feature selection with a sMAPE
between 13.7-13.9%.

The RF, the fARX, and the RBF models with a
14.7-15-3% sMAPE.

With a 16.7-17.9% sMAPE, the TBATS and the
statistical methods with exogenous inputs but
without moving average (except for the fARX).
With a 19.3-19.4% sMAPE, the ARIMA-
GARCH and 2 of the 3 models without exoge-
nous inputs nor moving average.

With a 22-23 % sMAPE, the statistical meth-
ods with a moving average term (except for the
ARIMA-GARCH) .

Surprisingly, the models with moving average seem to
perform worse that their simpler AR counterparts.

The TBATS model appears to be the best alternative
when no exogenous inputs are available. In particular,
it even matches the performance of some statistical
methods with exogenous inputs.

(8)

iv.

vi. From the considered models from the literature, SVRs

and MLPs perform the best.

The SVR hybrid methods, i.e. SVR-ARIMA and
SOM-SVR, perform no different that the simple SVR
model.

vii.

5.6. Statistical Testing

In this section, we study the statistical significance of
the differences in predictive accuracy among the various
forecasters.

5.6.1. Diebold-Mariano Test

To assess this statistical significance, we use the DM test
as defined by (2)-(3), where the loss differential at time &
is built using the absolute error:

M = (et | = e, (7)

Moreover, we follow the procedure of [3, 85, 86] and we
perform an independent DM test for each of the 24 time
series representing the hours of a day. The reason for that
is twofold: first, as we use the same information to forecast
the set of 24 day-ahead prices, the forecast errors within
the same day would exhibit a high correlation, and thus,
the full error sequence would be correlated. Second, as
we study each hour separately, the DM tests allow us to
distinguish between three situations:

1. The accuracy of forecaster M is significantly better
than the one of forecaster Ms.

2. The accuracy of M; is significantly better than the
accuracy of My, but at some hours, M>’s accuracy is
significantly better.

3. Mji’s accuracy is never significantly better than My’s.



In detail, for each hour h =1, ..., 24 and for each model
pair My and My, we perform a one-sided DM test, at a 95%
confidence level, with the null hypothesis of the predictive
accuracy of M; being equal or worse than My’s:

for h=1,...24,

. M1, M27
DM;L{HO' E[d)1 "] >0 -

Hy @ E[dy) "] <0,

dM17M2 dMlJWQ
hi A

where | sos iy Nyoa
differentials at hour h.!

Next, we perform the complementary one-side DM test
with the null hypothesis of My having the same or worse
accuracy than M;:

] represents the vector of loss

for h=1,...24.

. {HO: E[-dy"] > 0, )

DM
"\ H:: B[4 M) <o,
Finally, we establish that the predictive accuracy of M;
is significantly better than My’s if two conditions are met:

1. In at least one of the regular DM}, tests the null hy-
pothesis is rejected, i.e. the predictive accuracy of M;
is at least significantly better in 1 of the 24 prediction
windows.

2. None of the complementary DM, tests rejects the null
hypothesis, i.e. the predictive accuracy of My is not
significantly better in any of the 24 prediction hori-
Zons.

If both M; and Ms are at least significantly better
in one of the 24 prediction windows, we perform a fur-
ther DM test considering the full vector of loss differential
[dy,...,dn]T.? Specifically, recalling that optimal k-step-
ahead forecast errors are at most (k—1)-dependent [56], we
perform a DM test on the full loss differential considering
serial correlation of order 23:

(10)

. My, M) >
par,, Ho 2] > 0,
H, : E[gMM2] <.

If the null hypothesis of DMy, is rejected, we consider that,
while at some hours Ms’s accuracy is significantly better
than M;’s, M;’s accuracy is significantly better when con-
sidering the full error sequence.

5.6.2. Results
The obtained results are summarized in Table 8. There
are three possible scenarios:

1. Cells that display a v represent the cases where the
alternative hypothesis is accepted with a 95% confi-
dence, i.e. the predictive accuracy of M is statisti-
cally significantly better than the one of Ms.

L N/24 losses dp, 1, per hour h as there are N time points.

?Notice that dﬁji’l\b = dgib’cl\f?)j%
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2. Cells that display a v represent the cases where, while
the predictive accuracy of My is at least significantly
better in one of the 24 predictive horizons, the overall
predictive accuracy of M; when considering the full
loss differential is still statistically significantly better.

3. Empty cells represent the cases where M; is not sig-
nificantly better than M.

Considering the results listed in Table 8, we confirm the
various observations made in Section 5.5.2:

1. The DNN, LSTM, and GRU models, i.e. 3 of the 4
proposed forecasters, are indeed statistically signifi-
cantly better than the rest. In particular, the DNN
shows a predictive accuracy that is statistically sig-
nificantly better than the accuracy of all others. In
addition, the LSTM and GRU models have an accu-
racy that is statistically significantly better than all
others except the MLP.

2. Except for the fARX-based models, the accuracy of
the machine learning methods is statistically signifi-
cantly better than the accuracy of statistical methods.

3. Based on accuracy differences that are statistically
significant, we can observe a very similar group sepa-
ration pattern as the one described in Section 5.5.2.

4. The models with moving average terms have an accu-
racy that is statistically significantly worse than their
AR counterparts.

5. The TBATS model has an accuracy that is statisti-
cally significantly better than any other model with-
out exogenous inputs.

6. The accuracy of the SVR and hybrid-SVR models is
not statistically significantly different.

To illustrate the first observation, i.e. that the proposed
DNN, GRU and LSTM models are significantly better
than the rest, we depict in Figures 4 and 5 the test statis-
tics obtained when applied to the DNN and GRU models.
In these figures, at each hour h, the points above the upper
horizontal line accept, at a 95 % confidence, the alterna-
tive hypothesis in DMy, i.e. that the specific DL model has
an accuracy that is statistically significantly better. Sim-
ilarly, any point below the lower horizontal line accepts,
at a 95 % confidence, the alternative hypothesis in DAI\/_[;17
i.e. that the specific DL model has an accuracy that is
statistically significantly worse.

From Figure 4 representing the DNN results we can ob-
serve how, except for the LSTM and GRU models, for
any other forecaster the DNN is at least significantly bet-
ter at one hour and never significantly worse. In other
words, the DNN is statistically significantly better than
all other models except the LSTM and GRU forecasters.
When compared with these two, while the DNN shows an
overall accuracy that is statistically significantly better,
the LSTM’s accuracy is better at hours 01:00 and 22:00,
and the GRU’s accuracy at hours 01:00, 02:00, 03:00, and
06:00.
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Table 8: DM results for the base and DL models. v represents the cases where M;’s accuracy is statistically significantly better than May’s.
V5 represent the cases where, while Ms’s accuracy is at least significantly better in one of the 24 hours, the accuracy of M; is still statistically
significantly better if the whole loss differential sequence is considered. The labels ST and ML respectively refer to statistical and machine

learning methods.

From Figure 5 representing the GRU results we can draw
similar conclusions. In particular, the GRU model is sta-
tistically significantly better than all models except the
DNN, LSTM, GRU, MLP, XGB and fARX-EN. However,
for the XGB and fARX-EN models, while their accuracy is
statistically significantly better at one hour, the GRU has
an overall accuracy that is significantly better. From Fig-
ure 6 representing the LSTM results, we can draw similar
conclusions as the ones obtained from Figure 5.

For the sake of simplicity, Table 8 only represents a sum-
mary of all the performed DM tests; particularly, as a total
of 17550 DM tests were performed (% model pairs x 50
DM test per model pair), it is impossible to list them all
neither here nor even in an appendix. To address that,
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we have created a website (goo.gl/FzA4Cb) where all the
DM test results can be obtained. In particular, following
the same structure as Figures 4 and 5, we have upload 27
figures representing the DM results for the 27 models. In
addition, we have also uploaded an excel sheet with all the
p-values of the 17550 DM tests.

5.7. Discussion

To discuss the obtained results, we distinguish between
three different topics: an analysis specific to the proposed
DL models, an evaluation of the general results of the
benchmark study, and a discussion on why neural net-
works have usually failed to predict electricity prices but
in this paper they represent the best model.
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Figure 4: DM results for the DNN model. Top: test results for all 26 models. Bottom: test results for the top performing models. Values
above the top dashed line represent cases where, with a 95 % confidence level, the DNN is significantly better. Similarly, values below the
lower dashed line accept at a 95 % confidence level that the DNN is significantly worse.

5.7.1. DL Models

From the results and observations that are drawn in
the previous section, we can conclude that the proposed
DNN, GRU and LSTM models are the best alternative
for forecasting day-ahead prices in the Belgian market. In
particular, the benchmark is quite large and these 3 models
outperform all the rest in a statistically significant manner.

Moreover, while the DNN is significantly better than the
GRU and LSTM forecasters, these two are better at some
specific hours. Therefore, if a highly accurate system is
targeted, e.g. by combining several forecasts, the three DL
models are still necessary. However, if a single model is to
be used, e.g. due to limitations in computation, the DNN
is clearly the forecaster of choice.

Something that is interesting worthy to discuss is the
reason why the GRU, LSTM, and CNN models perform
worse than the DNN. In particular, the four of them are
deep structures with the potential to model complex non-
linear patterns and, in the case of the GRU and LSTM
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models, they are especially appropriate for modeling time
series data. So, how can it be that the DNN has an ac-
curacy that is statistically significantly better? There are
two possible hypotheses:

1. The amount of data: DL models require large
amounts of data to be properly trained. When com-
paring the four DL models, the DNN has fewer pa-
rameters than the other three; as a result, it might
be easier to train. This hypothesis also agrees with
the fact that the CNN performance is the worse of
the four as it is the model with the largest number of
parameters.

2. A second possible reason is the structure of the net-
works. In particular, the GRU, LSTM, and CNN
models separate the data corresponding to the day-
ahead and the past data in two different networks.
As a result, if some past data and day-ahead data are
heavily related, none of the three structures is able to
build these relations properly. By contrast, the DNN
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Figure 5: DM results for the GRU model. Top: results for all 26 models. Bottom: results for the top performing models. Values above the
top dashed line represent cases where, with a 95 % confidence level, the GRU is significantly better. Similarly, values below the lower dashed
line accept at a 95 % confidence level that the GRU is significantly worse.

model makes no assumption about the input data and
allows any possible relation to be built.

It is important to note that these are just hypothesis. In
particular, further research is necessary to properly explain
this effect.

The last finding worthy to discuss is the performance
of the CNN. In particular, the fourth proposed DL model
performs no better than simpler machine learning methods
like XGB or SVR. An extra hypothesis (in addition to
the provided two) to explain this effect is the fact that
the CNN uses local operations. In particular, given some
layer, the CNN does not interrelate all its values when
making the connections to the next layer, but performs
local convolution operations that interrelate local groups
of data. As a result, while this structure is very convenient
to process some specific type of data, e.g. pictures, it might
not be appropriate if all the input data is highly correlated,
e.g. seasonal time series data like electricity prices.
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5.7.2. Benchmark

Regarding the benchmark results, besides being the pro-
posed DNN, GRU, and LSTM models the best forecasters,
several other effects need to be discussed.

Mowving Average Models

One of the most important effects to be examined is the
fact that statistical models with moving average terms per-
form worse than their AR-counterparts. In particular, as
the moving average terms provide an additional resource
to model error correlation, they should have the potential
to be more accurate. However, if we consider the structure
of the model estimation, we can observe that the former
is not necessarily true: as the moving average term leads
to models that are estimated using non-convex optimiza-
tion, the global minima is not guaranteed and the resulting
models might have a lower performance.

Despite this explanation, the truth is that, when look-
ing at the literature of electricity price forecasting, mov-
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Figure 6: DM results for the LSTM model. Top: results for all 26 models. Bottom: results for the top performing models. Values above
the top dashed line represent cases where, with a 95 % confidence level, the LSTM is significantly better. Similarly, values below the lower
dashed line accept at a 95 % confidence level that the LSTM is significantly worse.

ing average models have traditionally outperformed their
AR counterparts. A possible explanation for this perfor-
mance mismatch between past studies and this paper is the
change in the dynamics of day-ahead electricity prices dur-
ing the last years. In particular, due to the increasing pen-
etration of renewable sources, day-ahead prices are becom-
ing more volatile and price spikes are occurring more often.
Due to these effects, the resulting optimization problems
might be more nonlinear, and in turn, the global minima
might become harder to reach.

Machine Learning vs. Statistical Methods

Another effect worth discussing is the fact that machine
learning methods clearly outperform statistical methods.
In particular, while several past studies led to empirical
results that showed that the accuracy of machine learning
methods was not better than the one of statistical meth-
ods, we can clearly observe that this is not the case in
the EPEX-Belgium market. Possible explanations for this
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effect can be the following: as before, the market under
study has large nonlinearities and spikes, and thus, it re-
quires complex nonlinear models to accurately forecast the
prices. In addition, the computational power of recent
years has dramatically increased, and thus, more data can
be used for parameter estimation and the structure of the
considered machine learning methods can be more com-
plex. The latter argument also agrees with the fact that
DL models have the best performance.

fARX-Based Models

An exception to the previous statement are the fARX-
based models. In particular, despite being statistical
methods, they clearly perform better than any other statis-
tical method and even better that some machine learning
algorithms. These results confirm the findings of [67] and
show that this model is one of the best statistical methods
for predicting electricity prices. A possible explanation for
this performance is the combination of two characteristics:



1. The structure of these models is very general and in-
cludes many possible exogenous inputs, which makes
them very flexible.

2. At the same time, they use automatic feature selection
to reduce the model complexity and make the models
tailored to the market under study.

Hybrid Models

A fourth important consideration is the fact that, in gen-
eral, hybrid models do not outperform their regular ver-
sions. In particular, nor SVR-ARIMA nor SOM-SVR out-
perform the simpler SVR model. Likewise, WARIMA-
RBF does not outperform the simpler WARIMA. An ex-
ception might be the ARIMA-GARCH, which outperforms
the WARIMA and DSARIMA models.

TBATS

A final remark to be made is the fact that the TBATS
model is clearly the best choice to predict prices when no
regressors are available, and it even is a good choice when
exogenous inputs exist. This observation is very impor-
tant as, to the best of our knowledge, nobody has ever
tested the accuracy of the TBATS model for predicting
day-ahead electricity prices.

5.7.3. Why do the Proposed Models Improve the Perfor-
mance?

When we consider the literature of electricity price fore-
casting, there are many examples where neural networks
have been outperformed by other forecasters [12, 27, 42,
51, 62, 63, 87-90]. The results obtained in this paper lead
to the opposite conclusion: in this case study, neural net-
works outperform all other models. In this section, to
clarify this discrepancy, we provide the rationale behind
the superior performance of the proposed DL models. In
particular, we examine four features that past studies have
typically not considered and we argue that by not consid-
ering them the accuracy worsens.

Depth

As briefly motivated in the introduction, deep neural net-
works can generalize and obtain better results than their
shallow counterparts. This effect is related to the univer-
sal approximation theorem [91], which states that a neural
network with a linear output layer can approximate any
continuous function on compact subsets of R™ provided
that it has enough neurons, but does not indicate whether
this number is tractable [30]. In particular, to approximate
some families of functions, the number of neurons required
by a shallow network can grow exponentially with the in-
put size and in turn become intractable [30]. In the same
context, the family of functions could be approximated by
a tractable number of neurons if the depth is larger than
some threshold number d [30].
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As a result, when approximating a target function, a
deep network might need a much smaller number of neu-
rons than its shallow counterpart, and thus, it might be
able to approximate the function more easily and better.
In our case study, this effect is observed in Table 7, where
a shallow neural network, i.e. the MLP model, has a lower
accuracy than the DNN, GRU, and LSTM models.

If we look now at the literature of electricity price fore-
casting, the neural networks that have usually been pro-
posed have been shallow networks [12, 22, 42, 51, 62, 63,
87-90]. Therefore, considering the above argument, it
might be normal for them to perform worse that the deeper
models than we propose.

Number of Neurons

Intrinsically related to the previous argument and with the
universal approximation theorem [91] is the fact that, in
order for a network to correctly approximate a function,
the number of neurons needs to be large enough. However,
when we consider the literature of electricity price forecast-
ing, most of the studies have employed small MLPs with
less than 50 neurons [22, 40-42, 51, 62, 63, 87, 89, 90] and
have not performed any hyperparameter optimization to
select the required number of neurons.

If this case study, the empirical results show that the
optimal number of neurons for the MLP model is 117 (see
Appendix C). While the optimal number will change
from case to case, we can use it as a reference to argue
that the small-sized neural networks previously proposed
in the literature might not be large enough to model the
complex dynamics of electricity prices.

To strengthen our argument, we analyze this effect in
our case study: we consider a MLP with 50 neurons and
we compare its performance against the optimized MLP
using 117 neurons. As it would be expected, the MLP
with 50 neurons fails to perform as good as the optimized
one: its accuracy on the test set drops from 13.27% to
14.30% sMAPE and this difference in accuracy is statis-
tically significantly for all 24 hours. In addition, another
finding that reinforces our argument is the fact that, if we
were to use this smaller MLP in the benchmark it would
not be better than half of the models, which would agree
with the literature results.

Size of Training Dataset

Even if the network is large enough to approximate the
targeted function, the optimizer might fail to estimate the
right parameters [30]. In particular, a possible problem
that the optimizer might face is not having enough train-
ing data to estimate the large number of parameters in a
neural network, e.g. in our MLP model with 117 neurons
there are approximately 28200 parameters.

When we examine the literature of electricity price fore-
casting, studies have usually considered networks that
were trained using 1 year of data or less [12, 22, 27, 42, 51,



62, 63, 87-90]. If we consider our case study, that might
not be enough: if trained with 1 year of data, the accu-
racy of the DNN drops from 12.34 % to 13.27 % sMAPE,
an accuracy that is worse than the performance of many
benchmark models, and which might explain again some
of the literature results.

Stochastic Gradient Descent

A second problem that might also affect the parameter
estimation regards the properties of the optimization al-
gorithm itself. In particular, in the literature of elec-
tricity price forecasting, network parameters have tradi-
tionally been estimated using standard gradient descent
methods, e.g. batch gradient descent (also known as back-
propagation) or the Levenberg—Marquardt optimization
[2, 22, 40-42, 51, 88-90]. These methods, while they might
work well for small sized-networks, they display computa-
tional and scalability issues and they often obtain worse
results [92].

A better alternative is the family of stochastic gradient
descent methods [92, 93], which, instead of computing the
gradient w.r.t. to the whole training dataset, they do it
w.r.t. to subsets of it. In our case study, if batch gradient
descent is used instead of adam, i.e. a type of stochastic
gradient descent method, the accuracy of the DNN drops
from 12.34 % to 14.15 %. Based on this empirical result
and the argument above, it is clear that this effect might
also account for some of the discrepancies between our
work and the literature.

6. Conclusions

In this paper, four different deep learning (DL) mod-
els to predict day-ahead electricity prices are proposed.
Moreover, a large benchmark study is set up in order to
compare the predictive accuracy of the proposed models
w.r.t. to other models in the literature. This benchmark
is selected to comprise as many models as possible and to
serve as a reference within the field of day-ahead electricity
price forecasting.

Three of the four proposed DL forecasters, i.e. the deep
neural network (DNN) model, the long-short term mem-
ory (LSTM) model, and the gated recurrent unit (GRU)
model, are shown to obtain a predictive accuracy that is
statistically significantly better than all other models. In
addition, among these three models, the DNN is able to
outperform the other two with a difference in accuracy
that is statistically significant. Despite this difference, the
three models are necessary to obtain a high-performing
forecaster, as the accuracy of the GRU and LSTM models
still better at some specific hours.

Among the rest of the forecasters, it is observed a clear
division is observed between machine learning and statisti-
cal methods, where the former display an accuracy that is
statistically significantly better. In addition, models with
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moving average terms are shown to suffer the worst perfor-
mance and hybrid methods are shown not to outperform
their simpler counterparts.

In future work, this research will be expanded with four
further investigations. First, the effect in forecasting accu-
racy of more advanced DL techniques, e.g. autoencoders,
will be analyzed. Second, the usage of expert advice to
combine the individual benchmark models will be stud-
ied. Third, the benchmark comparison will be extended
to other markets. Fourth, the effect of the dataset size
for each model will be extensively analyzed using a large
number of experiments.

Acknowledgment

This research has received funding from the European
Union’s Horizon 2020 research and innovation program
under the Marie Sklodowska-Curie grant agreement No
675318 (INCITE).

References
[1] M. Shahidehpour, H. Yamin, Z. Li, Market overview in electric
power systems, in: Market Operations in Electric Power Sys-
tems, John Wiley & Sons, Inc., New York, USA, 2002, Ch. 1,
pp. 1-20.
R. Weron, Electricity price forecasting: A review of the state-
of-the-art with a look into the future, International Journal of
Forecasting 30 (4) (2014) 1030-1081.
J. Lago, F. De Ridder, P. Vrancx, B. De Schutter, Forecast-
ing day-ahead electricity prices in Europe: The importance of
considering market integration, Applied Energy 211 (2018) 890—
903.
C. Brancucci Martinez-Anido, G. Brinkman, B.-M. Hodge, The
impact of wind power on electricity prices, Renewable Energy
94 (2016) 474-487.
R. Baldick, Wind and energy markets: A case study of texas,
IEEE Systems Journal 6 (1) (2012) 27-34.
I. Milstein, A. Tishler, Can price volatility enhance market
power? the case of renewable technologies in competitive elec-
tricity markets, Resource and Energy Economics 41 (2015) 70—
90.
R. Green, N. Vasilakos, Market behaviour with large amounts of
intermittent generation, Energy Policy 38 (7) (2010) 3211-3220.
R. Weron, A. Misiorek, Forecasting spot electricity prices: A
comparison of parametric and semiparametric time series mod-
els, International Journal of Forecasting 24 (4) (2008) 744-763.
A. Cruz, A. Munoz, J. Zamora, R. Espinola, The effect of wind
generation and weekday on Spanish electricity spot price fore-
casting, Electric Power Systems Research 81 (10) (2011) 1924—
1935.
A. Misiorek, S. Trueck, R. Weron, Point and interval forecast-
ing of spot electricity prices: Linear vs. non-linear time series
models, Studies in Nonlinear Dynamics & Econometrics 10 (3)
(2006) 1-36.
J. Crespo Cuaresma, J. Hlouskova, S. Kossmeier, M. Ober-
steiner, Forecasting electricity spot-prices using linear univari-
ate time-series models, Applied Energy 77 (1) (2004) 87-106.
Z. Yang, L. Ce, L. Lian, Electricity price forecasting by a hybrid
model, combining wavelet transform, ARMA and kernel-based
extreme learning machine methods, Applied Energy 190 (2017)
291-305.

(2]

(4]

(5]

[11]

[12]



(13]

(19]

[20]

21]

23]

24]

[25]

[26]

27)

(28]

32]

J. M. Vilar, R. Cao, G. Aneiros, Forecasting next-day electricity
demand and price using nonparametric functional methods, In-
ternational Journal of Electrical Power & Energy Systems 39 (1)
(2012) 48-55.

C. R. Knittel, M. R. Roberts, C. Knittel, M. Roberts, An empir-
ical examination of restructured electricity prices, Energy Eco-
nomics 27 (5) (2005) 791-817.

R. C. Garcia, J. Contreras, M. Van Akkeren, J. B. C. Garcia,
A GARCH forecasting model to predict day-ahead electricity
prices, IEEE Transactions on Power Systems 20 (2) (2005) 867—
874.

A. K. Diongue, D. Guégan, B. Vignal, Forecasting electricity
spot market prices with a k-factor GIGARCH process, Applied
Energy 86 (4) (2009) 505-510.

F. J. Nogales, J. Contreras, A. J. Conejo, R. Espinola, Fore-
casting next-day electricity prices by time series models, IEEE
Transactions on Power Systems 17 (2) (2002) 342-348.

A. Conejo, M. Plazas, R. Espinola, A. Molina, Day-ahead
electricity price forecasting using the wavelet transform and
ARIMA models, IEEE Transactions on Power Systems 20 (2)
(2005) 1035-1042.

Z. Tan, J. Zhang, J. Wang, J. Xu, Day-ahead electricity price
forecasting using wavelet transform combined with ARIMA and
GARCH models, Applied Energy 87 (11) (2010) 3606-3610.

N. Amjady, M. Hemmati, Energy price forecasting - problems
and proposals for such predictions, IEEE Power and Energy
Magazine 4 (2) (2006) 20—29.

B. Szkuta, L. Sanabria, T. Dillon, Electricity price short-term
forecasting using artificial neural networks, IEEE Transactions
on Power Systems 14 (3) (1999) 851-857.

J. P. S. Catalao, S. J. P. S. Mariano, V. M. F. Mendes, L. A.
F. M. Ferreira, Short-term electricity prices forecasting in a
competitive market: A neural network approach, Electric Power
Systems Research 77 (10) (2007) 1297-1304.

L. Xiao, W. Shao, M. Yu, J. Ma, C. Jin, Research and ap-
plication of a hybrid wavelet neural network model with the
improved cuckoo search algorithm for electrical power system
forecasting, Applied Energy 198 (2017) 203-222.

D. Wang, H. Luo, O. Grunder, Y. Lin, H. Guo, Multi-step
ahead electricity price forecasting using a hybrid model based
on two-layer decomposition technique and BP neural network
optimized by firefly algorithm, Applied Energy 190 (2017) 390—
407.

S. Fan, C. Mao, L. Chen, Next-day electricity-price forecast-
ing using a hybrid network, IET Generation, Transmission &
Distribution 1 (1) (2007) 176-182.

J. Che, J. Wang, Short-term electricity prices forecasting based
on support vector regression and auto-regressive integrated
moving average modeling, Energy Conversion and Management
51 (10) (2010) 1911-1917.

W.-M. Lin, H.-J. Gow, M.-T. Tsai, An enhanced radial ba-
sis function network for short-term electricity price forecasting,
Applied Energy 87 (10) (2010) 3226-3234.

S. K. Aggarwal, L. M. Saini, A. Kumar, Electricity price fore-
casting in deregulated markets: A review and evaluation, Inter-
national Journal of Electrical Power & Energy Systems 31 (1)
(2009) 13-22.

G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm
for deep belief nets, Neural Computation 18 (7) (2006) 1527—
1554.

I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT
Press, 2016.

A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classifica-
tion with deep convolutional neural networks, in: Proceedings
of the 25th International Conference on Neural Information Pro-
cessing Systems, NIPS’12, Curran Associates Inc., USA, 2012,
pp. 1097-1105.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, B. Kings-
bury, Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups, Signal

23

[33]

[34]

[36]

37]

[38]

[39]

[41]

[42]

[43]

Processing Magazine 29 (6) (2012) 82-97.

D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation
by jointly learning to align and translate, arXiv eprint (2014).
arXiv:1409.0473.

H. Wang, G. Wang, G. Li, J. Peng, Y. Liu, Deep belief network
based deterministic and probabilistic wind speed forecasting ap-
proach, Applied Energy 182 (2016) 80-93.

I. Coelho, V. Coelho, E. Luz, L. Ochi, F. Guimaraes, E. Rios,
A GPU deep learning metaheuristic based model for time series
forecasting, Applied Energy 201 (2017) 412-418.

C. Fan, F. Xjao, Y. Zhao, A short-term building cooling load
prediction method using deep learning algorithms, Applied En-
ergy 195 (2017) 222-233.

H.-Z. Wang, G.-Q. Li, G.-B. Wang, J.-C. Peng, H. Jiang, Y.-T.
Liu, Deep learning based ensemble approach for probabilistic
wind power forecasting, Applied Energy 188 (2017) 56-70.

X. Kong, X. Xu, Z. Yan, S. Chen, H. Yang, D. Han, Deep
learning hybrid method for islanding detection in distributed
generation, Applied Energy.

C. Feng, M. Cui, B.-M. Hodge, J. Zhang, A data-driven multi-
model methodology with deep feature selection for short-term
wind forecasting, Applied Energy 190 (2017) 1245-1257.

I. P. Panapakidis, A. S. Dagoumas, Day-ahead electricity price
forecasting via the application of artificial neural network based
models, Applied Energy 172 (2016) 132-151.

D. Keles, J. Scelle, F. Paraschiv, W. Fichtner, Extended forecast
methods for day-ahead electricity spot prices applying artificial
neural networks, Applied Energy 162 (2016) 218-230.

M. Shafie-Khah, M. P. Moghaddam, M. Sheikh-El-Eslami, Price
forecasting of day-ahead electricity markets using a hybrid fore-
cast method, Energy Conversion and Management 52 (5) (2011)
2165-2169.

V. Sharma, D. Srinivasan, A hybrid intelligent model based
on recurrent neural networks and excitable dynamics for price
prediction in deregulated electricity market, Engineering Appli-
cations of Artificial Intelligence 26 (5) (2013) 1562-1574.

S. Anbazhagan, N. Kumarappan, Day-ahead deregulated elec-
tricity market price forecasting using recurrent neural network,
IEEE Systems Journal 7 (4) (2013) 866—872.

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neu-
ral Computation 9 (8) (1997) 1735-1780.

K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the
properties of neural machine translation: Encoder-decoder ap-
proaches, arXiv eprint (2014). arXiv:1409.1259.

A. Graves, Generating sequences with recurrent neural net-
works, arXiv eprint (2013). arXiv:1308.0850.

J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation
of gated recurrent neural networks on sequence modeling, arXiv
eprint (2014). arXiv:1412.3555.

I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learn-
ing with neural networks, in: Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Systems,
NIPS’14, MIT Press, 2014, pp. 3104-3112.

N. Amjady, A. Daraeepour, F. Keynia, Day-ahead electricity
price forecasting by modified relief algorithm and hybrid neural
network, IET Generation, Transmission & Distribution 4 (3)
(2010) 432—444.

A. J. Conejo, J. Contreras, R. Espinola, M. A. Plazas, Forecast-
ing electricity prices for a day-ahead pool-based electric energy
market, International Journal of Forecasting 21 (3) (2005) 435—
462.

J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for
hyper-parameter optimization, in: Advances in Neural Informa-
tion Processing Systems, 2011, pp. 2546-2554.

F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-
based optimization for general algorithm configuration, in: In-
ternational Conference on Learning and Intelligent Optimiza-
tion, Springer, 2011, pp. 507-523.

D. R. Jones, M. Schonlau, W. J. Welch, Efficient global op-
timization of expensive black-box functions, Journal of Global
Optimization 13 (4) (1998) 455-492.



[55]

[56]

[57)

[58]

[59]

(63]

[64]

(65]

(68]

(69]

S. Makridakis, Accuracy measures: theoretical and practical
concerns, International Journal of Forecasting 9 (4) (1993) 527—
529.

F. X. Diebold, R. S. Mariano, Comparing predictive accuracy,
Journal of Business & Economic Statistics 13 (3) (1995) 253—
263.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
R. Salakhutdinov, Dropout: A simple way to prevent neural net-
works from overfitting, Journal of Machine Learning Research
15 (2014) 1929-1958.

D. P. Kingma, J. Ba, Adam: A method for stochastic optimiza-
tion, arXiv eprint (2014). arXiv:1412.6980.

L. Bottou, Large-scale machine learning with stochastic gra-
dient descent, in: Proceedings of COMPSTAT’ 2010, Physica-
Verlag HD, Heidelberg, 2010, pp. 177-186.

Y. Yao, L. Rosasco, A. Caponnetto, On early stopping in gradi-
ent descent learning, Constructive Approximation 26 (2) (2007)
289-315.

N. Amjady, F. Keynia, Day-ahead price forecasting of electricity
markets by mutual information technique and cascaded neuro-
evolutionary algorithm, IEEE Transactions on Power Systems
24 (1) (2009) 306-318.

V. Vahidinasab, S. Jadid, A. Kazemi, Day-ahead price forecast-
ing in restructured power systems using artificial neural net-
works, Forecasting next-day price of electricity in the Span-
ish energy market using artificial neural networks 78 (8) (2008)
1332-1342.

H. M. I. Pousinho, V. M. F. Mendes, J. P. S. Catalao, Short-
term electricity prices forecasting in a competitive market by a
hybrid PSO-ANFIS approach, International Journal of Electri-
cal Power & Energy Systems 39 (1) (2012) 29-35.

R. Weron, A. Misiorek, Forecasting spot electricity prices with
time series models, in: Proceedings of the European Electricity
Market EEM-05 Conference, 2005, pp. 133-141.

J. W. Taylor, Short-term electricity demand forecasting using
double seasonal exponential smoothing short-term electricity
demand forecasting using double seasonal exponential, Journal
of Operational Research Society 54 (2003) 799-805.

A. M. De Livera, R. J. Hyndman, R. D. Snyder, Forecast-
ing time series with complex seasonal patterns using exponen-
tial smoothing, Journal of the American Statistical Association
106 (496) (2011) 1513-1527.

B. Uniejewski, J. Nowotarski, R. Weron, Automated variable
selection and shrinkage for day-ahead electricity price forecast-
ing, Energies 9 (8) (2016) 621.

R. Cao, J. Hart, A. Saavedra, Nonparametric maximum likeli-
hood estimators for AR and MA time series, Journal of Statis-
tical Computation and Simulation 73 (5) (2003) 347-360.

R. Tibshirani, Regression shrinkage and selection via the lasso,
Journal of the Royal Statistical Society. Series B (Methodolog-
ical) (1996) 267-288.

H. Zou, T. Hastie, Regularization and variable selection via the
elastic net, Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 67 (2) (2005) 301-320.

D. C. Sansom, T. Downs, T. K. Saha, Evaluation of support vec-
tor machine based forecasting tool in electricity price forecasting
for australian national electricity market participants, Journal
of Electrical and Electronics Engineering Australia 22 (3) (2003)
227-234.

D. Niu, D. Liu, D. D. Wu, A soft computing system for day-
ahead electricity price forecasting, Applied Soft Computing 3
(2010) 868-875.

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statis-
tical Learning, Springer Series in Statistics, Springer New York
Inc., New York, NY, USA, 2001.

L. Breiman, Random forests, Machine Learning 45 (1) (2001)
5-32.

T. Chen, C. Guestrin, Xgboost: A scalable tree boosting sys-
tem, in: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp.
785-794.

24

[84]

[89]

[90]

[91]

[92]

G. E. P. Box, D. R. Cox, An analysis of transformations, Journal
of the Royal Statistical Society. 26 (2) (1964) 211-252.
ENTSO-E transparency platform,
https://transparency.entsoe.eu/. Accessed on 15.05.2017.
RTE, Grid data, https://data.rte-france.com/. Accessed on
15.05.2017.

Elia, Grid data, http://www.elia.be/en/grid-data/dashboard.
Accessed on 15.05.2017.

F. Chollet, Keras, https://github.com/fchollet/keras
(2015).
Theano Development Team, Theano: A Python framework

for fast computation of mathematical expressions, arXiv eprint
(2016). arXiv:1605.02688.

R. J. Hyndman, forecast: Forecasting functions for time series
and linear models (2017).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research 12
(2011) 2825-2830.

J. Andersson, A General-Purpose Software Framework for Dy-
namic Optimization, PhD thesis, Arenberg Doctoral School, KU
Leuven, Department of Electrical Engineering (ESAT/SCD)
and Optimization in Engineering Center, Kasteelpark Arenberg
10, 3001-Heverlee, Belgium (October 2013).

F. Ziel, R. Steinert, S. Husmann, Forecasting day ahead elec-
tricity spot prices: The impact of the EXAA to other European
electricity markets, Energy Economics 51 (2015) 430-444.

J. Nowotarski, E. Raviv, S. Triick, R. Weron, An empirical
comparison of alternative schemes for combining electricity spot
price forecasts, Energy Economics 46 (2014) 395-412.

R. Pino, J. Parreno, A. Gomez, P. Priore, Forecasting next-day
price of electricity in the spanish energy market using artificial
neural networks, Engineering Applications of Artificial Intelli-
gence 21 (1) (2008) 53-62.

N. Amjady, F. Keynia, Day ahead price forecasting of electricity
markets by a mixed data model and hybrid forecast method, In-
ternational Journal of Electrical Power & Energy Systems 30 (9)
(2008) 533-546.

F. Keynia, A new feature selection algorithm and composite
neural network for electricity price forecasting, Engineering Ap-
plications of Artificial Intelligence 25 (8) (2012) 1687-1697.

S. K. Aggarwal, L. M. Saini, A. Kumar, Electricity price fore-
casting in ontario electricity market using wavelet transform in
artificial neural network based model, International Journal of
Control Automation and Systems 6 (5) (2008) 639-650.

K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward
networks are universal approximators, Neural Networks 2 (5)
(1989) 359-366.

Y. LeCun, L. Bottou, G. B. Orr, K.-R. Miiller, Efficient Back-
Prop, in: G. B. Orr, K.-R. Miiller (Eds.), Neural Networks:
Tricks of the Trade, no. 1524 in Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 1998, pp. 9-50.

S. Ruder, An overview of gradient descent optimization algo-
rithms, arXiv eprint (2016). arXiv:1609.04747.

Y. Bengio, P. Simard, P. Frasconi, Learning long-term depen-
dencies with gradient descent is difficult, IEEE Transactions on
Neural Networks 5 (2) (1994) 157-166.

A. Borovykh, S. Bohte, C. W. Oosterlee, Conditional time se-
ries forecasting with convolutional neural networks, arXiv eprint
(2017). arXiv:1703.04691.



Supplementary Material

The following appendices act as supplementary ma-
terial to this research paper. They provide a deeper
understanding of the methods used in the research and
they extend the results provided in the case study.

Appendix A. Deep Learning

In this appendix, we give a description of each of the
DL structures considered in the modeling framework. For
a deeper understanding we refer to [30].

Appendiz A.1. DNN

A DNN [30] is the natural extension of the traditional
MLP. In particular, defining by X = [z1,... ,xn]—r € R”
the input of the network, by Y = [y1,%2,...,Ym] € R™
the output of the network, by njg the number of neurons
of the k' hidden layer, and by zg = [2k1, ..., 2kn, ]| the
state vector of the k™ hidden layer, a general DNN with
two hidden layers can be represented by Figure A.7.

Input Hidden Hidden Output
layer layer layer layer
Ty

Tn

Figure A.7: Example of a deep neural network.

A general neuron i in the k™ layer can be represented
by an equation of the following form:

2ki = fri (Wz;r, “Zp—1+ bki)7 (A1)
where fj; represents the activation function of the neuron,
e.g. a sigmoid function, Wy, the mapping weights from
the (k — 1)*™ layer to neuron i in the k** layer, and by; the
bias of the neuron. Note that in the above convention the
input layer is considered as the 0" layer.

Appendiz A.2. RNN

While DNN structures are successful in many applica-
tions, they might fail to capture the nature of time series
data. In particular, given a sequence of inputs Xq,..., Xy
that correspond to successive time steps, DNNs assume

that an input X} is independent from the others. Never-
theless, in time series data, inputs are usually correlated;
therefore, to obtain a correct map of the output Y, we
might have to consider an input time sequence Xy, ..., Xy
instead of a single input Xj. To model this sequential de-
pendence, RNNs [30] build additional mappings between
the neurons of the same hidden layer to hold relevant in-
formation from past inputs. An example of a RNN is given
in Figure A.8.

Input Hidden Output
layer layer layer
1 > 221 (9
T2 (2

Tn 5 Z2n2 i - Ym

Figure A.8: Example of a recurrent neural network.

A great disadvantage of RNNs is that, while in theory
they are able to model any sequential dependence, in prac-
tice they are incapable of learning long-term dependencies
due to the vanishing gradient problem [94]. More specifi-

cally, given a training sequence {(X;C7 Yi) }:}:1, traditional
RNNs have the problem that, due to the recurrence in
the structure, the network gradient with respect to an in-
put (X, YY) depends on the multiplication of the gra-
dients w.r.t. the previous inputs. As a consequence, as
the length of the training sequence increases, the gradi-
ent contribution later training pairs either becomes 0 or
grows unbounded. In the first case, only earlier inputs of
the training sequence are effectively used, and thus, the
training becomes slow and hard. In the second case, the
training runs into numerical issues. In both scenarios, the
end result are RNNs that are unable to hand long-term
dependencies.

Appendiz A.3. LSTM

LSTM networks [45] are a type of recurrent networks
that avoid the vanishing gradient problem. Whereas in a
standard RNN each neuron is represented by a simple neu-
ral unit, i.e. a single nonlinear mapping, an LSTM consists
of a cell with four neural units. The key idea is that, by
using four units per neuron, an LSTM is able to model a
memory cell state ¢ with a selective forget-remember be-
havior. In more detail, as depicted in Figure A.9, each
LSTM cell consists of three gates: an input gate I, an
output gate O, and a forget gate F. Together with a hy-
perbolic tangent function, these gates represent the four
neural units. Then, at a time step t, the cell is character-
ized by its hidden state z, its cell state ¢; and the input



state x;; moreover, the output of the cell is represented by
the hidden state z;. In Figure A.9, the blue ellipses repre-
sent vectorial element-wise operations and the ® symbol
represents the Hadamard or element-wise product.

Zt
A

Ct—1

Zt—1

Ty
Figure A.9: Basic LSTM Cell.
Hadamard or element-wise product.

The © symbol represents the

The working principle of the cell is as follows: at any
time step t, the neuron regards z; ; and x; as decision
variables. Based on them, it uses the neural units to build
F;, I; and Oy, three vectors of real numbers between 0
and 1 that select which information from x;, ¢;—1, and
zt—1 is used to build ¢; and z;. Defining the parameters of
an LSTM cell as the matrices Wg, Wi, Wo, W, br, b1, bo
and b,, the neuronal mapping consists of four steps:

1. The forget gate decides which information from the
old cell state c;_1 is kept in ¢; by building the decision

vector
Ft = U([/[/F |:Zt1:| + bF),
Tt

(A.2a)

with o representing the sigmoid function.

2. Next, the input gate and the tanh unit select which
new information is added. Particularly, the tanh unit
creates a vector ¢; with the relevant new information:

o Zt—1
G = tanh(WC [ . } + bc). (A.2b)
Then, the input gate builds the vector
I, = J(Wl [z;1] n bz), (A.2¢)
t

which selects which of the new information in ¢; is
kept in ¢;:

3. Using F; and I;, the new cell state is built:
Ct = Ft ®cp—1 + It ® ét, (AQd)

4. Finally, the output gate builds the last decision vector
. Zt—1
01 = o(Wo { } +bo),
Tt

which decides which information of ¢; is used for the
new hidden state z;:

(A.2e)

Zt = Ot ® tanh(ét). (A2f)

Appendiz A.4. GRU

GRU networks [48] are RNNs that use a cell structure
very similar to the LSTM case. However, in contrast with
an LSTM cell, a GRU cell does not distinguish between
the memory cell ¢ and the hidden state z; instead, it uses
a single state variable z. In addition, while an LSTM cell
uses a three-gates structure, the GRU cell only requires
two: an update gate U and a reset gate R. A represen-
tation of an GRU cell is given in Figure A.10; as before,
the red boxes represent the three neural units, the blue el-
lipses vectorial element-wise operations, and the ® symbol
represents element-wise product.

/‘/”\ =\ /H\\ 2t

P r\@'—) tanh 'V\\G)/'_V\\-b'—')

- A y Py \

I N @/}
i

N

R U
J

= /

Tt
Figure A.10: Basic GRU Cell.
Hadamard or element-wise product.

The ® symbol represents the

The working principle of this cell resembles the one of
an LSTM. Particularly, defining the parameters of an GRU
cell as the matrices Wy, Wgr, W,, by, br and b., the neu-
ronal mapping consists of three steps:

1. The reset gate builds the decision vector

R, = U(WR hl} + bR), (A.3a)

t
which selects which information from z;_; is kept in
the vector of new information z;.
2. Simultaneously, the tanh unit builds

- Ry © 241
Zy = tanh(WC { z } + bc>, (A.3b)

which contains the relevant new information in z; and
in the reset gate selection R; ® z;_1.
3. Finally, the update gate builds

U, = O‘(WU [Z;jl] + bu),

t

(A.3c)

a decision vector that models the new state z; as a
trade-off between the old state z;_; and the new rel-
evant information Zz;:

Zt = Ut ® Z¢ + (1 — Ut) ® 2¢_1- (A3d)

Compared with an LSTM network, the GRU has a sim-
pler structure and it is easier and faster to train. In addi-
tion, for some applications, it has been empirically shown
that it can outperform the LSTM counterpart [48].



Appendiz A.5. CNN

Another prominent family of DL structures are CNNs.
The core idea of a CNN is to analyze an array of data by
performing local operations in different areas of the array
and outputting the result of these operations to a new
layer. As a result, unlike other network structures, a CNN
does not have all the layers fully connected.

CNNs are modeled using three building blocks: a convo-
lution operation followed by a nonlinear function, a pool-
ing operation, and a fully connected layer. Given an array
of data, the convolution operation slides a filter across the
data array and computes an element-wise cross product
between the filter and the areas where the filter goes over.
Then, for each of the convolved values, a nonlinear map
is used and a new array of data is outputted. As differ-
ent filters capture different properties, CNNs typically use
different filters over the input data to output several data
arrays. These output arrays are called feature maps, and
each one of them represents a distinctive characteristic of
the original data array.

As a second building block, the CNN performs a pool-
ing operation. The basic idea is to reduce the size of the
feature maps by reducing large areas into single values.
Typical operations are the maximum pooling (maximum
value of an area) or the average pooling (average value in
the area).

Finally, after the CNN subsequently performs several
convolutions and pooling operations, the values of the final
set of feature maps are used as inputs for a fully connected
layer. This layer can be used as the output of the network
or be followed by more fully connected layers.

It is important to note that, while the above description
considered a single input data array, a general CNN can
have many; particularly, each of these input arrays is called
a channel. A typical 3-channel example is an RGB image,
where the blue, red and green layers represent the 3 input
channels.

An example of a CNN structure is given in Figure A.11.
In the example, the CNN considers three channels rep-
resented by 50 x 50 data arrays. Then, in a first layer,
it computes 24 features maps using 8 different filters per
channel. Next, it reduces the size of the maps to 11 x 11
arrays via a pooling operation. Then, it performs a second
convolution and pooling operations that lead to 72 feature
maps of size 6 x 6. Finally, the network becomes fully
connected using a DNN with two hidden layers.

Normal
layer

Feature Feature
Feature maps maps
maps maps  72@8x8 72@6x6 g 300
24@24x24 24@11x11 [

Feature

Inputs
3@50x50

Fully

R connected
Pooling

2X2 kernel

Figure A.11: Example of a CNN network.
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It is important to note that, while most of the applica-
tions of CNNs have been with images, they have also been
applied to other type of data, e.g. time series forecasting
[95].

Appendix B. Optimal Feature Selection

In this appendix, we present the main results obtained
during the feature selection process. In particular, we out-
line which of the input variables are helpful to predict the
different day-ahead prices. The content of this analysis is
qualitative, not quantitative; in particular, as we evaluate
27 models, each model predicts 24 hours, and as there are
more than 750 individual input features available, the in-
dividual results would not only be very vast, but might
not provide a very helpful insight.

The appendix consists of four parts: in a first section,
we present the main feature selection results common to
all forecasters. Then, in a second part, we list the results
for the forecasters that require an individual model per
hour, e.g. ARIMA or SVR. In a third part, we present the
results of the benchmark forecasters with multiple outputs,
e.g. neural networks. Finally, we will provide an overall
discussion based on the listed results.

Appendiz B.1. Common Results

Independently of the forecaster and the hour, using
the day-ahead generation forecast in Belgium, i.e. gg, de-
creases the overall accuracy. As discussed in [3], a possible
explanation for this effect might be a change in the Bel-
gian generation conditions in mid 2015, which would lead,
in our study, to different generation conditions between
the training and validation datasets and the test dataset.

Appendiz B.2. Forecasters with an individual model per
hour

Within the class of forecasters with exogenous inputs
and an individual model per hour, we can distinguish
between the nonparametric models, i.e. IHMARX and
SNARX, and the rest.

In the case of nonparametric models, the optimal fea-
tures are the same as in the original study: lagged prices
at 24, 48, and 168 hours; the minimum price of the previ-
ous day; and the day-ahead forecast of the grid load at the
prediction hour in the local market, i.e. Belgium. For the
rest of the forecasters, we can make a distinction between
three groups:

e For the DR, TF, ARX, and TARX models:

1. Lagged prices in Belgium at 24, 25, 47, 48, 49,
167, 168, 169 hours.

2. The day-ahead grid load forecast in Belgium at
prediction hour.

3. For ARX and TARX, the minimum price of the
previous day.



e For the five machine learning methods, i.e. the three
SVR-based models, the RF, and the XGB:

24 lagged prices of the previous day in Belgium.
24 lagged prices of one week before in Belgium.
24 lagged prices of the previous day in France.
The day-ahead grid load forecast in Belgium at
prediction hour.

5. The day-ahead grid load and generation forecasts
in France at prediction hour.

=N =

e For the three fARX-based forecasters, the optimal fea-
tures are: the past prices in Belgium and France, the
day-ahead load forecast in Belgium and France, and
the day-ahead generation forecast in France. For each
of these 5 variables, the specific lagged values are the
same as in the original paper [67]: a very large com-
bination of past prices at different lags, and the day-
ahead forecasts at different future time steps and lags
(as it is a total of 107 inputs, we refer to the original
paper [67] for full details).

Appendiz B.3. Results for forecasters with multiple out-
puts

The 6 forecasters that predict the 24 prices in a single
model have in common, as optimal features, the 48 inputs
represented by the day-ahead generation and load forecast
in France. With respect to the rest of the features, there
is a division into 2 groups:

e The RBF model, which has as optimal features the
day-ahead load forecast in Belgium and considers only
lagged prices in Belgium: 48 lagged prices represent-
ing the previous day and one week before.

e The DL models, which disregard as optimal features
the day-ahead load forecast in Belgium, and consider
the same lagged prices in France and Belgium:

— MLP and DNN: the 72 lagged prices of the pre-
vious two days and one week before.

— CNN: the 168 lagged prices of the week before
the day of prediction.

— LSTM and GRU: the 336 lagged prices of the
two weeks before.

Appendiz B.j. Discussion

If we look at the results, we can make the following
observations:

1. The local prices in Belgium are the most important
quantity. In particular, the lagged prices of the pre-
vious two days and one week before are the most im-
portant features.

2. For all statistical models, the load forecast for the
prediction hour in the local market is also a very im-
portant feature.
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3. For machine learning models, the features from the
neighboring market, i.e. France, are also important.
In particular, the lagged prices in France of the previ-
ous day and the load and generation forecasts for the
prediction hour play an important role.

4. Except for the three fARX-based models, the effect of
market integration, i.e. using features from neighbor-
ing markets, can only be observed in machine learning
models.

Appendix C. Optimal Hyperparameters for Base
Models

In this appendix, we describe the hyperparameters that
are optimized for each base model and the result of this
optimization for our case study. The hyperparameters and
optimization results for the machine learning methods are
listed in Table C.9; likewise, the optimization results for
the statistical methods are listed in C.10. For a more de-
tailed explanation of the meaning of the different hyperpa-
rameters, we refer to the original papers. In addition, for
the explanation of the hyperparameters of the SVR-based
models and the RF model, the library [83] used for the
implementation is also a good reference.



Model Symbol | Value | Definition
SVR C 9.97 | Penalty parameter of the error
€ 0.0038 | Epsilon of the epsilon-SVR model
C 1.57 | Penalty parameter of the error
SOM-SVR € 0.0029 | Epsilon of the epsilon-SVR model
Ne 3 Number of clusters
C 8.54 | Penalty parameter of the error
€ 0.0044 | Epsilon of the epsilon-SVR model
p 4 AR order of ARIMA part
SVR-ARIMA q 2 Moving average (MA) order of ARIMA part
P 3 AR order of the daily seasonality of the ARIMA part
Q 1 MA order of the daily seasonality of the ARIMA part
d 1 Differencing order of ARIMA part
D 0 Seasonal differencing order of ARIMA part
nt 470 Number of trees
RF s 0.49 | Percentage of features considered when looking for the best split
Nmin 1 Minimum number of samples per leaf node
Nt 105 Number of trees
Amax 4 Maximum tree depth
Ir 0.0491 | Learning rate
XCB y 0.0071 | Minimum loss reduction needed to make a new partition on a leaf node
o 8.57 | Coeflicient for L1 regularization
A 0.4273 | Coefficient for L2 regularization
Tsub 0.7093 | Subsample ratio of the training set used for training a tree
Tcol 0.3040 | Subsample ratio of columns when training a tree
n 117 Number of neurons on the hidden layer
MLP nonlin | ReLU | Activation function on the hidden layer
d 0 Dropout coefficient
e 0.00032 | Coeflicient for L1 regularization
RBF n 247 Number of neurons, a.k.a. kernels or basis functions.
cluster | Birch | Clustering algorithm to find the centers for the kernels.

Table C.9: Summary of the optimized hyperparameter for the machine learning models (except the DL models).




FARX Nywindow 40 Data window: number of past months used for estimating the model.
Nmod 24 Nmod =1: one model to predict all 24 hours. Nyoq =24: individual model per hour.
Nyindow 40 Data window: number of past months used for estimating the model.
fARX-Lasso @ 0.0040 | Coefficient for L1 regularization.
Niod 24 Nmod =1: one model to predict all 24 hours. Nyoq =24: individual model per hour.
Nyindow 39 Data window: number of past months used for estimating the model.
FARX.EN «@ 0.0010 | Coefficient for L1 regularization.
r 0.95 | Elastic net mixing parameter: r = 1 is equal to Lasso.
Nmod 24 Nmoda =1: one model to predict all 24 hours. Nyoq =24: individual model per hour.
Nywindow 32 Data window: number of past months used for estimating the model.
THMARX Nreo 20 Number of model re-estimations when optimizing the nonparametric model.
Niod 24 Nmoda =1: one model to predict all 24 hours. Nyoq =24: individual model per hour.
Nyindow 43 Data window: number of past months used for estimating the model.
SNARX Nye 17 | Number of model re-estimations when optimizing the nonparametric model.
Nmod 24 Nmoa =1: one model to predict all 24 hours. Nyoq =24: individual model per hour.
ARX Nyindow All | Data window: number of past months used for estimating the model.
Nimod 24 Nmoda =1: one model to predict all 24 hours. Ny oq =24: individual model per hour.
TARX Nuwindow All Data window: number of past months used for estimating the model.
Niod 1 Nmoda =1: one model to predict all 24 hours. Nyca =24: individual model per hour.
Nwindow 36 Data window: number of past months used for estimating the model.
DR lmax 168 | Largest lag for the demand.
Pmax 192 | Largest lag for the prices.
Nwindow 36 Data window: number of past months used for estimating the model.
TF lmax 168 | Largest lag for the demand.
Pmax 192 | Largest lag for the prices.
dmax 168 | Largest lag for the disturbance term.
WARIMA Nwindow 16 Data window: number of past months used for estimating the model.
Nywindow 23 Data window: number of past months used for estimating the model.
Nswarm | 350 | Swarm size.
WARIMA-RBF Nmax 150 Maximum number of iterations for particle swarm optimization.
w 0.65 | Particle velocity scaling factor.
op 0.4 | Scaling factor to search away from particle’s best known position.
Pe 0.7 | Scaling factor to search away from swarm’s best known position.
ARIMA-GARCH | Nyindow 12 Data window: number of past months used for estimating the model.
DSHW Nyindow All | Data window: number of past months used for estimating the model.
TBATS Nuwindow 16 Data window: number of past months used for estimating the model.
DSARIMA Nyindow 19 Data window: number of past months used for estimating the model.
AR Nyindow All | Data window: number of past months used for estimating the model.
Niod 24 Nmoda =1: one model to predict all 24 hours. Nyoq =24: individual model per hour.

Table C.10: Summary of the optimized hyperparameter for the statistical methods.
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